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Abstract

The problem of reconstructing a string from its error-prone copies, the trace reconstruction 
problem, was introduced by Vladimir Levenshtein two decades ago. While there has been 

considerable theoretical work on trace reconstruction, practical solutions have only recently started 

to emerge in the context of two rapidly developing research areas: immunogenomics and DNA 

data storage. In immunogenomics, traces correspond to mutated copies of genes, with mutations 

generated naturally by the adaptive immune system. In DNA data storage, traces correspond to 

noisy copies of DNA molecules that encode digital data, with errors being artifacts of the data 

retrieval process. In this paper, we introduce several new trace generation models and open 

questions relevant to trace reconstruction for immunogenomics and DNA data storage, survey 

theoretical results on trace reconstruction, and highlight their connections to computational 

biology. Throughout, we discuss the applicability and shortcomings of known solutions and 

suggest future research directions.

I. Introduction

TWO decades ago, Vladimir Levenshtein introduced the Trace Reconstruction Problem, 

reconstructing an unknown seed string from a set of its error-prone copies, which are 

referred to as traces [1]. In information-theoretic terminology, the seed string is observed by 

passing it through a noisy channel multiple times. Levenshtein set forth the challenge of 

developing efficient algorithms to infer the seed string and characterizing the number of 

traces needed for its reconstruction [2], [3]. He succeeded in solving these problems in the 

case of the substitution channel, where random symbols in the seed string are mutated 

independently, and demonstrated that a small number of deletions or insertions may be 

tolerated. A few years later, Batu et al. [4] analyzed the trace reconstruction problem in the 

deletion channel, where random symbols are deleted from the seed string independently so 

that a trace is a random subsequence of the seed string.
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After these seminal papers [1]-[4], trace reconstruction has received a lot of attention, 

especially in the last few years [5]-[20]. However, despite a wealth of theoretical work, there 

is a surprising lack of practical trace reconstruction algorithms. Although Batu et al., [4] and 

many follow-up studies motivated trace reconstruction by the multiple alignment problem in 

computational biology [21], we are not aware of any software tools that use trace 

reconstruction for constructing multiple alignments and applying them for follow-up 

biological analysis.

Transforming a biological problem into a well-defined algorithmic problem comes with 

many challenges. An attempt to model all aspects of a biological problem often results in an 

intractable algorithmic problem while ignoring some of its aspects (like in the initial 

formulation of the Trace Reconstruction Problem) may lead to a solution that is inadequate 

for practical applications. Computational biologists try to find a balance between these two 

extremes and typically use a simplified (albeit inadequate) problem formulation to develop 

algorithmic ideas that eventually lead to practical (albeit approximate) solutions of a more 

complex biological problem.

The first applications of trace reconstruction emerged only recently in the context of two 

rapidly developing research areas: personalized immunogenomics [22], [23] and DNA data 

storage [24]-[33]. In this survey paper, we identify a variety of open trace reconstruction 

problems motivated by immunogenomics and DNA data storage, describe several practically 

motivated objectives for trace reconstruction, and discuss the applicability and shortcomings 

of known solutions. Our goal is to introduce information theory experts to emerging 

practical applications of trace reconstruction, and, at the same time, introduce computational 

biology experts to recent theoretical results in trace reconstruction.

A. Trace Reconstruction in Computational Immunology

How have we survived an evolutionary arms race with pathogens?: Humans are 

constantly attacked by pathogens that reproduce at a much faster rate than humans do. How 

have we survived an evolutionary arms race with pathogens that evolve a thousand times 

faster than us?

All vertebrates have an adaptive immune system that uses the VDJ recombination to develop 

a defensive response against pathogens at the time-scale at which they evolve. It generates a 

virtually unlimited variety of antibodies, proteins that recognize a specific foreign agent 

(called antigen), bind to it, and eventually neutralize it. There are ≈ 108 antibodies 

circulating in a human body at any given moment (unique for each individual!) and this set 

of antibodies is constantly changing. How can a human genome (only ≈ 20, 000 genes) 

generate such a diverse defense system?

VDJ recombination: In 1987, Susumu Tonegawa received the Nobel Prize for the 

discovery of the VDJ recombination [34]. The immunoglobulin locus is a 1.25 million-

nucleotide long region in the human genome that contains three sets of short segments 

known as V, D, and J genes (40 V, 27 D, and 6 J genes). Figure 1 illustrates the VDJ 

recombination process that selects one V gene, one D gene, and one J gene and concatenates 

them, thus generating an immunoglobulin gene that encodes an antibody. In our discussion, 
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we hide some details to make the paper accessible to information theorists without 

immunology background. For example, although there are multiple immunoglobulin loci in 

the human genome, we limit attention to the 1.25 million-nucleotide long immunoglobulin 
heavy chain locus. Although we stated above that an immunoglobulin gene encodes an 

antibody, in reality it encodes only the heavy chain of an antibody (antibodies are formed by 

both heavy and light chains).

Since the described process can generate only 40 × 27 × 6 = 6480 antibodies, it cannot 

explain the astonishing diversity of human antibodies. However, the VDJ recombination is 

more complex than this: it deletes some nucleotides at the start and/or the end of V, D, J 

genes and inserts short stretches of randomly generated nucleotides (non-genomic 
insertions) between V-D and D-J junctions. Such insertions and deletions (indels) greatly 

increase the diversity of antibodies generated through the VDJ recombination process. But 

this is only the beginning of the molecular process that further diversifies the set of 

antibodies.

Somatic hypermutations and clonal selection: Indels greatly increase the diversity 

of antibodies but even this diversity is insufficient for neutralizing a myriad of antigens that 

the organism might face. However, the VDJ recombination generates sufficient diversity to 

achieve an important goal—some of the generated antibodies in this huge collection bind to 

a specific antigen, albeit with low affinity (i.e., the strength of antibody-antigen binding) that 

is insufficient for neutralizing the antigen. The adaptive immune system uses an ingenious 

evolutionary mechanism for gradually increasing the affinity of binding antibodies and thus 

eventually neutralizing an antigen [34].

Once an antibody binds to an antigen (even an antibody with a low affinity), the 

corresponding immunoglobulin gene undergoes random mutations (referred to as somatic 
hypermutations or SHMs) that can both increase and reduce the affinity of an antibody. To 

enrich the pool of antibodies with high affinity, these mutations are iteratively accompanied 

by the clonal selection process that eliminates antibodies with low affinity (Figure 1). The 

iterative somatic hypermutations and clonal selection are not unlike an extremely fast 

evolutionary process that generates a huge variety of antibodies from a single initial 

antibody and eventually leads to generating a new high-affinity antibody able to neutralize 

an antigen.

Personalized immunogenomics: Modern DNA sequencing technologies sample the set 

of antibodies by generating sequences of millions of randomly selected immunoglobulin 

genes (antibody repertoire) out of ≈ 108 distinct antibodies circulating in our body. Analysis 

of antibody repertoires across various patients opens new horizons for developing antibody-

based drugs, designing vaccines, and finding associations between genomic variations in the 

immunoglobulin loci and diseases. The emergence of antibody repertoire datasets in the last 

decade raised new algorithmic problems that remain largely unsolved.

The immunoglobulin locus is a highly variable region of the human genome—the sets of V, 

D, and J genes (referred to as germline genes) differ from individual to individual. 

Identifying germline V, D, and J genes in an individual is important since variations in these 
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genes have been linked to various diseases [35], differential response to infection, 

vaccination, and drugs [36], and disease susceptibility [35], [37]. The ImMunoGeneTics 

(IMGT) database of variations in germline genes remains incomplete even in the case of 

well-studied human genes [38]. In the case of immunologically important model organisms, 

such as camels or sharks, the germline genes remain largely unknown. Unfortunately, since 

assembling the sequence of the highly repetitive immunoglobulin locus faces challenges [39] 

and does not provide one with information on how various germline genes contribute to an 

antibody repertoire, the efforts like the 1,000 Genomes Project have resulted only in limited 

progress toward inferring the population-wide census of human germline genes [40], [41].

Since the information about germline genes in an individual (personalized immunogenomics 

data) is typically unavailable, researchers use the reference genes instead of personal 

germline genes, thus limiting various immunogenomics applications. Personalized 

immunogenomics studies attempt to derive the germline genes by analyzing antibody 

repertoires. Each antibody can be viewed as a trace generated from the three sets of 

unknown seed strings (all V genes, all D genes, and all J genes in an individual) through the 

VDJ recombination and somatic hypermutations (Figure 1). Hence, one can reformulate 

reconstruction of germline genes from an antibody repertoire as a novel Trace 

Reconstruction Problem. In Section III, we describe a series of problems with gradually 

increasing complexity that model antibody generation from the germline genes.

B. Trace Reconstuction in DNA Data Storage

DNA has emerged as a potentially viable storage medium for large quantities of digital data 

[24]-[33]. A digital file can be encoded by a collection of DNA sequences where each 

individual sequence represents a small part of the data. One application is archival storage, 

where DNA promises to have orders of magnitude improved data density and durability as 

compared to existing storage media (e.g., magnetic tapes or solid state). The field is rapidly 

growing, and current DNA data storage systems can store and retrieve hundreds of 

megabytes of data, with many additional features such as random data access [30]. We 

provide an overview of DNA data storage and highlight the role that trace reconstruction 

plays in the data retrieval process [30], [33]. Figure 2 depicts the core components of the 

storage and retrieval pipeline.

