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Abstract

Cervical cancer is caused by the persistent infection of certain types of the Human Papillomavirus 

(HPV) and is a leading cause of female mortality particularly in low and middle-income countries 

(LMIC). Visual inspection of the cervix with acetic acid (VIA) is a commonly used technique in 

cervical screening. While this technique is inexpensive, clinical assessment is highly subjective, 

and relatively poor reproducibility has been reported. A deep learning-based algorithm for 

automatic visual evaluation (AVE) of aceto-whitened cervical images was shown to be effective in 

detecting confirmed precancer (i.e. direct precursor to invasive cervical cancer). The images were 

selected from a large longitudinal study conducted by the National Cancer Institute in the 

Guanacaste province of Costa Rica. The training of AVE used annotation for cervix boundary, and 

the data scarcity challenge was dealt with manually optimized data augmentation. In contrast, we 

present a novel approach for cervical precancer detection using a deep metric learning-based 

(DML) framework which does not incorporate any effort for cervix boundary marking. The DML 

is an advanced learning strategy that can deal with data scarcity and bias training due to class 

imbalance data in a better way. Three different widely-used state-of-the-art DML techniques are 

evaluated- (a) Contrastive loss minimization, (b) N-pair embedding loss minimization, and, (c) 

Batch-hard loss minimization. Three popular Deep Convolutional Neural Networks (ResNet-50, 

MobileNet, NasNet) are configured for training with DML to produce class-separated (i.e. linearly 

separable) image feature descriptors. Finally, a K-Nearest Neighbor (KNN) classifier is trained 

with the extracted deep features. Both the feature quality and classification performance are 

quantitatively evaluated on the same data set as used in AVE. It shows that, unlike AVE, without 

using any data augmentation, the best model produced from our research improves specificity in 

disease detection without compromising sensitivity. The present research thus paves the way for 

new research directions for the related field.
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I. INTRODUCTION

Cervical cancer is a major cause of premature female morbidity with over half a million new 

cases and over three hundred thousand deaths reported in 2018.1 Universally, this disease is 

caused by persistent infection with one or more from a dozen oncogenic types of the human 

papillomavirus (HPV). Early detection of HPV-induced precancer (the precursor to cancer) 

and providing appropriate treatment where necessary can reduce suffering and premature 

death. However, there is a significant scarcity of clinical and gynecological services and 

expertise as well as a lack of sufficient access to effective low-cost cervical screening 

programs in the low and middle-income countries (LMIC). This shortage correlates highly 

with regions where the highest death rates have been reported.

The VIA method (Visual Inspection with Acetic Acid) is a low-cost and readily available 

screening method. A weak (3%-5%) acetic acid solution is applied to the cervix region 

which is then visually assessed by an expert. Whitening of cervical tissue around the 

transformation zone [1] indicates focal HPV infections. Appropriate treatment of the cervix 

or referral for further evaluation is recommended by the clinician. Although VIA is cheap 

and easily accessible, low reliability, accuracy, and high inter-observer variability have been 

reported [2]. Clinical colposcopes help in improving VIA performance with better 

illumination and optical magnification of the cervix region. However, they are very 

expensive and not commonly available in all settings. Moreover, these assessments also 

suffer from high intra- and inter-observer variability [3]. These challenges present an 

opportunity for research in developing powerful image analytics algorithms in an automated 

low-cost assistive screening system that is accurate, reliable, and effective.

There are several challenges towards achieving this goal. First, there is a lack of an imaging 

standard. We find that images are often taken inconsistently, with varied illumination, poor 

focus, high specular reflection, and imperfect color tone [4], [5]. Designing hand-crafted 

statistical features for addressing these variables is limiting and error-prone. Modern deep 

learning-based classification algorithms can apply data-driven strategies to deal with it in a 

better way. However, there is a naturally occurring high class-imbalance in screening data 

due to low disease prevalence in the general population with many more controls (normal 

class) than cases (abnormal class) -typical ratios of 99:1 or higher in controls to cases are not 

uncommon. This makes the tasks more challenging. Recall that, while DCNN is an 

important addition for representation learning in computer vision [6], [7], these networks are 

trained in an end-to-end manner, and during training adjust weight matrices within the 

network layers. Images are processed through the layers and produce prediction maps for all 

possible classes. The training error is computed based on the ground-truth probability map 

for every class, with a differentiable error function, such as Cross-Entropy, Mean Square 

Error, etc. However, key drawbacks of training a DCNN with classification loss are that it is 

prone to bias toward the majority class, which tends to be comprised of images from normal 

women. Such an imbalance does not guarantee, without an appropriate training strategy, that 

the image embedding (i.e. feature map obtained from the last fully connected layer before 

the loss layer) are linearly separable. While, it may sometimes appear that we obtain good 

1https://www.who.int/health-topics/cervical-cancer#tab=tab_1
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classification accuracy, due to the classifier’s biasedness toward majority classes, we are 

often unable to get good feature representation to support generalization to unseen data.

