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Abstract

Is it possible to find deterministic relationships between optical measurements and 

pathophysiology in an unsupervised manner and based on data alone? Optical property 

quantification is a rapidly growing biomedical imaging technique for characterizing biological 

tissues that shows promise in a range of clinical applications, such as intraoperative breast-

conserving surgery margin assessment. However, translating tissue optical properties to clinical 

pathology information is still a cumbersome problem due to, amongst other things, inter- and 

intrapatient variability, calibration, and ultimately the nonlinear behavior of light in turbid media. 

These challenges limit the ability of standard statistical methods to generate a simple model of 

pathology, requiring more advanced algorithms. We present a data-driven, nonlinear model of 

breast cancer pathology for real-time margin assessment of resected samples using optical 

properties derived from spatial frequency domain imaging data. A series of deep neural network 

models are employed to obtain sets of latent embeddings that relate optical data signatures to the 

underlying tissue pathology in a tractable manner. These self-explanatory models can translate 

absorption and scattering properties measured from pathology, while also being able to synthesize 

new data. The method was tested on a total of 70 resected breast tissue samples containing 137 

regions of interest, achieving rapid optical property modeling with errors only limited by current 

semi-empirical models, allowing for mass sample synthesis and providing a systematic 

understanding of dataset properties, paving the way for deep automated margin assessment 

algorithms using structured light imaging or, in principle, any other optical imaging technique 

seeking modeling. Code is available.

Index Terms—

Biomedical optical imaging; breast cancer; tissue optical properties; modeling; pathology; deep 
learning; dimensionality reduction; variational autoencoder; convolutional neural networks

I. Introduction

In the past two decades, breast-conserving surgery (BCS) has become the most common 

procedure in the treatment of early invasive breast cancer, with clinical results similar to [1] 

or better [2] than those achieved via full mastectomy. In BCS, the tumor is extracted with a 

surrounding layer of healthy tissue (i.e. the surgical margin of the tumor). Tumor margins 

are visually evaluated by the surgeon and a pathologist during the resection process, and 

whether margins are cancer-free is determinant to the success of a given operation. Such 

visual assessment is referred to as the intraoperative gross examination of the resected 

sample. The lumpectomy sample is then processed by a histopathologist, who provides a 

final veredict on the prognosis of each case, hours or days afterwards. Unfortunately, about 

20% to 40% of patients that undergo BCS treatment require two or more re-excision 

procedures [3], [4]; this percentage appears to be, among other things, inversely proportional 

to surgeon case volume [5]. This accuracy mismatch between gross examination and 
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histological analysis calls for finding automated and/or standardized intraoperative margin 

assessment methods that can reduce current re-excision rates, by enhancing any surgeon’s 

ability to detect whether BCS resection margins are cancer-free.

Currently, two-dimensional projection X-ray imaging is commonplace for intraoperative 

margin assessment during breast-conserving surgeries, but the margins normal to the 

imaging axis are occluded from view, and peripheral margins may be poorly resolved. 

Recent studies have explored the value of three-dimensional X-ray micro-computed 

tomography [6] and tomosynthesis [7] for intraoperative volumetric specimen scanning. X-

ray imaging provides excellent contrast between tumor and adipose tissue but lacks contrast 

between tumor and fibroglandular tissue that may be important for clinical decision making 

[8]. Thus, the BCS clinical environment is already acclimated to intraoperative imaging in 

an X-ray cabinet located in the surgical suite, and a rapid, wide field-of-view optical 

imaging solution could feasibly integrate with X-ray imaging already in place to improve 

sensitivity to key tissue subtypes.

Spatial frequency domain imaging (SFDI) shows potential for improving intraoperative 

margin assessment in this setting. Also known as wide-field structured light imaging, SFDI 

is a wide-field-of-view, optical imaging technique that involves projecting a series of one-

dimensional sinusoidal fringe patterns at various spatial frequencies and wavelengths of 

light. By modifying the spatial frequency, wavelength, and phase of the fringe patterns, and 

after adequate demodulation, the medium’s response function is captured in the form of 

backscattered radiation [9], [10]. Using a diffuse or sub-diffuse light transport model, 

demodulated SFDI data can be used to quantify bulk optical properties (OPs) in a turbid 

medium [10], [11]. Absorption coefficient quantification at multiple optical wavelengths can 

be used to derive biological chromophore concentrations [10]. Another use of SFDI involves 

using different spatial frequencies of illumination to depth-resolve section samples, allowing 

for tomographic imaging [12]. SFDI has seen, in the past decade, its full development from 

an experimental procedure into a mature modality, with numerous calibration and error-

correction methods [13], [14]. Recently, an SFDI system for the measurement of tissue 

oxygenation in patients with potential circulatory compromise gained U.S. Food and Drug 