Storing the data: Storing a file in DNA involves several steps. First, the digital file is 

compressed and partitioned into small, non-overlapping blocks. Then, each individual block 

is either encoded using an error-correcting code or is randomized using an independent 

pseudo-random sequence. This provides a set of strings that encode the content of the digital 

file. To store the location of each block, an address is added to each string. Finally, a global 

error-correcting code is applied to the resulting set of strings, and the strings are translated 

into the {A, C, G, T} alphabet. If multiple files are stored together, then a file identifier is 

also added in the form of a DNA primer (a short nucleotide string). This process results in a 

large collection of short strings (for example, millions of strings, each containing hundreds 

of characters). This set of strings, which we call seed strings, are then synthesized into real 

DNA molecules and stored in a tube until the file is ready to be retrieved. The synthesis 

process generates many copies of each seed string.
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Retrieving the data: The stored information is read using standard DNA sequencing 

machines such as DNA sequencers produced by Illumina. A small amount of DNA is 

extracted from a tube so that the remaining DNA may be used for other retrieval attempts 

later on. Since this amount may be insufficient for reading DNA (sequencing machines have 

limitations with respect to the minimal amount of DNA they can sequence), the extracted 

DNA is amplified using polymerase chain reaction (PCR) to generate multiple copies (e.g., 

5–30) of each DNA molecule in a sample. The PCR step enables random access retrieval—

to access a subset of files, it suffices to copy and sequence the subset of seed strings with 

primers (file IDs) corresponding to these files.

However, the PCR process introduces additional errors in each of the amplified copies. Since 

DNA sequencing machines are not able to identify the error-free sequence of nucleotides in 

a DNA molecule, they add extra errors to the previously introduced amplification errors. The 

combination of amplification and sequencing errors typically results in ≈ 1–2% error rate 

(substitutions and indels). However, there is some debate about the rate and the most 

common type of error [42], [43]. The output of sequencing is a set of strings that contains 

several error-prone copies (called reads) of each originally synthesized seed string. Much 

longer seed strings (tens of thousands of nucleotides versus hundreds of nucleotides in 

existing applications) can be sequenced using the recently emerged long-read sequencing 
technologies but the current error rate of such technologies is ≈ 10%, with a large proportion 

of indels [30], [33], [44], [45].

DNA data retrieval as a trace reconstruction problem: After the sequencing reads 

are generated, the goal is to recover the seed strings from the observed error-prone reads that 

have indels and substitutions. The first challenge is to determine which reads correspond to 

which seed strings by clustering reads so that each cluster contains the error-prone copies 

derived from a single seed string [46]. In some DNA data storage systems, the seed strings 

are randomized or encoded in a such a way that they have large pairwise edit distance [30], 

[47]-[49]. This property simplifies the clustering problem because the underlying clusters 

are well-separated. In this context, clustering algorithms have been developed that scale to 

billions of reads [46].

Recovering the seed strings from the reads can be formulated as a trace reconstruction 

problem. Each seed string is observed a small number of times, where the error-prone copies 

(traces) correspond to the reads in a cluster. The objective is to recover as many seed strings 

as possible. A small number of missing or erroneous seed strings may be tolerated because 

of the error correction methods. Consequently, it suffices to ensure that a reconstruction 

algorithm recovers a seed string with probability ReconstructionRate, where the exact 

success probability depends on the amount of redundancy in the error-correcting code (e.g., 

the default value may be ReconstructionRate = 0.95). There is a trade-off where having more 

traces leads to lower error rate in reconstruction, but it incurs a higher sequencing cost and 

time. In practice, it is typical to use clusters that contain 5–30 reads (traces) [30].

While we focus on trace reconstruction problems in DNA data storage, there are many other 

challenges and recent results, including better automation methods [50], [51], alternative 

synthesis schemes [52], [53], improved density and robustness using codes [27], [44], 

Bhardwaj et al. Page 5

IEEE Trans Inf Theory. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[54]-[66], and more realistic error models and fundamental limits [16], [67]-[70]. For more 

details about DNA data storage, see the following surveys and references therein [24], [32].

C. Similarities and differences of the two applications

The trace reconstruction problems for immunogenomics and DNA data storage are distinct, 

both in terms of the trace generation models and how well the models have been studied in 

the literature.

In immunogenomics, the traces contain important mutations that are introduced during the 

VDJ recombination and somatic hypermutagenesis. While sequencing and amplification 

technologies also introduce errors in sequenced antibody repertoires, their rate is much 

lower compared to the mutations introduced at the antibody generation step. Therefore, we 

ignore sequencing and amplification errors in immunogenomics applications and focus on 

the mutations. In contrast, the errors in the DNA data storage applications are only because 

of the artifacts of the process used to access the data stored in DNA and thus cannot be 

ignored.

The seed strings in immunogenomics represent real genetic data, whereas the DNA data 

storage sequences are synthesized to represent information in a digital file. While there has 

been a considerable amount of work in trace reconstruction problems motivated by DNA 

data storage, trace reconstruction studies in immunogenomics have only started to emerge 

[22], [23].

D. Outline

The rest of the paper is organized as follows. In Section II, we introduce the algorithmic and 

information-theoretic formulations of trace reconstruction. Section III describes trace 

generation in computational immunogenomics. In Sections III-A and III-B, we introduce the 

D genes trace reconstruction problem. In Section III-C, we introduce a more complex 

problem of reconstructing V, D, and J genes that are concatenated together to form 

antibodies. Section IV describes the theoretical formulation of trace reconstruction problems 

for DNA data storage. In Section V, we survey theoretical results and practical solutions to 

the trace reconstruction problem for the deletion channel, along with open problems relevant 

to developing DNA data storage. Finally, in Section VI we propose several directions for 

future work.

II. Algorithmic and information-theoretic formulations

In this section, we formalize the algorithmic goals of the trace reconstruction problems. We 

begin by considering an abstract model, where a single, unknown seed string s generates a 

random trace c with probability Pr(c ∣ s). For each possible trace c and seed string s, the 

model specifies Pr(c ∣ s). To recover the seed string s, the reconstruction algorithm receives 

a collection of traces generated from s, which we refer to as a trace-set C = {c1, c2,…, cT}. 

For simplicity, we assume that the traces are independent and identically distributed, and 

hence,
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Pr(C ∣ s) = ∏
i = 1

T
Pr(ci ∣ s) .

Given an integer T, we use CT  to denote the collection of all possible sets of T strings over a 

fixed alphabet, and we note that ∑C ∈ CT Pr(C ∣ s) = 1.

We also consider cases where the generation process involves sets of seed strings. In these 

cases, one string is sampled at a time from a set, and the traces are independently generated 

from the sampled strings (sometimes concatenating groups of traces to obtain the final trace-

set). For example, we can consider the two step process where a seed string s is uniformly 

randomly selected from an unknown seed-set S, and then s generates a trace. Given a seed-

set S = {s1,…, sM}, the probability of a trace-set C is

Pr(C ∣ S) = ∏
i = 1

T
Pr(ci ∣ S) = ∏

i = 1

T 1
M ∑

j = 1

M
Pr(ci ∣ sj) .

In other words, in the multiple seed string case, we can still define the probability of a trace-

set C in terms of the probability of generating a single trace from a single seed string. The 

goal is to recover all or most of the strings in S by using a trace-set generated via this two 

step process.

We next discuss how to evaluate a reconstruction algorithm A that takes as input the trace-

set C and outputs a string A(C). We assume that the algorithm knows the trace generation 

model, that is, for any trace c and seed string s, it knows the probability Pr(c ∣ s). The goal is 

to reconstruct the seed string using the traces. The fact that the traces themselves are random 

means that there are at least two ways to evaluate a reconstruction algorithm.

The maximum likelihood estimate (MLE) is a string s  that maximizes Pr(C ∣ s) among all 

seeds. As the probabilities are known to the algorithm, the MLE can always be computed by 

exploring all strings (i.e., brute-force search) as long as the set of possible candidate strings 

is finite. The trace generation models that we consider have the property that the maximum 

length of the seed string can be inferred from the trace-set with high probability. Therefore, 

the brute-force search can be taken over a finite set of strings. For some models, an efficient 

algorithm computing the MLE is known, with running time that is polynomial in the number 

T of traces and the length ∣s∣ of the seed string (see Section III-A). However, for many trace 

generation models, computing the MLE in polynomial time is currently an open question 

(i.e., the only known solution is brute-force search).

To circumvent the difficulty of the maximum likelihood objective, previous work instead 

measures the probability that an algorithm outputs the seed string s used to generate the 

traces. The trace-set is viewed as a random input, and the probability is taken over the 

randomness in the trace generation process. We start with definitions for a fixed, but 

unknown, seed string s, and we later also consider s itself being random. Define the success 
probability of an algorithm A and a seed string s as
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PA(s, T ) = ∑
C ∈ CT

Pr(C ∣ s) ⋅ 1{A(C) = s},

where 1{A(C)=s} is the indicator function for the event {A(C) = s} that the algorithm outputs 

the seed string s. It is straightforward to extend the definition of PA(s, T) to randomized 

algorithms; the output A(C) would also be a random variable, and the term 1{A(C)=s} would 

be replaced with Pr(A(C) = s).

Let U be a universe of possible seed strings (e.g., all strings of a certain length over a binary 

or quaternary alphabet). We define the worst-case success probability of algorithm A for 

trace-sets of size T over universe U as

PA(U, T ) = min
s ∈ U

PA(s, T ) .

Then, the worst-case trace reconstruction problem is to develop an efficient algorithm that 

maximizes PA(U, T ). The definition above guarantees that the algorithm succeeds with 

probability at least PA(U, T ) when s is an arbitrary seed string from the universe and the 

trace-set has size T.

We also consider the average-case trace reconstruction problem, where the seed string s is 

chosen uniformly at random from the universe (instead of being arbitrary, as in the worst-

case version). More precisely, the goal is to develop an efficient algorithm A that maximizes 

the average-case success probability, which is defined as

P A(U, T ) = 1
∣ U ∣ ∑

s ∈ U
PA(s, T ) .

Notice that the probability here is taken over both the seed string s and the trace-set C. The 

average-case formulation leads to a nice connection to the MLE. Expanding PA(s, T), we 

have that

P A(U, T ) = 1
∣ U ∣ ∑

s ∈ U
∑

C ∈ CT
Pr(C ∣ s) ⋅ 1{A(C) = s}

= ∑
C ∈ CT

1
∣ U ∣ ∑

s ∈ U
Pr(C ∣ s) ⋅ 1{A(C) = s}

Therefore, the inner sum over s ∈ U is maximized when A outputs the string s  maximizing 

Pr(C ∣ s), or in other words, when the algorithm outputs the MLE.