Previously, Faster-RCNN, a deep learning-based Automatic Visual Evaluation (AVE) [8] 

method was proposed for detecting precancer cases. AVE uses a region proposal algorithm 

(Faster-RCNN) to localize the cervix boundary prior to the classification module. In 

developing AVE, the data skew was retained to increase statistical power for epidemiologic 

analyses but reduced to a 3:1 ratio of controls to cases. Consequently, in selecting absolute 

precancer cases the number of samples was also limited. With fewer data available for 

training, synthetic data augmentation was used during network training to overcome its 

impact on learning and classification performance. As a result, the trained model was likely 

over-fit to the data and less likely to adapt to naturally occurring variations in cervical image 

appearance and disease prevalence. In order to advance the prior AVE effort and pursue the 

first step toward addressing data skew, we develop a new method that operates on the full 

cervix image. We propose to train the convolutional neural network with deep metric 

learning (DML) for producing class-separated feature representation of the cervical images. 

Finally, a K-Nearest neighbor classifier is built with the deep features.

The key contributions of this paper are as follows.

1. We present a pioneering approach using deep metric learning for cervical 

precancer detection aimed at naturally occurring disease prevalence.

2. We analyze the linear separability of learned image features both quantitatively 

and qualitatively.

3. A detailed analysis of experimental results is conducted which demonstrates that 

the method improves specificity in disease detection without compromising 

sensitivity and paves the way for new research directions.

The organization of the rest of the paper is as follows: Section II provides background on 

state-of-the-art approaches on cervical image analysis. A discussion about deep metric 

learning and the experimented approaches are available in Section III. The experimental 

setup and the analysis of experimental results are presented in Section IV and Section V. 

Finally, Section VI concludes the paper.

II. RELATED LITERATURE

The potential for automatic analysis of digital cervical images in revolutionizing screening 

for precancers has motivated the development of several automatic and semi-automatic 

image analysis algorithms. These include algorithms for anatomical landmark detection [9], 

cervix region detection [10], [11], cervix type detection [12], pre-cancerous lesion detection-

segmentation [13–15] and disease diagnosis [16–18]. Since our main concern is detecting 

precancer (or worst disease condition) in cervical images, we restrict our literature review to 

the topically relevant algorithms.

Early cervical image classification research mainly focused on the development of robust 

features to represent cervical images and classifier development. Commonly, hand-crafted 
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image features were used as cervical image descriptors, such as (a) filter bank-based texture 

features, (b) pyramid color histogram features (in L*a*b* color space), (c) pyramid 

histogram of oriented gradients (PHOG), and (d) pyramid histogram of local binary patterns 

(PLBP). These features were subsequently used for developing classification algorithms, 

such as χ2 distance, support vector machine (SVM), random forest (RF), gradient boosting 

decision tree (GBDT), AdaBoost, logistic regression (LR), multi-layer perceptron (MLP), 

and k-Nearest Neighbors (kNN) [16], [17], [19–21]. Some approaches extracted features 

from the cervix region-of-interest (RoI) detected at an earlier stage of the algorithm [16], 

[17]. However, these hand-crafted color and texture features were rarely sufficiently robust 

in representing cervical images due to high variability in image quality and appearance. The 

variability is most confounding in color and object illumination which are critical for disease 

discrimination, but also includes focus [4], the region of interest coverage, the imaging 

device, time that the image was taken after application of acetic acid, and geographic region 

[22]. This has resulted in data-driven automatic supervised representation learning 

algorithms becoming an attractive choice for computer vision researchers [8], [23–29]. 

Training a DCNN model from scratch was proposed in [23]. Multimodal learning [24], 

where image data along with clinical records are processed together has also been attempted. 

Multi-scale CNN are proposed in [25], [26]. Multi-CNN decision feature integration is used 

in [27]. [28] proposed to use the Deep Belief network. Object detection networks are 

employed in [8], [29].

All these approaches focus on developing a discriminating model, or classifier, from the raw 

color intensity matrix of the input images. In contrast, our research focuses on cervical 

image representation with deep metric learning.

III. METHODS

The deep metric learning (DML) is a robust technique that can address two limitations of 

commonly used deep classification networks- (i) biasedness towards majority class [30–32] 

and (ii) over-fitted model development due to data scarcity [33], [34]. The training strategy 

of DML aims to produce the image embedding in such a way that they are closer if the 

images are sampled from the same class and distant otherwise and thus produces class-

separated image representation. Also, unlike classification model training, the training loss is 

computed based on the embedding obtained from multiple images. In the literature, several 

DML approaches are proposed which are broadly designed based on the image sampling 

strategy, embedding distance computation, loss computation etc. [30–32].

In this paper, we develop a DML based framework (see Fig 1 (a)) for cervical image 

classification. In the proposed framework, firstly, the DML is performed with the training 

images and their labels. The learning objective of DML is to produce a deep model which 

can generate class-discriminating feature vectors from the training images. Note that the 

deep network does not contain any classification layer during DML (see Fig 1(b)). In the 

next stage, the trained DML model serves as a feature extractor and extracted feature vectors 

are then used to build a K-Nearest Neighbor (KNN) classifier. During the test phase, the 

embeddings of the test images are obtained from the trained DML network and then their 
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class labels are predicted from the trained KNN. We opt for a KNN classifier since the size 

of the training data is small and the features are expected to be linearly separable.

In this paper, we vary learning objective functions (called loss functions) for deep model 

development with the DML. The loss functions associated with the chosen DML algorithms 

are described in the following paragraphs.