Administration (FDA) clearance [15]. Several other SFDI techniques have emerged, most of 

which rely on numerical approximations for the behavior of light as it traverses through 

layered turbid media, i.e., enforcing assumptions and simplifying the Radiative Transfer 

Equation (RTE). Examples of these techniques include sub-diffuse SFDI for imaging surface 

tissue structure [16], single-snapshot imaging (SSOP) [17], qF-SSOP for fluorescence 

imaging [18], Diffuse Optical Tomography (DOT) [19] and Multispectral Optoacoustic 

Tomography (MSOT) [20]. All these techniques are currently undergoing various clinical 

studies, where OP quantification shows to be promising in estimating microstructural and 

molecular properties with some implications on modeling pathology. Notable use cases for 

SFDI in particular include the evaluation of burn depth and severity [21], [22], skin flap 

oxygen saturation monitoring during surgery [22], arterial occlusion detection [23], vascular 

assessment of diabetic foot revascularization [24], skin disease response to laser therapy 

[25], quantitative mapping of surgically resected breast tissues [26], [27] and skin cancer 

[28], [29], proving that there can be measurable optical, structural, and molecular differences 

between different tissues and pathologies. However, little work focuses on unsupervised, 
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nonlinear modeling of optical pathophysiology, resulting in great, directed efforts to 

parameterize and predict disease given a dataset of labeled measurements, while potentially 

failing to harness the true diagnostic power of a given imaging modality.

The vast amount of information provided by SFDI methods, and the fact the relationship 

between OPs and image data is highly nonlinear, have prompted the generation of new 

analytical models [30], as well as the use of deep learning for estimating tissue properties. In 

the latter case, algorithms can approximate complex nonlinear functions by concatenating 

distributed, atomic operations called ‘units’ and applying automatic differentiation (i.e., 

backpropagation) on data input-output pairs to gradually generate a function that can relate 

them [31]. Methods such as lookup-table (LUT) OP extraction have proven less precise at 

extracting reduced scattering μs′  and absorption (μa) coefficients than well-trained deep 

neural network models [32], [33]. Recently, Conditional Generative Adversarial Networks 

(cGAN) have been used to improve optical properties estimates from single-snapshot images 

[34]. These methods effectively solve simplified inverse light diffusion problems when 

compared to state-of-the-art solutions [35], while attempting to correct artifacts. All of these 

various clinical studies, deep learning classifiers and optical property estimators suggest 

their combination into a single framework, i.e. a deep learning system that can 

bidirectionally cross-reference and translate OPs to (and from) pathology. Here, we will 

consider four problem domains in total, namely (1) the space of possible optical signatures, 

(2) a representation of this space in a few dimensions, (3) the domain of possible 

pathologies, and (4) the domain of physical, optical properties in tissues. This work 

constitutes the first use of data-driven generative models for the analysis and synthesis of 

breast cancer SFDI data, showing that it is possible to find a tractable non-linear relationship 

between the wide-field data and tissue pathophysiology, recently observed via multiphoton 

microscopy [36]. The generative toolkit, which could be applied to other nonlinear imaging 

modalities, may enable future objectives such as margin delineation and real-time pathology 

assessment of resected samples within milliseconds, potentially reducing the number of 

follow-up re-excisions in current lumpectomy interventions.

II. Materials and methods

A. Breast tissue dataset

The SFDI dataset consists of 70 freshly resected BCS tissue samples, imaged in order of 

arrival with a multimodal scanning device at the Dartmouth Hitchcock Medical Center 

(DHMC) in Lebanon, New Hampshire. Each BCS sample was cut into ~5-mm thick “bread-

loafed” slices of tissue, following protocol approved by the Internal Review Board at 

DHMC. After resection, one of the cuts was positioned between two optically-clear acrylic 

plates, each 1/8th of an inch in thickness. The assembly was held together by elastic bands 

and placed inside a custom-built micro-CT/SFDI device for imaging [37]. After image 

acquisition, all thick slices were processed as per standard protocol in hematoxylin and eosin 