We note that algorithm does not know the seed string, and hence, it cannot determine 

whether it outputs s or some other string s′ that could have generated the trace-set. In 

contrast, the MLE is always rigorously defined because it allows the algorithm to output any 

string that maximizes the likelihood. To rigorously reason about the maximum success 

probability formulation, we assume that the trace-set is large enough so that a unique seed 

Bhardwaj et al. Page 8

IEEE Trans Inf Theory. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



string must have generated the traces with high probability, and hence, the algorithm can 

recover this string with high probability. Later on, we also discuss how to empirically 

determine the success probability with a benchmark dataset.

In summary, when the seed string is random (i.e., the average-case version), then the 

maximum likelihood solution also maximizes the success probability P A(U, T ). In particular, 

the ideal solution to the average-case trace reconstruction problem would be an efficient 

algorithm that computes the MLE, with running time that is polynomial in the number of 

traces and the seed string length. For the new models that we introduce, we remain hopeful 

that such an algorithm can be found. However, the only presently known algorithm for all 

but one of the models is to perform brute-force search. Moreover, in the worst-case version, 

the MLE may not maximize the success probability PA(s, T), and these two formulations 

may lead to different optimal algorithms.

In Section III, we introduce various trace generation models in computational 

immunogenomics. For each model, we provide a problem statement that asks for an MLE 

solution, i.e., an algorithm that outputs a seed string (or a seed-set) that maximizes the 

likelihood of a given trace-set. However, we also note that it would be valuable to develop an 

algorithm with high success probability when the input is viewed as a random trace-set. 

While both of these are valid and important formulations, the MLE version is a long-

standing tradition in bioinformatics that is widely used in such areas as computing 

phylogenetic trees [71] and genetic linkage analysis [72]. In immunogenomics, MLE was 

used for computing antibody clonal trees [73], modeling VDJ recombination [74], [75], and 

modeling antibody-antigen interactions [76], [77]. On the other hand, information theory 

and computer science researchers may prefer to develop (approximation) algorithms that are 

evaluated based on their success probability. Therefore, we briefly discuss evaluation metrics 

before introducing the models.

A. Approximation Algorithms and Empirical Success Probability

As for many other bioinformatics problems, since brute-force solutions are prohibitively 

slow, the goal is to develop fast approximation or heuristic algorithms that are practical for 

typical input sizes. For an analogy, although the edit distance problem between two 

sequences can be solved in polynomial time [78], the closely related sequence alignment 
problem between multiple sequences is NP-hard [79]. Nevertheless, since the multiple 

sequence alignment problem is at the heart of sequence comparison in bioinformatics, 

hundreds of heuristic algorithms have been developed for solving it [80]. The ultimate goal 

of these algorithms is to generate biological insights, and hence, they are often benchmarked 

on datasets with known solutions [81].

Turning back to trace reconstruction problems, it would often suffice to output the MLE on 

most trace-sets, instead of all of them (e.g., failing with vanishingly small probability). 

Alternatively, when it is difficult to find the entire seed string s maximizing Pr(C ∣ s), it may 

be possible to find a sufficiently long substring instead. Doing so could further enable 

finding the entire seed string through a complementary experimental approach. For example, 

a seed string reconstructed by an approximation or heuristic algorithm can be later validated 
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and error-corrected by using genomics data that complements the immunogenomics data 

[23].

We also mention one more choice: is the number of traces fixed in advance or not? For a 

fixed number of traces T, the goal is to design an algorithm with highest possible success 

probability. Alternatively, since the success probability increases as T increases, we consider 

an additional input parameter ReconstructionRate, where 0 ≤ ReconstructionRate ≤ 1 and 

the goal is to design an algorithm with success probability surpassing ReconstructionRate 
using as few traces as possible. Formally, we want to determine the minimum value T* such 

that the trace reconstruction problem with T traces is feasible for a given ReconstructionRate 
as long as T ≥ T*. This value T* is called the trace complexity, and we discuss it further in 

Section IV. We also note that the success probability can be driven to one by using more 

traces, assuming it starts above 0.5. Indeed, taking the majority vote over O(log(1/β)) trials 

for any value 0 < β < 1 will lead to success probability 1 – β, which follows via a Chernoff 

bound. Both algorithmic formulations are relevant for practical applications.

For the immunology models, we consider a fixed number of traces. The reason is that the 

number of traces depends on multiple factors—such as the reconstruction of clonal trees 
during antibody development [82] or selecting the best candidate for follow-up antibody 

engineering efforts [83]—and accurate reconstruction of germline genes is only one of them. 

For the DNA data storage models, we consider an information-theoretical perspective and 

focus on determining the minimum number of traces that suffice for a certain success 

probability.

The average-case success probability can be empirically calculated by choosing the seed 

string s at random and testing whether A(C) = s when the trace-set is generated at random 

from s. For the worst-case success probability, it is infeasible to compute the minimum over 

all possible length n strings. Instead, it would be easier to use seed strings from a benchmark 

dataset. For example, if the ReconstructionRate is 0.95, then the algorithm will likely output 

A(C) = s at least 95 times over 100 randomly generated trace-sets, and this should hold for 

each seed string s from the dataset. In the DNA data storage application, the seed strings are 

constructed synthetically during the storage process, and therefore, they may be used as a 

benchmark.

III. Trace Generation in Computational Immunogenomics

Reconstructing D genes is more difficult than reconstructing V and J genes:

Inferring the sequences of germline genes using immunosequencing data obtained from an 

individual antibody repertoire is an important problem [22], [23], [84]-[87]. In the case of V 

and J genes, this challenge was addressed by [85]-[88]. Reconstruction of shorter D genes is 

a more challenging task [88]. D genes contribute to the complementarity determining region 
3 (CDR3) that spans the V-D and D-J junctions and represents an important and highly 

divergent part of antibodies that accumulates many SHMs. Since D genes typically get 

truncated on both sides during VDJ recombination, the CDR3 typically contains a truncated 

D gene. Each CDR3 also contains some random insertions at the V-D and D-J junctions. 

These truncations and insertions, combined with the fact that D genes are much shorter than 
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V and J genes, make the task of aligning various CDR3s (and thus aligning segments of D 

genes that survive within these CDR3s) more difficult than alignment of longer and typically 

less mutated fragments of immunoglobulins that originated from V and J genes.

The biologically adequate problem formulations in immunogenomics are rather complex, 

making it difficult to develop and test algorithmic ideas for solving these problems. That is 

why the usual path toward solving such problems is to start from simple and often 

inadequate formulations that however shed light on algorithmic ideas that can be used for 

solving more complex problems [89]. We follow this path by starting with a simple 

formulation for the problem of inferring D genes from CDR3s extracted from an antibody 

repertoire. Although efficient algorithms for the complex biologically adequate problems 

remain unknown, the recently developed MINING-D heuristic [23] led to the discovery of 

previously unknown D genes across multiple species. After describing open problems 

relevant to finding new D genes, we formulate more difficult problems relevant to inferring 

the sets of V, D, and J genes (rather than D genes only).

Generating CDR3 from a D gene:

We denote the length of a string s as ∣s∣ and the concatenation of strings s1 and s2 as s1 * s2. 

We refer to a random string of length l (each symbol is generated uniformly at random from 

a fixed alphabet A) as rl. Given an integer t, we define a random string Random≤t as rl, 

where an integer l is sampled uniformly at random from [0, t]. In this paper, 

A = {A, G, C, T}.

Below we describe various models for generating traces from a seed string or from a seed-

set. In all models, we assume that each trace is generated independently. To model 

generation of a CDR3 (trace) from a D gene (seed) in the models below, we describe the 

following operations on a string s (Figure 3):

• Trim(s): A pair of integers l and k are sampled uniformly at random from the set 

of all pairs of non-negative integers (i, j) satisfying the condition i + j ≤ ∣s∣. The 

prefix of length l and the suffix of length k of s are trimmed.

• Mutateε(s): Each letter in s is independently mutated with probability ε in such a 

way that mutations into all ∣ A ∣ − 1 symbols (differing from the symbol in s) are 

equally likely.

• Extendt(s): a string R1 * s * R2 where R1 and R2 are independent instances of 

Random≤t.

Figure 3 illustrates the Extendt(Mutateε(Trim)) model for generating a CDR3 from a D gene 

using random deletions/insertions and somatic hypermutations. Before considering this 

rather complex model, we will consider a series of simpler (albeit less adequate) models for 

generating CDR3s (Figure 4) that use the operations listed below.

• TrimSuffix(s): an integer k is sampled uniformly at random from [0, ∣s∣] and the 

suffix of s of length k is trimmed.
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• TrimSuffixAndExtend(s): an integer k is sampled uniformly at random from [0, 

∣s∣], the suffix of s of length k is trimmed, and the resulting string is concatenated 

with rk.

• SuffixExtendt(s): a string s * Random≤t.

• TrimAndExtend(s): a pair of integers l and k are sampled uniformly at random 

from the set of all pairs of non-negative integers (i, j) satisfying the condition i+j 
≤ ∣s∣. The prefix of length l and the suffix of length k of s are trimmed resulting 

in a string Trim(s). TrimAndExtend(s) is defined as rl * Trim(s) * rk.

We will start with a simple TrimSuffixAndExtend model where the seed string and the 

modified strings are of equal lengths. The next SuffixExtendt(TrimSuffix) model relaxes the 

assumption that the lengths of all modified strings generated from a seed string are the same 

since the same D gene can produce CDR3s of different lengths in the VDJ recombination 

process. In the next SuffixExtendt(Mutateε(TrimSuffix)) model, we further allow mutations 

to occur in the seed string. This is important because the immune system introduces random 

somatic hypermutations to increase the affinity towards an antigen.

In the above models, only the suffix of the seed string gets trimmed in the first step. In the 

real VDJ recombination process, however, D genes get trimmed on both sides. To 

incorporate this fact in the above models, we next present the TrimAndExtend model that 

allows trimming on both sides while keeping the lengths of the modified strings the same. 