A. DEEP METRIC LEARNING WITH CONTRASTIVE LOSS

In this approach, a mini-batch is constructed with a randomly sampled pair of images. If the 

two images are sampled from the same class then the pair is called positive pair and if the 

images are sampled from different classes then the pair is called negative pair. The distance 

between a positive pair is called positive distance and the distance between a negative pair is 

called negative distance. The training loss is designed in a way such that the positive 

distance is minimized and the negative distance is maximized. Mathematically, the 

contrastive loss (Lcontrastive) is defined as:

Lcontrastive = dp − mpos + + mneg − dn + (1)

where mpos denotes the upper limit of positive distance, mneg denotes the lower limit of 

negative distance, dp denotes positive distance, dn denotes negative distance and 

x + = max 0, x .

B. DEEP METRIC LEARNING WITH N-PAIR EMBEDDING LOSS

Suppose, X1, Y1, X2, Y2 …, XN, YN are N-pair of images sampled from N different classes 

where Xi, Yi are images from ith class. The training loss between two ith class images Xi and 

Yi is given by

Li = − log
exp fXi

T fYi
∑k = 1, k ≠ i

N exp fXi
T fXk + ∑k = 1

N exp fXi
T fYk

(2)

where fA is the feature vector of image A; and T representation transpose operation. The 

mini-batch loss is computed as the mean of all N classes, i.e., LNPE = ∑i = 1
N Li. In the 

present work, N = 2 as we are dealing with binary classification problem.

C. DEEP METRIC LEARNING WITH BATCH HARD SAMPLING

In this approach, P classes2 are randomly chosen and from every class, S images are 

randomly sampled. In a minibatch, the loss function considers the hard samples i.e. the 

maximum of intra-class (or positive) distances and minimum of inter-class (or negative) 

distances. The training loss is designed in a way such that it is decreasing the intra-class 

distance as well as increasing inter-class distance. Mathematically, the Batch-hard sampling 

loss (LBH) is defined as:

2Here, number of classes = 2. So, class subset selection is not needed.
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LBH = ∑
i = 1

P
∑

a = 1

S
m + min

p = 1..S
D fai , fpi

Intra‐class distances
− min

j = 1..P; n = 1..S
         j≠1

D fai , fni
Inter‐class distances

+

where m is a predefined threshold, f denotes feature vector of an image, D(x, y) represents 

distance between x and y and x + = max 0, x .

IV. EXPERIMENTAL SETUP

A. DATA SET DESCRIPTION

This paper uses Cervigram®3 image data set used in AVE research [8]. Every image in the 

data set was labeled either as a case (disease) or control (non-disease) based on the 

following diagnostic information: HPV status, naked-eye visual impression, colposcopic 

impression, cytological findings, histopathological analysis outcome. A sample image from 

both case and control class is shown in Fig 2.

In [8], the data set was partitioned into three nonoverlapping subsets: training, validation, 

and hold-out test sets, respectively. In our work, we make a random disjoint split of the 

training data into training and val1 data. The previous AVE validation data is termed val2. 

The val1 is used for parameter selection in the DML training. The val2 (i.e. validation data 

of [8]) is used for K value selection during classifier model building. The hold-out test data, 

which is the same as one used in AVE research, is used for comparing the classification 

performance with AVE. Details of data set splits are given in Table 1.

B. DEEP NETWORKS AND TRAINING STRATEGIES

Three state-of-the-art pre-trained networks, namely, ResNet-50 [35], NasNetMobile [36] and 

Mobile-Net [37] are selected as backbone networks. First, the softmax classification layer is 

removed from each backbone network. Then an L2 normalization layer is used after the last 

feature layer of the networks. Finally, the networks are trained with the chosen DML 

algorithms (Section III). After training, the L2-normalized output vector obtained from the 

trained network is used as the image embedding. We vary the parameters associated with 

DML training best results are found when the DML are trained with learning rate = 0.002, 

weight decay = 1e – 6, and momentum = 0.9, epoch = 50. The DML algorithms built with 

constrictive loss and batch hard loss need to set loss function parameters. In this paper, we 

vary these parameters and receive best performance for following parameters (a) constrictive 

loss: mpos = 0 and mneg = 0.25, (b) batch hard loss: S = 8, m = 0.25.

C. BASELINE ALGORITHMS

The state-of-the-art pre-trained models developed using the ImageNet data are our initial 

choice as the baseline feature extractor networks. Note that the limitation of classification 

networks for imbalanced data set is our key concern. Our next baseline network is the fine-

3Cervical images captured with cerviscope.
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tuned binary classification network with our data. For this model development, we use 

binary cross-entropy loss minimization for training this classification network. The 

performance of the chosen DML algorithms is compared with these baselines.

D. PERFORMANCE EVALUATION

The proposed system has two steps: (1) Training deep model for linearly separable image 

embedding extraction, and (2) Classifier model development. We evaluate both steps 

separately. The evaluation scheme is described in the following subsections.

1) EMBEDDING QUALITY ASSESSMENT—We assess the quality of the feature 

embedding using t-SNE plots [38] visualization. The t-SNE converts the high dimensional 

data (here image embedding) into 2-D data vectors which help to visualize them in a 2D-

plane. It is a very popular choice for data visualization in spite of its limitations. The t-SNE 

plot provides only a geometric interpretation of separation in the embedding at the cost of 

significant information loss in reducing high-dimensional data into a 2D vector. Moreover, 

small differences between feature vectors cannot be determined from the plot. To offset this 

limitation, we also propose using the following two quantitative measures for assessing 

embedding quality.

a: MEAN K-PRECISION: The K-precision of a test sample T is given by the ratio k
K , 

where k is the number of nearest neighbors of T of the same class selected among total K 
nearest neighbors from the training data. The mean K-precision is the mean of K-precision 

for all test images. The value of K-Precision lies in the range [0,1] and a higher value 

represents better performance.

b: CLASS-WISE MEAN N-PRECISION: Suppose, in the training data, there are 

Ncontrol controls and Ncase cases. The N-precision for a test data sample Tcontrol belonging to 

the control class is given by the ratio 
ncontrol
Ncontrol

, where ncontrol is the number of nearest 

neighbors of Tcontrol in the training set which belongs to control class. Similarly, N-precision 

for a test data sample Tcase belonging to the case class is given by the ratio 
ncase
Ncase

, where 

ncase is the number of nearest neighbors of Tcase in the training set which belongs to case 

class. The value of N-precision lies in range [0,1] and the higher value represent better 

performance. For a perfect model, all test data will have N-precision equals 1.