(H&E) stain imaging. Analysis of histopathological slides was performed by an expert 

pathologist, who delineated regions of interest (ROIs) on the H&E images associated with 

distinct tissue subtypes. These ROIs were then conservatively co-registered with wide-field-

of-view SFDI data. Each BCS sample is thus represented by SFDI data that is validated by 
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gold standard histopathological information. Importantly, the ROIs in the sliced BCS 

samples imaged in this study do not represent real margins of excised tumors; instead, they 

simply highlight breast tissue heterogeneity and identify areas where tissue categories are 

certain. The SFDI data associated with each BCS sample includes 16 1024 × 1024-pixel 

reflectance images, corresponding to 4 spatial frequencies sampled at 4 different 

wavelengths, namely fx = {0., 0.15, 0.61, 1.37} mm−1 and λ = {490, 550, 600, 700} nm. 

Spatial resolution is 0.128 mm per pixel. A total of 136 tissue ROIs are available, with 15 

distinct tissue pathologies in total, presenting in different ratios. Table I shows a detailed 

description of each of the tissue subtypes, samples, and ROIs imaged.

SFDI images, as presented in Fig. 1, provide information that could not be obtained via 

conventional multispectral acquisition. By demodulating high spatial frequency patterns, it is 

possible to eliminate image blurring due to light diffusion within the sample, resulting in 

decreased sensitivity to absorption and increased sensitivity to backscattering from the 

surface layer of tissue [16]. Sub-diffuse SFDI imaging enhances contrast to Rayleigh-type 

scatterers in surface tissues, which are mainly collagen fibrils and striations that may or may 

not be associated with disease [38]. This suggests that specific tissue types could respond 

distinctively to spatial frequency modulation, while other diseases could be detected through 

this contrast improvement. For example, some specific pathologies reveal an inherent texture 

at high frequencies that cannot be observed in the low-frequency domain, further facilitating 

differentiability [39], [40]. This is notably visible in Figs. 1.(e) and (k), which show 

demodulated images at high spatial resolution (fx = 1.37 mm−1). As the spatial frequency 

increases, contrast is enhanced to tumor-associated collagen structures. From now on, we 

will refer to scatter signatures as any behavior characteristic of a specific pathology, in terms 

of both textural and spectral/spatial-frequency information. We seek to find the scatter 

signatures of most, if not all, pathologies typically present in BCS interventions, and the 

similarities between them, which may hinder diagnosis for margin delineation algorithms.

B. Patch dataset production

Due to the limited number of available samples, and ROI pixels per sample, this preemptive 

study merely seeks to analyze the local texture and optical properties of SFDI images of 

breast cancer. Thus, a patch extraction algorithm was designed for balanced dataset 

production. A general outline of the process is depicted in Fig. 2. Specific tissue category 

quotas are initially specified for each of the known available tissue classes (12,000 patches 

per supercategory, resulting in a dataset of 60,000 patches). Then, a random population sub-

sampling method is run iteratively until the quota is satisfied. The method proceeds as 

follows. First, a sample among those presenting with a specific tissue type is selected at 

random. Then, a random location within the ROI is selected. At this location, a square patch 

31 × 31 pixels is extracted. The patch is also randomly rotated, uniformly in the range [0°, 

360°] as is typical in dataset augmentation. Additional metadata is also included, namely (1) 

the specimen reference number, (2) the corresponding tissue category, and (3) its location 

within the ROI. The specific class is one-hot encoded to feed the classifier network later on. 

This process is repeated until the required amount of patches is obtained, guaranteeing a 

balanced dataset irrespective of the relative frequency of specific pathologies. The total 

number of patches per sample and ROI was kept under 500 (on average) to avoid 
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redundancy in the training set. Additional measures were taken to ensure that miscalibrated 

or undesired data were not provided to the networks. Miscalibrated patches, i.e. data with 

reflectance outside of the range Rvalid ∈ [0, 0.99], were automatically discarded from the 

generated dataset during training and validation. Finally, the fifteen categories were 

summarized into five main supercategories (shown in Table II), as discovered through 

previous successful classification experiments [41]. The initial objective of this work is to 

separate adipose tissue, collagen and elastin in connective tissue, benign growths, and 

malignant tumors. Additionally, Fibrocystic Disease (FD) should exhibit a certain 

connection with connective tissue and benign growths, since these particular tissue types are 

present in the disease.