This is analogous to the TrimSuffixAndExtend model and the only difference between the 

two models is that the former gets trimmed on both sides whereas in the latter, only the 

suffix is trimmed. To introduce mutations in this model, where the seed string gets trimmed 

on both sides, we then present the Mutateε(TrimAndExtend)) model, while still keeping the 

lengths of all modified strings the same. Finally, to allow for the possibility of different 

lengths of modified strings, while keeping intact the trimming from both sides and the 

random mutations, we introduced the Extendt(Mutateε(Trim)) model which is the most 

biologically adequate model for VDJ recombination among all introduced models.

All models presented in the next subsection can be extended to the multiple seed strings case 

where a seed string is chosen randomly from a seed-set, a trace is then generated from the 

chosen seed string according to a model, and the process is independently repeated a number 

of times to generate a set of traces. In Section V-A, we will discuss the population recovery 
problem, which also concerns reconstructing multiple seed strings under a different trace 

generation model.

The average length and the number of D genes varies among species—for humans and many 

immunologically important mammals (e.g., mice and rats), the length of D genes does not 

exceed 40 nucleotides and the number of D genes varies from 20 to 40. In contrast, other 

immunologically important mammals (e.g., cows) have long (150 nucleotides) and very 

repetitive D genes. Since future personalized immunogenomics studies may involve 

thousands or even millions of individuals, the D gene reconstruction algorithms must scale 

accordingly, e.g., the running time should not exceed a few hours.
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A. A Simple but biologically inadequate model for D gene reconstruction

TrimSuffixAndExtend: Although this model (Figure 4a) does not adequately reflect the 

realities of VDJ recombination, the trace reconstruction problem for this model can be 

efficiently solved. A seed string may generate the same trace for different values of the 

trimming integer k in the TrimSuffixAndExtend model. The probability Pr(c ∣ s) that a seed 

string s generates a trace c depends only on the length m of their longest shared prefix and is 

given by

Pr(c ∣ s) = 1
∣ s ∣ + 1 ∑

k = 0

m 1
∣ A ∣ ∣ s ∣ − k

= 1
( ∣ s ∣ + 1)( ∣ A ∣ ∣ s ∣ )

× ∣ A ∣m + 1 − 1
∣ A ∣ − 1

= K( ∣ s ∣ , ∣ A ∣ ) × ( ∣ A ∣m + 1 − 1)

where K( ∣ s ∣ , ∣ A ∣ ) is constant given the length of the seed string and the alphabet size. 

The probability that a seed string s generates a trace-set C = {c1, c2,…, cT} is computed as

Pr(C ∣ s) = ∏
i = 1

T
Pr(ci ∣ s) . (1)

Trace Reconstruction Problem in the TrimSuffixAndExtend model

Input: A trace-set C generated from an unknown seed string according to the 

TrimSuffixAndExtend model.

Output: A string s maximizing Pr(C ∣ s).

Solving Trace Reconstruction Problem in the TrimSuffixAndExtend 
model: Pr(C ∣ s) is maximized by one of the traces. This observation leads to an algorithm 

for solving the String Reconstruction Problem (with complexity O(∣s∣ · T2)) that simply 

computes Pr(C ∣ s) for each of the T traces. We describe an improved algorithm for solving 

this problem with a running time of O(∣s∣ · T), which is linear in the input size.

Maximizing Pr(C ∣ s) is equivalent to maximizing ∏i = 1
T K( ∣ s ∣ , ∣ A ∣ ) × ( ∣ A ∣mi + 1 − 1), 

where mi is the length of the longest shared prefix between s and ci [23]. Since 

K( ∣ s ∣ , ∣ A ∣ ) is a constant, it is equivalent to finding a string s that maximizes

score(C ∣ s) = ∑
i = 1

T
log( ∣ A ∣mi + 1 − 1) .

We denote f(j) = log( ∣ A ∣j + 1 − 1) and search for a string s that maximizes ∑i = 1
T f(mi)

where mi is the length of the longest shared prefix between s and ci. We denote a t-symbol 

prefix (t-prefix) of a string c as ct and the set of all t-prefixes of strings from C as Ct. Given a 

string s and an integer t, we say that a string c is t-similar to s if t-prefixes of s and c 
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coincide. The number of strings in C that are t-similar to s is denoted as simt(C, s). Given a 

string s,

score(Ct ∣ st) = score(Ct − 1 ∣ st − 1)

+ simt(C, s) × log ∣ A ∣t + 1 − 1
∣ A ∣t − 1

. (2)

We use this recurrence to efficiently compute score (C ∣ s) for each string s from C using 

dynamic programming on a trie constructed from all traces in C [90]. Each vertex in the trie 

is a t-prefix st of a string from C, and we recursively compute score(Ct ∣ st) in each vertex of 

the trie using the above recurrence assuming that the score of the root is log( ∣ A ∣ − 1). The 

optimal string corresponds to the leaf node with the maximum score.

For all strings in C and all values of t, the quantities simt(C, s) can be computed during the 

construction of the trie as follows. Traces are added sequentially to construct the trie. In 

addition to t-prefixes, each vertex also stores simt(C, s) which is initialized to 1 for a new 

vertex. For example, in Figure 5, we start with an empty trie and first add the trace 

“CATTAT” by creating six new vertices, each representing one of the six t-prefixes. At this 

point, the trie contains only one string, and for all vertices, we have simt(C, s) = 1. Then, we 

add the next trace “CATTTG”. For t ≤ 4, the t-prefixes of “CATTAT” and “CATTTG” 

coincide. In other words, they share the first four vertices in the trie. For all vertices that are 

traversed while inserting a new trace, the values of simt(C, s) are updated by adding 1 to the 

current values. For new vertices, like before, the values of simt(C, s) are initialized to 1. In 

this example, for the vertices representing t-prefixes “C”, “CA”, “CAT”, and “CATT”, the 

value of simt(C, s) will be updated to 2, whereas for the two new vertices representing t-
prefixes “CATTT” and “CATTTG”, the values of simt(C, s) will be 1. All traces are inserted 

to the trie in this manner. We can thus compute all simt(C, s) values during the construction 

of the trie with complexity O(∣s∣ · T). After the construction of the trie, all quantities 

score(Ct ∣ st) can then be computed by a single Depth-First Search using Eq. (2).

TrimSuffixAndExtend model with multiple seeds: Next, we consider a modified 

TrimSuffixAndExtend model with a seed-set S = {s1, s2,…, sM}. Traces are generated via a 

two step approach. First, a string si ∈ S is chosen uniformly randomly from S. Then, si is 

modified to generate a trace c according to the TrimSuffixAndExtend model. We note that S 
can either be an arbitrary set of M strings (worst-case) or the strings in S can be chosen 

independently and uniformly from the universe of possible strings (average-case). Note that 

the above model is described for a uniform distribution over the seed strings. In the real VDJ 

recombination process, various D genes contribute to immunoglobulin genes with varying 

propensities. To incorporate this fact, the above model can be reformulated by considering 

an arbitrary distribution on the seed strings.

Trace Reconstruction with Multiple Seeds Problem in the TrimSuffixAndExtend 
model

Input: A trace-set C generated from an unknown set of M seed strings of the same 

length according to the TrimSuffixAndExtend model.
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Output: A set of strings S = {s1, s2,…, sM} maximizing Pr(C ∣ S).

The MINING-D heuristic algorithm: Although the trace reconstruction problem can be 

efficiently solved in the TrimSuffixAndExtend model, it is unclear how to generalize the 

algorithm for the more complex models with multiple D genes and varying lengths of 

modified strings. Bhardwaj et. al. [23] propose a practical greedy heuristic for this model 

that, while being suboptimal, motivates practical algorithms for more complex models.

For the TrimSuffixAndExtend model, the algorithm starts with an empty string and at step j 
extends it on the right by the most abundant symbol in C at position j and discards from C 
the strings that have symbols that are not the most abundant symbols at position j. This 

procedure repeats until the length of the resulting string equals the length of the seed string 

s. This greedy algorithm, however, cannot be directly used in practice because (a) the 

CDR3s are formed by multiple D genes, (b) the number of D genes is unknown a priori, (c) 

the D genes have different lengths that are unknown, (d) CDR3s generated by the same D 

gene can have different lengths.

The MINING-D algorithm [23], inspired by the above greedy algorithm, considers the 

complexities of the real immunogenomics data. It uses the observation that, although D 

genes typically get truncated on both sides during the VDJ recombination process, their 

truncated substrings are often present in the newly recombined genes, and, hence, the 

CDR3s. Therefore, we expect the truncated substrings of D genes to be highly abundant in a 

CDR3 dataset. MINING-D starts by finding the most abundant k-mers (a k-mer is a string of 

length k). It then extends them on both sides using the greedy algorithm to recover entire D 

genes that contain highly abundant k-mers as substrings. MINING-D defines a probabilistic 

stopping rule as the lengths of the D genes are not known a priori. This stopping rule also 

allows us to recover D genes of different lengths. Since some abundant k-mers can be 

substrings of multiple D genes, MINING-D allows multiple extensions from each k-mer in 

the extension procedure.

We next introduce models that incorporate more complexities of the VDJ recombination 

process, leading up to the model that mimics the real formation of an immunoglobulin gene 

from a set of V, D, and J genes. To the best of our knowledge, these models have not been 

studied in the literature and brute-force search is the only known exact solution to trace 

reconstruction in these models.