2) CLASSIFICATION PERFORMANCE EVALUATION—The classification 

performance is evaluated using class-wise accuracy. Class-wise accuracy is defined by the 

percentage of correct classifications achieved by the proposed model for each class. Note 

that the case accuracy refers to sensitivity/recall and the control accuracy refers to 

specificity. These two performance measures together can provide an idea about the 

biasedness of the model toward the majority class.
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V. RESULTS AND DISCUSSION

The training loss and validation loss improvement for chosen DML algorithms are shown in 

Fig 3. According to Fig 3, the DML algorithm trained with Batch-hard loss has closer 

training and validation loss (val1) at the end of the training.

A detailed analysis of the experimental results is given in this section. We divide the 

discussion into four sections. The first section discusses the separability of the image 

embedding for the chosen algorithms. Next, we discuss the effectiveness of the K-Nearest 

Neighbour classifier. Then, the performance of the algorithm on the hold-out test data is 

presented. Finally, the performance of the best model is compared with the state-of-the-art 

AVE results [8].

A. EMBEDDING QUALITY ASSESSMENT

Fig 4 shows 2D t-SNE plots of the image embedding obtained from the considered 

competing approaches. In the first row, i.e., subfigures (a, b, c), show that the images are 

poorly separated when features from the ImageNet pre-trained networks are used. The 

second row, i.e., subfigures (d, e, f), shows that features from the fine-tuned models increase 

the separability. Finally, the last three rows, i.e., subfigures (g-o), demonstrate the power of 

DML which produces increasingly well-separated training image feature representations. We 

find that for many scenarios, due to the inability of producing fully generalized models with 

the chosen techniques, val2 images are not guaranteed to be closer to the appropriate class. 

However, based on our experiments, we can assert that the DML algorithm has the potential 

to deal with the current image classification task in a better way.

The mean K-Precision for three different K values for all competing approaches for val2 

data are given in Table 2. According to Table 2, the performance after fine-tuning with the 

training data is markedly improved over the pre-trained model. We also note that the 

performance of the deep networks built with contrastive loss based DML is comparable with 

the fine-tuned model. However, we see that the networks built with N-pair loss and Batch-

hard sampling strategy outperform these competing methods.

The mean N-Precision values of the case and control for all competing methods for val2 data 

are listed in Table 3. Here, we see that in terms of separability the embeddings obtained from 

the fine-tuned deep models are much better than the respective pre-trained models. The 

DML algorithms noticeably improve the mean N-Precision values for both cases and control 

over the fine-tuned models. Our experimental results also show that the networks trained 

with N-Pair embedding loss or Batch-hard loss minimization produce much better mean N-

Precision values for cases than the networks trained with contrastive loss minimization. This 

demonstrates that the deep model developed with DML algorithm with Batch-hard or N-Pair 

Embedding loss minimization is valuable for producing separable image embedding for our 

classification task. We see this as a significant finding because real-world data are likely to 

be highly imbalanced with many more controls than cases. It is desirable to build 

classification models that adopt strategies built around this precondition thereby resulting in 

realistic and usable decisions.
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B. CLASSIFICATION PERFORMANCE

The class-wise K-Nearest Neighbor (KNN) classification accuracy for three different values 

of K in val2 data are shown in Table 4. Here, we see that the KNN classifiers trained with 

the pre-trained deep models are not suitable for our task. The performance of the DML 

algorithm trained with contrastive loss is comparable with fine-tuned models. For both 

approaches, keeping the network fixed results in good accuracy for controls but is found to 

be poor for cases. This is an indication of the classifier’s bias towards the majority class. 

Again, we see that for every network that was studied, the DML algorithm trained with N-

pair embedding loss or Batch-hard loss is better at overcoming data imbalance and 

consequently the diminishing classifier bias. We surmise that the potential source of bias 

might be due to the model over-fitting to the training data. Finally, Table 4 shows that the 

NasNet model trained with Batch-hard loss minimization is our best deep model, and 1-NN 

(K = 1) can be considered as the best classifier because higher values of K increases the 

complexity and is unable to improve the classification performance.

C. PERFORMANCE ON HOLD-OUT TEST SET

The mean K-Precision and class-wise mean N-Precision values for the hold-out test set are 

presented in Table 5 and Table 6, respectively. According to Table 5 all DML algorithms 

produce very good mean K-Precision for different values of K. As the hold-out test data is 

highly skewed (96:1) towards the control class and so mean K-Precision is not an effective 

measure as the good mean K-Precision may come from biased feature representation. 

Hence, we focus on Table 6 for performance comparison. According to Table 6, the mean N-

Precision for control is good but the mean N-Precision for the case is not good for all 

networks. We see the balanced performance is obtained for the Batch-hard sampling 

approach and for NasNet it produces the best result.

D. COMPARISON WITH THE STATE-OF-THE-ART

In [8], for the same data set, only the area under curve (AUC) values of the Receiver 

operating curve (ROC) were used to evaluate the classification model built with the Faster 

R-CNN algorithm. In this paper, for comparison purposes, we compute the age group-wise 

classification accuracies on the hold-out test set from the previous class prediction outcomes. 

Then the performance of the previous algorithm is compared with the best model produced 

from this research. According to the discussion presented in Section V-B, NasNet trained 

with Batch-hard loss minimization is our best feature extractor model and 1-NN is our best 

classifier. The age group-wise classification performance for our best model and the model 

built with the AVE algorithm is presented in Table 7. We see that the overall performance of 

our system outperforms the previously reported result. It is important to mention that we use 

the entire image and its class label. In contrast, the Faster R-CNN-based AVE algorithm uses 

additional annotation that localizes the cervix region of interest (ROI) during model training. 

We conclude that our method improves overall performance. We also compute the age-

stratified Kappa statistics between our best model with previously reported Faster RCNN 

results, which are reported in Table 8.
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VI. CONCLUSION

This paper takes a pioneering initiative to study the effectiveness of the deep metric learning 

algorithm for cervical image classification. Our experimental results show that the deep 

metric learning with Batch-hard loss minimization performs better than the previously 

proposed AVE method on the hold-out test set. Additionally, the present framework 

diminishes the image level ROI annotation labor. While our results are indeed better, we 

note that some misclassification still exists. The probable reason for this is the possible lack 

of proper generalizability during training. We believe that using more advanced metric 

learning techniques could overcome this deficit and is left for future work. The real-world 

application for the proposed system is to serve as an intelligent assistant for the clinician 

evaluating the woman. Also, the images used in the envisioned system could be acquired 

using a variety of devices, such as a smartphone, digital camera, or a colposcope enabled 

with digital image capture capability. These are likely to introduce additional image 

appearance variability, as noted earlier. Our future work shall also include steps to address 

this variability in addition to any data imbalance and regional variations in the appearance of 

the cervix.

Acknowledgments

This work was supported by the Intramural Research Programs of the National Library of Medicine (NLM) and the 
National Cancer Institute (NCI), both part of the National Institutes of Health (NIH), Bethesda, MD, USA. The 
work of Brian Befano was supported by NCI/NIH under Grant T32CA09168.

Biographies

ANABIK PAL received the B.Sc. degree (Hons.) in computer science from the University 

of Calcutta, in 2008, the M.C.A. and M.E. degrees from Jadavpur University, in 2011 and 

2013, respectively, and the Ph.D. degree in computer science from the Indian Statistical 

Institute, in 2019. He is currently a Postdoctoral Fellow with the Lister Hill National Center 

for Biomedical Communications (LHNCBC), U.S. National Library of Medicine (NLM), 

National Institutes of Health (NIH), Bethesda, MD, USA. His research interests include 

machine learning, data science, computer vision especially medical image analysis. He is a 

Life Member of the IUPRAI affiliated to IAPR.

ZHIYUN (JAYLENE) XUE received the B.S. and M.S. degrees from Tsinghua University, 

China, and the Ph.D. degree from Lehigh University, USA. Since 2006, she has been 

working with LHC on various medical imaging informatics projects. She is currently a Staff 

Scientist with the Lister Hill National Center for Biomedical Communications (LHC), 

National Library of Medicine (NLM). Her research interests include machine learning, 

computer vision, and medical image processing/analysis.

PAL et al. Page 10

IEEE Access. Author manuscript; available in PMC 2021 June 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



BRIAN BEFANO received the M.P.H. degree in epidemiology from the University of 

Massachusetts Amherst. He was previously with Information Management Services, Inc. He 

is currently pursuing the Ph.D. degree with the University of Washington. He has worked for 

over 15 years researching the natural history of HPV infections and their role in cervical 

carcinogenesis. He has been a technical consultant on multiple large-scale longitudinal 

cohort studies where he provided data management services and analytic support, with 

recent research focused on the application of artificial intelligence to cancer detection and 

screening.

ANA CECILIA RODRIGUEZ received the M.D. and Public Health degrees from the 

University of Costa Rica. She has dedicated the majority of her career to researching the 

natural history of cervical neoplasia and HPV infection and cervical cancer prevention 

strategies, including HPV vaccination, screening, and detection of cervical neoplasia. She 

has served as a Principal Investigator and a Co-Principal Investigator in Costa Rican studies 

funded by the National Cancer Institute, USA, including the Proyecto Epidemiologico 

Guanacaste (PEG) HPV Natural History Study, a 10,049 women longitudinal population-

based cohort and the Costa Rican Vaccine Trial (CVT). She has dedicated her research to 

international efforts that will develop improved screening, triage and treatment methods 

more suitable for underserved and hard-to-reach populations.

L. RODNEY LONG received the B.A. and M.A. degrees in mathematics from The 

University of Texas, Austin, in 1971 and 1976, respectively, and the M.A. degree in applied 

mathematics from the University of Maryland, College Park, in 1987. He retired from the 

Communications Engineering Branch, National Library of Medicine, Bethesda, MD, USA, 

in 2020, where he has been as an Electronics Engineer, since 1990. He previously worked 

for 14 years in the industry as a Programmer and an Engineer. His research interests include 

content-based image retrieval, image processing, and image databases for biomedical 

applications.