B. Toward a biologically adequate model for D gene reconstruction

SuffixExtendt(TrimSuffix): Unlike the TrimSuffixAndExtend model, the 

SuffixExtendt(TrimSuffix(s)) model (Figure 4b) generates traces of varying lengths from a 

single seed string s. Let strim be the substring of s that remains after the operation TrimSuffix 
is applied on s. Then, Pr(c ∣ s) is given by
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Pr(c ∣ s) = ∑
k = 0

∣ s ∣
Pr(c, ∣ strim ∣ = k ∣ s)

= ∑
k = 0

∣ s ∣
Pr( ∣ strim ∣ = k ∣ s) Pr(c ∣ s, ∣ strim ∣ = k)

= 1
( ∣ s ∣ + 1) ∑

k = 0

∣ s ∣
Pr(c ∣ s, ∣ strim ∣ = k)

Let m be the length of the longest shared prefix between c and s, as before. Then, Pr(c ∣ s, 

∣strim∣ = k) is non-zero only if ∣c∣ – t ≤ k ≤ m and can be written as

Pr(c ∣ s, ∣ strim ∣ = k) =
1

(t + 1) ∣ A ∣ ∣ c ∣ − k if ∣ c ∣ − t ≤ k ≤ m

0 otherwise

Thus Pr(c ∣ s) is zero if m < ∣c∣ – t. Otherwise,

Pr(c ∣ s) = 1
( ∣ s ∣ + 1)(t + 1) ∑

k = ( ∣ c ∣ − t)+

m 1
∣ A ∣ ∣ c ∣ − k (3)

where x+ = max(x, 0).

• Trace Reconstruction Problem in the SuffixExtendt(TrimSuffix(s)) model

• Input: A trace-set C generated from an unknown seed string according to the 

SuffixExtendt(TrimSuffix(s)) model.

• Output: A string maximizing Pr(C ∣ s).

SuffixExtendt(Mutateε(TrimSuffix)): We now consider a slightly more realistic model 

for trace generation that incorporates somatic hypermutations (Figure 4c). The probability 

Pr(c ∣ s) that a seed string s generates a trace c is given by

Pr(c ∣ s) = 1
( ∣ s ∣ + 1)(t + 1)

× ∑
k = ( ∣ c ∣ − t)+

∣ s ∣ (1 − ε)k − dk(ε ∕ ( ∣ A ∣ − 1))dk

∣ A ∣ ∣ c ∣ − k

where dk is the Hamming distance between the prefixes of c and s of length k.

• Trace Reconstruction Problem in the SuffixExtendt(Mutateε(TrimSuffix)) model

• Input: A trace-set C generated from an unknown seed string according to the 

SuffixExtendt(Mutateε(TrimSuffix)) model.

• Output: A string maximizing Pr(C ∣ s).
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TrimAndExtend: In all the models above, only the suffix of the seed string gets trimmed 

in the first step. In contrast, during the VDJ recombination process, the D gene gets trimmed 

from both sides. We will thus consider the TrimAndExtend model (Figure 4d) for generating 

a trace c from a seed string s.

Since strings s and c have the same length, their comparison results in a binary comparison 

vector where 1s (0s) correspond to the match (mismatch) positions. Let t(i) denote the length 

of the continuous run of 1s starting at position i + 1 in the comparison vector. The 

probability that a seed string s generates a trace c is given by

Pr(c ∣ s) = 2
( ∣ s ∣ + 1)( ∣ s ∣ + 2) ∑

i = 0

∣ s ∣
∑

k = ∣ s ∣ − i − t(i)

∣ s ∣ − i 1
∣ A ∣i + k

• Trace Reconstruction Problem in the TrimAndExtend model

• Input: A trace-set C generated from an unknown seed string according to the 

TrimAndExtend model.

• Output: A string maximizing Pr(C ∣ s).

Mutateε(TrimAndExtend): We now consider a model that incorporates mutations in the 

TrimAndExtend model (Figure 4e). Let substringl,k(s) be the substring of the seed string s 
where the prefix of length l and the suffix of length k have been trimmed. The probability 

that a seed string s generates a trace c in the Mutateε(TrimAndExtend) model is given by

Pr(c ∣ s) = 2
( ∣ s ∣ + 1)( ∣ s ∣ + 2) ×

∑
i = 0

∣ s ∣
∑

k = 0

∣ s ∣ − i (ε ∕ ( ∣ A ∣ − 1))di, k(1 − ε) ∣ s ∣ − i − k − di, k

∣ A ∣i + k

where dl,k is the Hamming distance between substringl,k(c) and substringl,k(s).

• Trace Reconstruction Problem in the Mutateε(TrimAndExtend) model

• Input: A trace-set C generated from an unknown seed string according to the 

Mutateε(TrimAndExtend) model.

• Output: A string maximizing Pr(C ∣ s).

Extendt(Mutateε(Trim)): The biologically adequate model for generating traces from a 

seed string is the Extendt(Mutateε(Trim)) model illustrated in Figure 3. This model is more 

complex than the previous ones as it requires consideration of all possible pairs of equally 

sized substrings of the seed string and the trace. Note that in all previous models, the traces 

either had the same length as the seed string, or were aligned with the seed string on the left. 

Let subl(s) denote all the substrings of s of length l and subt
l(c) denote all substrings of c of 

length l such that the number of symbols in c before or after the substring do not exceed t. 
Then, the probability that a seed string s generates a trace c in the Extendt(Mutateε(Trim)) 
model is given by
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Pr(c ∣ s) = 1
(t + 1)2

2
( ∣ s ∣ + 1)( ∣ s ∣ + 2)

× ∑
l = 0

min( ∣ s ∣ , ∣ c ∣ ) 1
∣ A ∣ ∣ c ∣ − l

∑
s̄ ∈ subl(s)

c̄ ∈ subtl(c)

(1 − ε)l − ds̄, c̄ ε
∣ A ∣ − 1

ds̄, c̄
,

(4)

where ds1,s2 is the Hamming distance between strings s1 and s2.

• Trace Reconstruction Problem in the Extendt(Mutateε(Trim)) model

• Input: A trace-set C generated from an unknown seed string according to the 

Extendt(Mutateε(Trim)) model.

• Output: A string maximizing Pr(C ∣ s).

C. Trace Reconstruction of V, D, and J genes

Above, we considered the trace reconstruction problems that are relevant to generating a 

CDR3 from a D gene. We will now consider more complex trace reconstruction problems 

that model concatenation of V, D, and J genes to form an entire immunoglobulin gene 

(Figure 6). We will start from the simplest problem when each trace represents a 

concatenation of just two traces generated by two different seed strings.

SuffixExtendt(TrimSuffix)*SuffixExtendt(TrimSuffix): We first consider a model 

when two seed strings s1, s2 of equal length n generate a single trace c according to the 

SuffixExtendt(TrimSuffix(s1))*SuffixExtendt(TrimSuffix(s2)) model (Figure 6a). Let 

prefixl(s) and suffixl(s) be the prefix and suffix of string s of length l. The probability that the 

seed strings s1 and s2 generate a trace c is given by

Pr(c ∣ s1, s2) = ∑
l = 0

∣ c ∣
Pr(prefixl(c) ∣ s1) ×

Pr(suffix ∣ c ∣ − l(c) ∣ s2)
(5)

where Pr(prefixl(c) ∣ s1) is defined according to the SuffixExtendt(TrimSuffix) model (Eq. 3) 

if l ≤ n + t and 0 otherwise. Pr(suffix∣c∣–l(c) ∣ s2) is defined similarly.

• Trace Reconstruction Problem in the 

SuffixExtendt(TrimSuffix)*SuffixExtendt(TrimSuffix) model

• Input: A trace-set C generated from two unknown seed strings according to the 

SuffixExtendt(TrimSuffix)*SuffixExtendt(TrimSuffix) model.

• Output: Strings s1 and s2 maximizing Pr(C ∣ s1, s2).
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SuffixExtendt(TrimSuffix)*SuffixExtendt(TrimSuffix) model with multiple 
seeds: Next, we consider a modification of the above model where each trace is generated 

by two sets of seed strings of the same length n, S1 = {s1
1, s1

2, …, s1
M1} and 

S2 = {s2
1, s2

2, …, s2
M2}, rather than a pair of seed strings. Seed strings s1 and s2 are randomly 

chosen (from the sets S1 and S2 according to a uniform distribution) and the chosen strings 

generate a trace according to the SuffixExtendt(TrimSuffix)*SuffixExtendt(TrimSuffix) 
model.

• Trace Reconstruction with Multiple Seeds Problem in the 

SuffixExtendt(TrimSuffix)*SuffixExtendt(TrimSuffix) model

• Input: A trace-set C generated from two unknown sets containing M1 and M2 

seed strings according to the 

SuffixExtendt(TrimSuffix)*SuffixExtendt(TrimSuffix) model.

• Output: A set of M1 seed strings and a set of M2 seed strings maximizing Pr(C ∣ 
S1, S2).

VDJ recombination model (single v, d, and j seed strings): We now consider a 

model when three strings v, d, and j of length nv, nd, and nj respectively generate a trace c 
according to the Mutateε(TrimSuffix(v)*Extendt(Trim(d))* TrimPrefix(j)) model (Figure 

6b). Here, TrimPrefix(s) is defined similarly to TrimSuffix(s), where an integer k is sampled 

uniformly from [0, ∣s∣], and the prefix of s of length k is trimmed. However, like the 

Extendt(Mutateε(Trim))) model, it is a complicated model because one must consider all 

triples of substrings of the trace c. The probability Pr(c ∣ v, d, j) that the seed strings v, d, 

and j generate a trace c is given by

Pr(c ∣ v, d, j) = ∑
i = 0

nv
∑

k = 0

min( ∣ c ∣ − i, nj)
P1(prefixi(c) ∣ v) ×

P2(substringi, k(c) ∣ d) ×
P3(suffixk(c) ∣ j),

where P1 (prefixi(c) ∣ v) is given by

P1(prefixi(c) ∣ v) = 1
nv + 1(ε ∕ ( ∣ A ∣ − 1))di(1 − ε)i − di

where di is the Hamming distance between prefixi(c) and prefixi(v). P2(substringi,j(c) ∣ d) is 

defined as in Eq. (4). P3 is defined similarly to P1.

• Trace Reconstruction Problem in the VDJ recombination (single v, d, and j seed 

strings) model

• Input: A trace-set C generated from three unknown seed strings according to the 

VDJ recombination model.