PAL et al. Page 11

IEEE Access. Author manuscript; available in PMC 2021 June 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



MARK SCHIFFMAN received the M.D. degree from the University of Pennsylvania and 

the M.P.H. degree in epidemiology from the Johns Hopkins School of Hygiene and Public 

Health. He joined the National Cancer Institute, as a Staff Fellow, in 1983. He was appointed 

as the Chief of the Interdisciplinary Studies Section in the Environmental Epidemiology 

Branch (which later became the HPV Research Group in the Hormonal and Reproductive 

Epidemiology Branch), in 1996. He joined the Clinical Genetics Branch, in October 2009, to 

study intensively why HPV is such a powerful carcinogenic exposure, akin to an acquired 

genetic trait with high penetrance for a cancer phenotype. He has studied human 

papillomavirus (HPV) and cervical cancer for more than 35 years. He has conducted and 

collaborated on many large molecular epidemiologic observational studies and a few major 

trials through a natural progression of studies, he has pursued three main scientific themes, 

such as HPV Natural History and Cervical Carcinogenesis, Translational Studies of HPV 

Testing, Cytology, Colposcopy, and Vaccines, and Risk Prediction and Cervical Cancer 

Prevention. He received a Fulbright Scholarship, in 1977, to carry out epidemiologic studies 

in Senegal. He has received numerous awards for his work in molecular epidemiology, 

including the ACS Medal of Honor and the AACR Prevent Cancer Foundation Award.

SAMEER ANTANI (Senior Member, IEEE) received the Ph.D. degree in computer science 

and engineering from Pennsylvania State University. He is currently a Staff Scientist at the 

National Library of Medicine, part of the National Institutes of Health, leading research in 

machine learning and artificial intelligence (ML/AI) and biomedical image processing for 

automated clinical decisionmaking and analysis. He is a Senior Member of the International 

Society of Photonics and Optics (SPIE). He serves as the Vice-Chair for computational 

medicine on the IEEE Computer Society’s Technical Committee on Computational Life 

Sciences (TCCLS) and the Chair of IEEE Life Sciences Technical Community (LSTC). He 

is an Associate Editor for the MDPI journals Data and Diagnostics.

PAL et al. Page 12

IEEE Access. Author manuscript; available in PMC 2021 June 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



REFERENCES

[1]. Gaffikin L, Lauterbach M, and Blumenthal PD, “Performance of visual inspection with acetic acid 
for cervical cancer screening: A qualitative summary of evidence to date,” Obstetrical 
Gynecological Surv., vol. 58, no. 8, pp. 543–550, 8. 2003.

[2]. Jeronimo J, Massad LS, Castle PE, Wacholder S, and Schiffman M, “Interobserver agreement in 
the evaluation of digitized cervical images,” Obstetrics Gynecology, vol. 110, no. 4, pp. 833–840, 
10. 2007. [PubMed: 17906017] 

[3]. Jeronimo J, Long LR, Neve L, Michael B, Antani S, and Schiffman M, “Digital tools for collecting 
data from cervigrams for research and training in colposcopy,” J. Lower Genital Tract Disease, 
vol. 10, no. 1, pp. 16–25, 1. 2006.

[4]. Guo P, Singh S, Xue Z, Long R, and Antani S, “Deep learning for assessing image focus for 
automated cervical cancer screening,” in Proc. IEEE EMBS Int. Conf. Biomed. Health Informat. 
(BHI), 5 2019, pp. 1–4.

[5]. Guo P, Xue Z, Mtema Z, Yeates K, Ginsburg O, Demarco M, Long LR, Schiffman M, and Antani 
S, “Ensemble deep learning for cervix image selection toward improving reliability in automated 
cervical precancer screening,” Diagnostics, vol. 10, no. 7, p. 451, 2020.

[6]. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, and Jackel LD, 
“Backpropagation applied to handwritten zip code recognition,” Neural Comput, vol. 1, no. 4, pp. 
541–551, 12. 1989.

[7]. Krizhevsky A, Sutskever I, and Hinton GE, “ImageNet classification with deep convolutional 
neural networks,” in Proc. Adv. Neural Inf. Process. Syst, Pereira F, Burges CJC, Bottou L, and 
Weinberger KQ, Eds. New York, NY, USA: Curran Associates, 2012, pp. 1097–1105. [Online]. 
Available: http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-conv%olutional-
neural-networks.pdf

[8]. Hu L, Bell D, Antani S, Xue Z, Yu K, Horning MP, Gachuhi N, Wilson B, Jaiswal MS, Befano B, 
Long LR, Herrero R, Einstein MH, Burk RD, Demarco M, Gage JC, Rodriguez AC, Wentzensen 
N, and Schiffman M, “An observational study of deep learning and automated evaluation of 
cervical images for cancer screening,” J. Nat. Cancer Inst, vol. 111, no. 9, pp. 923–932, 9. 2019. 
[PubMed: 30629194] 

[9]. Greenspan H, Gordon S, Zimmerman G, Lotenberg S, Jeronimo J, Antani S, and Long R, 
“Automatic detection of anatomical landmarks in uterine cervix images,” IEEE Trans. Med. 
Imag, vol. 28, no. 3, pp. 454–468, 3. 2009.

[10]. Kanitkar A, Kulkarni R, Joshi V, Karwa Y, Gindi S, and Kale G, “Automatic detection of cervical 
region from VIA and VILI images using machine learning,” in Proc. IEEE Int. Conf. Comput. 
Sci. Eng. (CSE) IEEE Int. Conf. Embedded Ubiquitous Comput. (EUC), 8. 2019, pp. 1–6.

[11]. Guo P, Xue Z, Long LR, and Antani S, “Cross-dataset evaluation of deep learning networks for 
uterine cervix segmentation,” Diagnostics, vol. 10, no. 1, p. 44, 1. 2020.

[12]. Lei L, Xiong R, and Zhong H, Identifying Cervix Types Using Deep Convolutional Networks. 
Stanford, CA, USA: Stanford Univ. Report, 2017.

[13]. Alush A, Greenspan H, and Goldberger J, “Lesion detection and segmentation in uterine cervix 
images using an ARC-LEVEL MRF,” in Proc. IEEE Int. Symp. Biomed. Imag., From Nano 
Macro, 6. 2009, pp. 474–477.

[14]. Alush A, Greenspan H, and Goldberger J, “Automated and interactive lesion detection and 
segmentation in uterine cervix images,” IEEE Trans. Med. Imag, vol. 29, no. 2, pp. 488–501, 2. 
2010.

[15]. Meslouhi OE, Kardouchi M, Allali H, and Gadi T, “Semi-automatic cervical cancer segmentation 
using active contours without edges,” in Proc. 5th Int. Conf. Signal Image Technol. Internet 
Based Syst., 11. 2009, pp. 54–58.

[16]. Srinivasan Y, Nutter B, Mitra S, Phillips B, and Sinzinger E, “Classification of cervix lesions 
using filter bank-based texture mode,” in Proc. 19th IEEE Symp. Comput.-Based Med. Syst. 
(CBMS), 2006, pp. 832–840.

[17]. Kim E and Huang X, A Data Driven Approach to Cervigram Image Analysis and Classification. 
Dordrecht, The Netherlands: Springer, 2013, pp. 1–13.

PAL et al. Page 13

IEEE Access. Author manuscript; available in PMC 2021 June 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[18]. Fernandes K, Cardoso JS, and Fernandes J, “Automated methods for the decision support of 
cervical cancer screening using digital colposcopies,” IEEE Access, vol. 6, pp. 33910–33927, 
2018.

[19]. Xu T, Xin C, Rodney Long L, Antani S, Xue Z, Kim E, and Huang X, “A new image data set and 
benchmark for cervical dysplasia classification evaluation,” in Machine Learning in Medical 
Imaging. Cham, Switzerland: Springer, 2015, pp. 26–35.

[20]. Xu T, Kim E, and Huang X, “Adjustable AdaBoost classifier and pyramid features for image-
based cervical cancer diagnosis,” in Proc. IEEE 12th Int. Symp. Biomed. Imag. (ISBI), 4. 2015, 
pp. 281–285.

[21]. Xu T, Zhang H, Xin C, Kim E, Long LR, Xue Z, Antani S, and Huang X, “Multi-feature based 
benchmark for cervical dysplasia classification evaluation,” Pattern Recognit., vol. 63, pp. 468–
475, 3. 2017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0031320316302941 [PubMed: 28603299] 

[22]. Xue Z, Novetsky AP, Einstein MH, Marcus JZ, Befano B, Guo P, Demarco M, Wentzensen N, 
Long LR, Schiffman M, and Antani S, “A demonstration of automated visual evaluation of 
cervical images taken with a smartphone camera,” Int. J. Cancer, vol. 147, no. 9, pp. 2416–2423, 
11. 2020. [PubMed: 32356305] 

[23]. Sato M, Horie K, Hara A, Miyamoto Y, Kurihara K, Tomio K, and Yokota H, “Application of 
deep learning to the classification of images from colposcopy,” Oncol. Lett, vol. 15, pp. 3518–
3523, 1. 2018. [PubMed: 29456725] 

[24]. Xu T, Zhang H, Huang X, Zhang S, and Metaxas DN, “Multimodal deep learning for cervical 
dysplasia diagnosis,” in Medical Image Computing and Computer-Assisted Intervention—
MICCAI, Ourselin S, Joskowicz L, Sabuncu MR, Unal G, and Wells W, Eds. Cham, Switzerland: 
Springer, 2016, pp. 115–123.

[25]. Song N and Du Q, “Classification of cervical lesion images based on CNN and transfer learning,” 
in Proc. IEEE 9th Int. Conf. Electron. Inf. Emergency Commun. (ICEIEC), 7. 2019, pp. 316–319.

[26]. Yue Z, Ding S, Zhao W, Wang H, Ma J, Zhang Y, and Zhang Y, “Automatic CIN grades 
prediction of sequential cervigram image using LSTM with multistate CNN features,” IEEEJ. 
Biomed. Health Informat, vol. 24, no. 3, pp. 844–854, 3. 2020.

[27]. Luo Y-M, Zhang T, Li P, Liu P-Z, Sun P, Dong B, and Ruan G, “MDFI: Multi-CNN decision 
feature integration for diagnosis of cervical precancerous lesions,” IEEE Access, vol. 8, pp. 
29616–29626, 2020.

[28]. Rini Novitasari DC, Foeady AZ, Thohir M, Arifin AZ, Niam K, and Asyhar AH, “Automatic 
approach for cervical cancer detection based on deep belief network (DBN) using colposcopy 
data,” in Proc. Int. Conf. Artif. Intell. Inf. Commun. (ICAIIC), 2. 2020, pp. 415–420.