• Output: Three strings s1 , s2, and s3 maximizing Pr(C ∣ v, d, j).
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VDJ recombination model (multiple v, d, and j seed strings): We will now 

consider a model when three seed-sets V = {v1, v2, …, vMv}, D = {d1, d2,…, dMd}, and J = 

{j1, j2,… , jMj} generate a trace c according to the following model. One string from each of 

the sets V, D, and J is uniformly randomly chosen and the chosen strings v, d, and j generate 

a trace according to the VDJ recombination model. The probability that a trace c is 

generated by seed strings in V, D, and J is given by

Pr(c ∣ V , D, J) = 1
MvMdMj ∑

v ∈ V
∑

d ∈ D
∑

j ∈ J
Pr(c ∣ v, d, j)

• Trace Reconstruction Problem in the VDJ recombination (multiple v, d, and j 
seed strings) model

• Input: A trace-set C generated from three unknown seed-sets (containing Mv, 

Md, and Mj strings respectively) according to the VDJ recombination model.

• Output: Set S1 with Mv strings, set S2 with Md strings, and set S3 with Mj 

strings maximizing Pr(C ∣ S1, S2, S3).

IV. Trace Reconstruction problems for DNA Data storage

A popular formulation of trace reconstruction considers the deletion channel, where random 

symbols in the seed string s are deleted independently with probability q and 0 < q < 1 is the 

deletion probability. This produces a trace c representing a random subsequence of s. This 

process is repeated independently T times to produce a random trace-set C (Figure 7). The 

trace reconstruction algorithm takes the traces (without any information about which 

symbols were deleted from the seed string), the length of the seed string, and the deletion 

probability as an input. For simplicity, we focus on binary seed strings, while the definitions 

can be extended to larger alphabets.

The maximum likelihood solution would output the string s that maximizes Pr(C ∣ s) for the 

given trace-set C. We first consider the probability Pr(c ∣ s) for a single trace c. Let Ns(c) 

denote the number of times c appears as a subsequence of s. For example, if s = 11010 then 

c = 110 appears Ns(c) = 4 times, corresponding to the subsequences {110••, 11•• 0, 1•• 10, • 

1 • 10}, where • denotes a deleted symbol. The value of Ns(c) can be computed using 

dynamic programming [21]. Recalling that ∣s∣ denotes the length of a string, the probability 

Pr(c ∣ s) can be computed as follows

Pr(c ∣ s) = Ns(c) ⋅ q ∣ s ∣ − ∣ c ∣ (1 − q) ∣ c ∣ .

Since each trace in C is produced independently, we have that

Pr(C ∣ s) = ∏
c ∈ C

Pr(c ∣ s) .

The value Pr(C ∣ s) can be calculated for any fixed s. However, the optimization problem 

that determines the optimal s is challenging. Designing an efficient algorithm (with time 
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polynomial in ∣C∣ and ∣s∣) that outputs a string s maximizing Pr(C ∣ s) is an open question. 

Partial results are known when ∣C∣ is very small [19], [91]–[94].

We focus on the success probability in this section, and we also restrict to length n seed 

strings. We define the worst-case success probability of an algorithm A over all binary 

strings of length n as

PA(n, T ) = min
s

PA(s, T ) .

Similarly, the average-case success probability of A over all binary strings of length n is

P A(n, T ) = 1
2n ⋅ ∑

s
PA(s, T ) .

Trace Complexity:

Most previous work provides information-theoretic results in terms of the trace complexity, 

which is the minimum value of T such that there exists an algorithm with success probability 

at least the given ReconstructionRate. This will depend on the deletion probability q. For 

any fixed ReconstructionRate, the number of input traces must be at least the trace 

complexity for the algorithmic problem to be feasible. It is often convenient to fix the 

ReconstructionRate to a default value, such as ReconstructionRate = 0.95. This does not 

affect the trace complexity too much because arbitrarily large ReconstructionRate can be 

achieved by increasing the number of traces by a logarithmic factor (taking a majority vote 

over several trials). Therefore, we define the worst-case trace complexity as

Tq(n) = arg min T ∣ max
A

PA(n, T ) ≥ 0.95

and the average-case trace complexity as

T q(n) = arg min T ∣ max
A

P A(n, T ) ≥ 0.95 .

The trace complexity may depend on the error rate. Certain algorithms only succeed when 

the deletion probability decreases as a function of the length n of the seed string. 

Historically, the initial results assume that the deletion probability scales inversely with n, 

e.g., q = O(1 ∕ n) or q = O(1/log n) [4], [12], [20]. These results have been later 

strengthened to handle a constant rate of deletions, e.g., q = 0.5 [7], [13], [18]. The extent to 

which the deletion probability impacts the trace complexity remains unknown in general.

For simplicity, we restrict our attention to the deletion channel, but many of the results that 

we discuss also extend to a more general error model that includes insertions and 

substitutions [7], [13], [18], [20]. We refer the reader to the following surveys for other error 

models and related theoretical open questions [91], [95].
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V. Theoretical Results on Trace Reconstruction

We survey theoretical results for reconstructing a seed string s of length n. We begin with 

three variants depending on the nature of the unknown string: it can be arbitrary (worstcase); 

it can be chosen uniformly at random (average-case); or, it can be chosen from a predefined 

set of encoded strings (coded trace reconstruction). For each variant, we first present a 

formal problem statement. The information-theoretic goal is to determine the values of the 

parameters T, q, n, and ReconstructionRate for which the problem is solvable. The next step 

is to design an efficient algorithm for such cases. In the latter half of this section, we also 

mention generalizations to multiple strings and to higher-order structures (such as trees). We 

conclude with a brief description of some recent practical developments. Throughout, we 

use s = A(C) to abbreviate the output of a reconstruction algorithm A on an input trace-set C.

Worst-case trace reconstruction:

We first describe the case where the seed string s is arbitrary, and the success probability is 

calculated over the randomness in generating the trace-set C.

Worst-Case Trace Reconstruction Problem for the Deletion Channel

Input: A random trace-set C of size T generated from a seed string s of length n 
according to the deletion channel model with deletion probability q, as well as the 

ReconstructionRate.

Output: A string s  such that s = s with success probability at least 

ReconstructionRate.

The current best trace complexity for worst-case strings is Tq(n) = exp(O(n1/5 log5 n)) when 

the deletion probability q is at most 1/2 [96]. When q ∈ (1/2, 1), then the known result is 

Tq(n) = exp(O(n1/3)) [7], [18]. The latter result uses a mean-based algorithm that first pads 

each trace with trailing zeros so that the length equals the seed length n (here, we consider a 

binary alphabet). Then, the mean of the traces is computed by summing the padded traces 

coordinate-wise and normalizing by the number of traces (i.e., this computes the fraction of 

ones in each position). It is known that when the number of traces is at least exp(O(n1/3)) 

then these means suffice to determine the unknown string with high success probability [7], 

[18]. The improvement to Tq(n) = exp(O(n1/5 log5 n)) when q ≤ 1/2 uses a similar algorithm, 

with the subtle difference and important difference that certain substring frequencies are 

approximated instead of single bits [96].

An intriguing aspect of the worst-case result is the use of techniques from complex analysis. 

The elegant argument involves expressing the mean-based statistics (from averaging the 

padded traces) in terms of a complex-valued generating function (whose coefficients are 

determined by the seed string and deletion probability). The aim is to lower bound the 

statistical distance between trace-sets that are generated from distinct seed strings. It is fairly 

easy to show that the maximum modulus of this function in a certain arc of the complex unit 

disk provides such a lower bound. Then, to complete the proof, the authors use prior results 

on Littlewood polynomials [97], [98]. This argument serves as the basis of a trace 

reconstruction algorithm with running time proportional to the number of traces. 

Surprisingly, the bound is tight for mean-based algorithms, in the sense that exp(Ω(n1/3)) 

Bhardwaj et al. Page 22

IEEE Trans Inf Theory. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



traces are necessary if an algorithm uses only the coordinate-wise means [7], [18]. These 

results have further inspired the use of related generating functions to derive improved 

bounds for other statistical learning problems [99], [100].

Improvements to the trace complexity are known for a very small deletion probability; if 

each bit is deleted with probability less than n−1/2–δ for a small constant δ, then a nearly-

linear number of traces suffice [12]. We note that mean-based algorithms extend to handle 

insertions and substitutions as well [7], [18]. It is an open question to determine the smallest 

deletion probability such that a polynomial number of traces suffice. When the deletion 

probability does not decrease with n (e.g., q = 0.5), then lower bounds on the trace 

complexity are known. Previous work shows T0.5(n) = Ω(n3 ∕ 2) traces are necessary [8], [11], 

where the Ω notation hides polylog factors.

The central open problem is to close the exponential gap between upper and lower bounds 

on the worst-case trace complexity. A first step could be to better understand which seeds 

strings are the most challenging to reconstruct. For many algorithms, simple strings 

demonstrate that the current analysis is tight. However, other methods readily reconstruct 

these strings. For example, the Ω(n3 ∕ 2) lower bound is derived for the task of distinguishing 

a pair of alternating strings with two flipped bits, e.g..

• 1010 ⋯ 101010 ⋯ 1010

• 1010 ⋯ 100110 ⋯ 1010

Telling apart these strings using traces is straightforward, and an algorithm using O(n3 ∕ 2)
traces is known. Hence, the lower bound for this pair is nearly tight [8], [11]. Another futile 

attempt comes from considering a uniformly random string. In many areas, the probabilistic 

method suffices to identify difficult instances [101], [102]. For reconstruction problems, the 

opposite is often true: random objects can be reconstructed with less information than worst-

case instances [103]-[105]. In particular, random strings are easier to reconstruct, as we will 

now see.

Average-case trace reconstruction:

We move on to consider the case when the seed string s is a uniformly random length n 
string. In this case, the seed string is chosen randomly before generating each set of traces, 

and the success probability is calculated with respect to both the trace-set generation and the 

choosing of the seed string.

• Average-Case Trace Reconstruction Problem for the Deletion Channel

• Input: A random trace-set C of size T generated from a uniformly random seed 

string s of length n according the deletion channel model with deletion 

probability q, as well as the ReconstructionRate.