[29]. Bai B, Du Y, Li P, and Lv Y, “Cervical lesion detection net,” in Proc. IEEE 13th Int. Conf. Anti-
Counterfeiting, Secur., Identificat. (ASID), 10. 2019, pp. 168–172.

[30]. Hadsell R, Chopra S, and LeCun Y, “Dimensionality reduction by learning an invariant 
mapping,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR), vol. 2, 6. 
2006, pp. 1735–1742.

[31]. Sohn K, “Improved deep metric learning with multi-class N-pair loss objective,” in Proc. Adv. 
Neural Inf. Process. Syst, Lee DD, Sugiyama M, Luxburg UV, Guyon I, and Garnett R, Eds. New 
York, NY, USA: Curran Associates, 2016, pp. 1857–1865. [Online]. Available: http://
papers.nips.cc/paper/6200-improved-deep-metric-learning-with-mul%ti-class-n-pair-loss-
objective.pdf

[32]. Hermans A, Beyer L, and Leibe B, “In defense of the triplet loss for person reidentification,” 
2017, arXiv:1703.07737. [Online]. Available: https://arxiv.org/pdf/1703.07737.pdf

[33]. Chicco D, Siamese Neural Networks: An Overview. New York, NY: Springer, 2021, pp. 73–94, 
doi: 10.1007/978-1-0716-0826-5_3

[34]. Musgrave K, Belongie S, and Lim S-N, “A metric learning reality check,” in Computer Vision—
ECCV, Vedaldi A, Bischof H, Brox T, and Frahm J-M, Eds. Cham, Switzerland: Springer, 2020, 
pp. 681–699.

[35]. He K, Zhang X, Ren S, and Sun J, “Deep residual learning for image recognition,” in Proc. IEEE 
Conf. Comput. Vis. Pattern Recognit. (CVPR), 6. 2016, pp. 770–778.

PAL et al. Page 14

IEEE Access. Author manuscript; available in PMC 2021 June 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.sciencedirect.com/science/article/pii/S0031320316302941
http://www.sciencedirect.com/science/article/pii/S0031320316302941
https://arxiv.org/pdf/1703.07737.pdf


[36]. Zoph B, Vasudevan V, Shlens J, and Le QV, “Learning transferable architectures for scalable 
image recognition,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit, 6. 2018, pp. 8697–
8710.

[37]. Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, and Adam H, 
“MobileNets: Efficient convolutional neural networks for mobile vision applications,” 2017, 
arXiv:1704.04861. [Online]. Available: https://arxiv.org/pdf/1704.04861.pdf

[38]. Hinton G and Roweis S, “Stochastic neighbor embedding” in Proc. 15th Int. Conf. Neural Inf. 
Process. Syst. (NIPS), Cambridge, MA, USA: MIT Press, 2002, pp. 857–864.

PAL et al. Page 15

IEEE Access. Author manuscript; available in PMC 2021 June 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://arxiv.org/pdf/1704.04861.pdf


FIGURE 1. 
(a) Block diagram of the proposed system. Upper part denotes two-step training phase and 

lower part denotes test phase. (b) Block diagram of deep metric learning (DML). Images and 

their class labels are inputted and the mini-batch loss is computed based on the image 

embeddings.
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FIGURE 2. 
Samples of cervical images from the present data set. Left image from Control class. Right 

image from Case class.
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FIGURE 3. 
Loss improvement during DML training.
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FIGURE 4. 
The t-SNE plots of feature embeddings.
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TABLE 5.

Mean-K Precision on hold-out test set. Network-wise best results are bold-faced.

K Network Contrastive N-Pair Embedding Batch-hard

K=1

ResNet-50 0.9213 0.8964 0.8962

MobileNet 0.8885 0.8918 0.8845

NasNet 0.9139 0.8961 0.8514

K=3

ResNet-50 0.9274 0.8961 0.8962

MobileNet 0.8877 0.8918 0.8845

NasNet 0.9130 0.8959 0.8514

K=5

ResNet-50 0.9305 0.8959 0.8962

MobileNet 0.8890 0.8918 0.8845

NasNet 0.9118 0.8958 0.8514
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TABLE 6.

N-Precision for hold-out test set. The best performing DML model is chosen based on the average of Case and 

Control’s mean N-precision. The network-wise best results are bold-faced.

Network
Contrastive N-Pair Embedding Batch-hard

Control Case Control Case Control Case

ResNet-50 0.9664 0.3951 0.9645 0.7014 0.9646 0.7365

MobileNet 0.9549 0.5061 0.9630 0.7365 0.9606 0.7598

NasNet 0.9575 0.5227 0.9643 0.7365 0.9495 0.8300
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TABLE 8.

Confusion matrix of the best DML model (BH-NasNet-1-NN) and comparison with state-of-the-art 

performance on hold-out test data. This table shows overall and age stratified Kappa statistics between best 

DML model and Faster RCNN [8]. Reported age stratified analysis excludes nine (9) women as their ages are 

missing.

Age group Faster RCNN
BH-NasNet-1-NN

Kappa
Control Case

All ages
Control 6613 183

0.76
Case 362 1101

<25
Control 676 40

0.79
Case 33 194

25-49
Control 4120 92

0.78
Case 202 641

>50
Control 1809 51

0.70
Case 127 265
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