• Output: A string s  such that s = s with success probability at least 

ReconstructionRate.
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The current best upper bound on the trace complexity is T q(n) = exp(O(log1 ∕ 3 n)) for 

uniformly random strings, and this holds for any deletion probability q bounded away from 

one [13]. This upper bound is exponentially better than the result for worst-case strings [7], 

[18]. The lower bound for average-case reconstruction shows that T 0.5(n) = Ω(log3 ∕ 2 n)
traces are necessary to reconstruct a random string with constant deletion probability, where 

here the Ω notation hides log log n factors [8], [11]. When the deletion probability scales 

inverse-logarithmically with n, then logarithmic upper bounds on the average-case trace 

complexity are known [4], [20].

The algorithms for average-case reconstruction are much more involved than the current 

methods for worst-case reconstruction. Instead of relying only on statistical quantities, the 

algorithm iteratively reconstructs the seed string one character at a time. At the beginning, a 

small number of traces are used to learn a short prefix exactly. This partial reconstruction 

then serves as an anchoring method to approximately align the traces. When the seed string 

is random, its short substrings are locally unique with high probability, and therefore, such 

alignments can be reliable. The algorithm moves left-to-right and employs a worst-case 

algorithm to reconstruct the next bit. This general approach, along with a careful analysis of 

the alignment process, led to an algorithm that requires exp(O( log n)) traces when the 

deletion probability is less than 0.5 [106], building on a similar approach that uses poly(n) 

traces [12]. Subsequent work extends this idea with a more sophisticated alignment method 

and many technical developments, leading to the best known algorithm for average-case 

trace reconstruction that achieves a trace complexity of T q(n) = exp(O(log1 ∕ 3 n)) for any 

deletion probability q bounded away from one [13]. Recently, an algorithm has also been 

proposed that achieves a polynomial number of traces in a smoothed-analysis setting that 

interpolates between the worst-case and average-case reconstruction problems; more 

specifically, in this model, a worst-case seed string is first randomly perturbed, where each 

bit is flipped with some probability less than 1/2, and then the traces are all generated from 

this randomized string [107].

Coded trace reconstruction:

The next variation assumes that the seed string s is chosen from a predefined set of possible 

strings (e.g., these may be codewords from a suitable code, where it is desirable for these 

codewords to have an efficient construction procedure as well). For example, in DNA data 

storage, there is flexibility to encode the seed strings. The definition of success probability 

can either be the minimum over all predefined seed strings (worst-case) or the expectation 

over a uniformly random predefined seed string (average-case).

• Coded Trace Reconstruction Problem for the Deletion Channel

• Input: A random trace-set C of size T generated from a seed string s of length n 
according to the deletion channel model with deletion probability q, where s is 

guaranteed to be from a predefined set of possible strings, as well as the 

ReconstructionRate.

• Output: A string s  such that s = s with success probability at least 

ReconstructionRate.
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Compared to reconstructing worst-case strings, better trace complexity upper bounds are 

known. The improvement depends on the number of possible encoded strings, i.e., the rate 

of the code [5], [6], [9]. We mention a few results that exemplify different regimes. For this 

discussion, we consider worst-case reconstruction, where the success probability guarantee 

holds for all predefined strings. It will also be convenient to frame the encoding process as 

adding redundancy to an arbitrary seed string. The code maps the unknown seed string s of 

length n to a new string s′ of larger length n′ > n. Applying this mapping to all possible 

strings generates the predefined seed strings in the coded trace reconstruction problem. The 

objective is to simultaneously minimize n′ while developing an efficient reconstruction 

algorithm with small trace complexity.

We say the code has redundancy n′ – n equal to the number of extra characters in the 

encoding. When the redundancy is small, such as O(n/log n), algorithms are known with 

trace complexity polylog(n), which is sublinear in seed string length [9]. The high-level 

strategy is to create the new string s′ by concatenating many codewords. The added 

redundancy comes from padding the codewords with a run of zeros followed by a run of 

ones. For example, the codewords could have length Θ(log2 n) and runs have length Θ(log 

n). This implies that none of the padded portions are deleted in a trace with high probability. 

The padding enables the algorithm to align the codeword portions in each trace. The 

redundancy for such a scheme is O(n/log n). After identifying the padded and codeword 

portions, the encoded seed string s′ can be reconstructed from polylog(n) traces.

In the larger redundancy regime, such as redundancy εn with ε ∈ (0, 1) being a constant, an 

improved trace complexity of exp(O(log1/3 (1/ε))) is achievable [6]. Recent work also more 

thoroughly studies coded trace reconstruction in the insertion/deletion channel when there 

are a constant number of errors or a constant number of traces [5], [92], [108]-[110]. Before 

integrating these results into a DNA data storage system, certain ulterior constraints should 

be addressed as well. The synthesis process imposes limitations on the seed string length, 

and hence, the redundancy must be relatively small [24], [30]. Trace reconstruction is also 

only one part of the pipeline. The encoding and decoding schemes may need to satisfy other 

properties, such as error-correction capabilities [30] and enough separation between seed 

strings to enable clustering [46].

Non-uniform error rate:

The deletion channel model assumes that the deletion probability q is fixed for all characters 

in the seed string. A biologically relevant modification considers varying deletion 

probabilities, where the position or value of each character may affect the error probability 

[10]. For certain assumptions on the deletion probabilities, the current best algorithm is the 

same as for worst-case strings with constant deletion probability (i.e., a mean-based 

algorithm), and the trace complexity is asymptotically the same exp(O(n1/3)) as well. It is an 

important open question to extend current theoretical results to more realistic error models.

A. Reconstruction of multiple seed strings

In many applications, the goal is to reconstruct a set of unknown seed strings (rather than a 

single seed string) given a set of their traces. For example, in DNA data storage, the original 
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set of short seed strings is stored together as an unordered collection in a tube. Recovering 

the data results in a set of traces arising from these seed strings and involves accurately 

determining a large fraction of the seed strings. Storing and retrieving a set of strings leads 

to interesting coding-theoretic problems as well [56], [59], [61], [63], [64], [68], [69].

Trace reconstruction for multiple strings has been explored recently [111]-[113]. 

Historically, this originates in the area of population recovery, determining an unknown 

distribution over a set of strings [114], [115]. In the language of trace reconstruction, the 

population recovery model can be described as follows. There is an unknown set S of seed 

strings, where only the number of strings in S is given as an input. The traces are generated 

using a two-step process. First, a string s is chosen randomly from the set of seed strings S 
based on the uniform distribution over S. Then, a trace is produced from s. This process 

repeats T times, leading to a trace-set C. The goal is to reconstruct at least a 1 – δ fraction of 

the strings in S for a given accuracy parameter 0 < δ < 1. In other words, the algorithm 

outputs a candidate set S with ∣ S ∣ = ∣ S ∣, and we require that ∣ S ∩ S ∣ ≥ (1 − δ) ∣ S ∣. The 

success probability is defined as the probability that ∣ S ∩ S ∣ ≥ (1 − δ) ∣ S ∣, calculated over 

the random trace-set.

Analogous to the single string problems, there are variations depending on whether a set of 

seed strings is an arbitrary (worst-case) or random (average-case) set of strings [111]-[113]. 

For the worst-case version, we define the success probability over the randomness in the 

trace-set generation. For the average-case version, we also include the probability of 

choosing random set S of length n strings where ∣S∣ is fixed. We remark that prior work 

actually considers a more intricate population recovery model for a non-uniform distribution 

over S [111], [112], [114], [115]. However, we use the uniform distribution because it seems 

more relevant to practical applications (e.g., in DNA data storage, the seed strings are chosen 

from S with approximately equal probability).

• Multiple String Trace Reconstruction Problem for the Deletion Channel

• Input: A random trace-set C of size T generated from a set of unknown seed 

strings S of length n according the Deletion Channel model with deletion 

probability q and an accuracy parameter δ, as well as the ReconstructionRate.

• Output: A set of strings S with ∣ S ∣ = ∣ S ∣ such that ∣ S ∩ S ∣ ≥ (1 − δ) ∣ S ∣
with success probability at least ReconstructionRate.

The output is verifiable when the original set of strings S is known. In DNA data storage, the 

set S corresponds to the set of strings that store the data, which may be used to benchmark a 

reconstruction algorithm.

Average-case population recovery problem has a straightforward reduction to the single 

string case, both in theory [112] and in practice [30], [46]. When the seed strings are 

sufficiently long, they are also far apart geometrically because they have pairwise edit 

distance scaling linearly with their length [47]-[49]. This ensures a clear separation between 

groups of traces that come from one seed string rather than another. Clustering methods can 

accurately partition the trace-set into subsets that are generated from each individual seed 

string [46], [112]. Then, algorithms for the average-case problem will succeed in exactly 
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reconstructing most of the seed strings from the clusters. When there are ∣S∣ = M seed 

strings, the trace complexity is poly(M) · exp(O(log1/3 n)) [112].

Reconstructing a worst-case collection of seed strings is more challenging. The first 

approach to do so rigorously relied on subsequence statistics, and their method uses 

exp(nO(M) ⋅ n)) traces [111]. Subsequent work improved this bound by showing how to 

extend the mean-based analysis for the worst-case reconstruction of a single seed string 

[113]. The resulting algorithm uses only exp(O(M3 · n1/3)) traces. Notice that when M = 1, 

then this matches the best known bound for a single worst-case string [7], [18].

B. Reconstructing Higher-Order Structures

Recent work proposes a generalization of string trace reconstruction, known as tree trace 
reconstruction [116]. The goal is to reconstruct a node-labeled tree using traces from a 

channel that deletes nodes. The tree topology is known ahead of time, and learning the 

unknown node labels is the sole objective. They propose two deletion models that differ 

from each other based on how the children of a deleted node move in the tree. Figure 8 

depicts an example tree and trace for one of the models, which is derived from the notion of 

tree edit distance. When a node is deleted, its children move up to become children of the 

deleted node’s parent. In particular, deletions still result in a connected tree. For technical 

reasons, the root is never deleted. The model assumes a left-to-right ordering of every level, 

and hence, the trees are presented in a consistent way. The tree reconstruction problem in 

this model generalizes string reconstruction from the deletion channel, coinciding when the 

tree is a path.

The tree reconstruction problem provides a vantage point to study the complexity of 

reconstructing higher-order structures. Perhaps surprisingly, for many classes of trees, such 

as complete k-ary trees and multi-arm stars (a.k.a. spider trees), a polynomial number of 

traces suffice for worst-case reconstruction [116]. This is in contrast to the string case, where 

the current algorithms use exponentially many traces [7], [18]. The algorithms for 

reconstructing complete k-ary trees also differ significantly from the known methods for 

string reconstruction. As there is more structure in the tree, combinatorial methods can be 

used to identify the location of certain subtrees. The algorithms make heavy use of traces 

that contain a root-to-leaf path of the same length as the depth of the seed tree. If the 

deletion probability is constant, and the tree has depth O(log n), then such a path survives 

with inverse-polynomial probability. Under certain conditions, the nodes in such paths 

suffice to recover the corresponding labels. The algorithm for reconstructing spider trees 

proceeds via a mean-based approach (analogous to the worst-case reconstruction results [7], 

[10], [18]). This involves generalizing the complex-analytic techniques to capture mean-

based statistics for spider trees. It also is known that paths (a.k.a. strings) are the most 

difficult tree because any tree can be reconstructed using a string reconstruction algorithm 

with the same asymptotic trace complexity. Related endeavors study reconstructing matrices 

from a channel that deletes rows and columns [14] or circular seed strings from a channel 

that applies a random circular permutation before deleting characters [117].

Biological motivation for the tree trace reconstruction problem can be loosely attributed to 

the goal of identifying certain molecules that inherently have a tree-like structure. For 
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example, recent advances have shown that tree-structured DNA is useful for bio-sensing 

applications [118], [119] and storing digital information [120]. In these applications, a 

variety of tree topologies have been studied. The DNA molecule could take a star-shaped 

form, with multiple arms connected to a shared center. The arms may be single- or double-

stranded DNA, and each arm of the star contains roughly 50–100 nucleotides. Such 

nanostructures have been developed in the context of DNA-based nanomaterials [121], using 

building blocks such as a 4-arm star, known as a Holliday junction [122].

The tree trace reconstruction problem arises when sequencing such tree-structured DNA. 

More specifically, a potential objective could be to efficiently verify that a constructed 

molecule has the intended shape. Nanopore devices may be able to sequence tree-structured 

DNA directly, providing reads that resemble traces in the tree reconstruction model. 

Promising initial results have been obtained for sequencing Y-shaped and T-shaped DNA 

[119], as well as extensions to stars with up to twelve arms and certain DNA hairpin 

structures [118], [120].

C. Practical Trace Reconstruction Solutions

Many theoretical trace reconstruction algorithms assume that the number of traces and the 

length of the seed string are both unrealistically large. Coded trace reconstruction is an 

exception, where simple algorithms are known with sublinear trace complexity and running 

time. It is possible that these theoretical algorithms can be used in practical DNA data 

storage systems to improve the trace complexity. A remaining challenge is combining the 

codes for trace reconstruction with the codes for error-correction, which is an interesting 

avenue for future work.

Adapting the current best theoretical algorithms for worst-case or average-case 

reconstruction into practical solutions seems unlikely. Instead, a promising direction is to use 

alignment-based methods, such as bitwise-majority alignment [4]. These perform well for 

the average-case problem when the deletion probability is small, and they can be efficiently 

implemented in near linear time. In one DNA data storage system, this has been successfully 

used when combined with certain undisclosed heuristics [30]. The idea is to start with a 

pointer at the beginning of each trace and move left-to-right. At each position, a majority 

vote is taken to determine the most likely symbol in that position. This majority symbol will 

be the output value of that position. Then, the pointers must be updated. If a trace agrees 

with the majority, then its pointer is advanced to the right by one. For the disagreeing traces, 

other methods must be used to guess whether the error was due to an insertion, substitution, 

or deletion. It is often beneficial to look ahead to the next few positions to help guess the 

type of error (e.g., if the next bit agrees with the majority, then the error is more likely to 

have been a substitution than a deletion). Depending on the type of error, the pointers for the 

disagreeing traces are moved appropriately.

A related approach uses a multi-sequence alignment method [123] in conjunction with 

majority voting and certain preprocessing steps [33]. Especially error-ridden traces are 

discarded before reconstruction. This can be based on simple criteria, such as the length of 

the trace or the correctness of the address portion (e.g., if the DNA primer is intact). More 

sophisticated methods may be used depending on the error-correcting code (e.g., parity or 

Bhardwaj et al. Page 28

IEEE Trans Inf Theory. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cyclic redundancy checks). Discarding many traces incurs a higher cost of sequencing and 

reconstruction, and therefore, it would be better to selectively use certain traces at different 

steps of the reconstruction process. The desired ReconstructionRate depends on the 

redundancy in the error-correcting codes [30], [33].

Recent works have taken a different approach and developed ways to approximate the 

maximum likelihood solution [19], [92]-[94]. The focus here has been on developing 

algorithms that approximately reconstruct the seed string when given a small budget on the 

number of traces (e.g., 2–10). In some cases, these techniques outperform statistical and 

alignment-based approaches. While this progress is promising, it is still largely an open 

problem to design efficient algorithms that achieve a high ReconstructionRate with a small 

number of traces.

VI. Conclusion

In this review paper, we discussed applications of the Trace Reconstruction Problem in 

immunogenomics and DNA data storage. We introduced new trace generation models, 

presented a variety of open questions, surveyed existing solutions, and discussed their 

applicability and shortcomings. Given that computational immunogenomics and DNA data 

storage are young and rapidly expanding research areas, we expect more theoretical 

techniques, algorithms, and publicly available datasets to emerge in the next several years.

We close with a summary of some key open questions along with general perspectives.

• Maximum Likelihood vs. Trace Complexity: Sections III and V address 

different objectives. What are the key similarities and differences between the 

maximum likelihood solution and the maximum success probability solution? 

When does a budget on the number of traces radically influence the best 

reconstruction algorithm? Is there a gap between the trace complexity for 

computationally efficient vs. information-theoretic reconstruction?

• Immunogenomics Models: Throughout Section III we have introduced several 

trace generation models that vary in terms of their complexity and realism. Given 

that these models have yet to be seriously studied, many open questions remain. 

Can we design polynomial-time algorithms for computing the maximum 

likelihood solution? Can we derive tight bounds on the trace complexity for 

information-theoretic reconstruction?

• Practical Implementations: It remains to be seen whether an improved 

theoretical understanding of trace reconstruction algorithms will lead to effective 

empirical solutions. In Section V-C, we have briefly addressed some of the 

known practical algorithms for the deletion channel. What are the best 

performing methods in practice, in terms of trace complexity, success probability, 

running time, and generality? If we want to experimentally test various 

algorithms, what are the important properties of benchmark datasets?

• Confidence Measures: Another desirable property for both immunogenomics 

and DNA data storage applications would be to output a measure of confidence 
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in the reconstructed string. Is it the case that most seed strings are easy to 

reconstruct in practice, while only a small set of strings and traces are 

challenging?

• Data Driven Models: The models that we have surveyed involve various 

parameters that determine the error rate in the trace generation process. Can we 

experimentally determine these parameter values? Is it possible to optimize the 

reconstruction algorithm for the most prevalent error rates and the most realistic 

models?

• Approximate Reconstruction: The formulation of success probability in 

Sections II and IV hinge on the requirement that the seed string is exactly 

reconstructed. Can we design algorithms that use fewer traces and output a 

candidate string within a small edit or Hamming distance of the seed string? If 

these additional errors can be handled with error-correcting codes, then how do 

approximate reconstruction algorithms compare to other approaches for coded 

trace reconstruction?

• End-to-end Solutions. Production-level DNA data storage systems will involve 

a co-design of the core pipeline components. Can we develop an encoding 

scheme that enables efficient trace reconstruction and clustering, while also 

providing error-correcting capabilities and high storage density?
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Fig. 1: 
Generation of an antibody repertoire. The VDJ recombination affects the immunoglobulin 

locus that includes three sets of genes: V (variable), D (diversity), and J (joining). It 

randomly selects one gene from each set and concatenates them. The resulting sequence 

represents a potential immunoglobulin gene that encodes an antibody. However, this simple 

representation of an immunoglobulin gene is unrealistic since real immunoglobulin genes 

have indels at the V-D and D-J junctions. Somatic hypermutations (SHMs) further change 

the sequence of an immunoglobulin gene and thus affect its affinity. While some mutations 

increase affinity (sequences marked by the green ‘+’ signs), other mutations reduce it 

(sequences marked by the red ‘−’ signs). The clonal selection process iteratively retains 

antibodies with increased affinities and filters out antibodies with reduced affinities, thus 

launching an evolutionary process that eventually generates a high-affinity antibody able to 

neutralize an antigen (an antibody marked by a circled dark green ‘+’ sign).
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Fig. 2: 
The DNA data storage and retrieval pipeline. Trace reconstruction problems come into play 

just before the Decode step.
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Fig. 3: 
Trim, Mutate, and Extend operations model the process of generating a CDR3 of an 

immunoglobulin gene from a D gene using somatic hypermutations (shown in green) and 

random insertions (shown in blue).
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Fig. 4: 
Trace generation for various trace reconstruction problems motivated by analysis of 

immunosequencing data. Insertions (i.e., random strings of random length) are shown in 

blue. Hypermutations are shown in green.
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Fig. 5: 
Illustration of the algorithm for solving the String Reconstruction Problem in the 

TrimSuffixAndExtend model. The set of traces is shown on the left, and their trie is shown 

on the right. The string associated with each vertex is the one that is formed by traversing 

the trie from the root node to the vertex. The values of simt(C, s) for all vertices are shown.
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Fig. 6: 
Trace generation that involves concatenation of multiple seed strings. Insertions are shown 

in light blue, hypermutations are shown in green. The most general model for the VDJ 

recombination is shown in (b).
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Fig. 7: 
Seed string and example traces from the deletion channel. Gray circles indicate the deleted 

bits to generate the bottom trace.
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Fig. 8: 
Labeled seed tree and example trace from the Tree Edit Distance deletion channel. Gray 

circles indicate deleted nodes.
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