C. The neural network pipeline

To connect the four domains described in Section I (Introduction), a series of neural 

networks must be prepared and trained. Fig. 3 presents a schematic that connects each of the 

domains of interest. First, a primary autoencoder with sufficient capacity –Fig. 3.(a)– is used 

to first compress textural and spectral/spatial-frequency data r into low-dimensional 

keywords z ∈ ℝm. This first model must be capable of reproducing textural information with 

sufficient fidelity, which will be measured in terms of a reconstruction loss that compares the 

input patches r ∈ ℝnx × ny × nch, with the reconstructed output r ∈ ℝnx × ny × nch at the other 

side of the bottleneck, ℒ(r, r), where nx and ny are the width and height in pixels, 

respectively, and nch is the number of input channels (nch = nλnfx, with nλ number of 

wavelengths and nfx number of spatial frequencies per wavelength). This network is a skip-

connection convolutional variational autoencoder with an auxiliary discriminator; it is 

composed of encoder qθ(z|r) and decoder pϕ(r|z). Similar schematics have been previously 

shown to improve reconstruction quality when compared to ℒ2 distances for natural images 

[42], [43]. Once high-dimensional textural and spectral information is compressed into low-

dimensional keywords, an optional next step is to produce a human-interpretable 

representation. This can be achieved with a secondary autoencoder, depicted in Fig. 3.(b). 

The network is a multi-layer perceptron MMD-VAE [44] with skip connections [45]. The 

rich encoding at the primary autoencoder’s bottleneck can be used for classification, as per 

Fig. 3.(c). Diagnostic accuracy was used here as a measure of separability at the keyword 

level, z. This is done via an additional neural network, namely a multi-layer perceptron with 

skip connections, which allows the translation of keywords z into known pathology classes 

y.

Sample generation is achieved with a stack of skip-connected MLP Least-Squares 

Generative Adversarial Networks (LS-GAN) [46] which are trained on class-specific 

bottleneck keywords. Let H0, …, Hncls − 1 be each of the possible hypotheses (tissue 

categories), with ncls the total number of categories. Each LS-GAN is trained only with the 

fraction of the learned keywords that belong to a specific tissue category, which can be seen 

as a conditional variable z|Hk, with Hk the tissue type to be generated by that GAN. One 

single LS-GAN has an ensemble of Ndisc = 10 discriminators and one generator, which is 

known to reduce mode collapse [47]. Gaussian noise n ∼ N(0, σ) is injected into the input of 
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the discriminators and σ is annealed towards zero during training to further regularize the 

generator [48]. This modular approach allows us to employ the same feature extraction 

network for conditional generation of pathology-specific keywords without requiring re-

training of larger models. Learned textural features can consequently be reused with each 

independent generator. Lastly, OP estimation is achieved via uniform random sampling of 

the forward, semi-empirical model of reflectance in the spatial frequency domain, further 

explained in the Supplementary Material, Section S.I.A. The specifics of the method are 

explained in Section II-D.

D. Optical properties estimation via input randomization

We apply previous existing work from Zhao et al. [32] and Stier et al. [33], but with a hybrid 

forward model that combines diffuse and sub-diffuse regimes. The forward model is 

governed by the following equation:

R fx, λ =
Rd fx, λ; μs′, μa ,   fx ≤ 0.2 mm−1,
Rd, sd fx, λ; μs′, γ   fx ≥ 0.5 mm−1,

(1)

where Rd corresponds to the diffuse approximation of the RTE [10], and Rd, sd is the semi-

empirical approximation of sub-diffuse behavior used by McClatchy et al., [38] for wide-

field imaging. The former is a function of the reduced scattering coefficient μs′ and the 

absorption coefficient μa, while the latter is dependent on μs′ and a phase function parameter 

γ (technical specifications are provided in the Supplementary Material). Inverse function 

learning is illustrated in Fig. 3.(f). For this particular setup, Equation 1 was prepared to 

return a spectrum Rd fx; μs′, μa, γ  from a given triplet of input parameters μs′, μa, γ . This 

constitutes the direct model f: μs′, μa, γ Rd fx . The inverse model f−1:Rd μs′, μa, γ  is 

produced with a neural network, which is trained with a synthetic dataset of optical 

properties and reflectance pairs. The output of the forward model is given to the input of the 

optical properties estimator network, and the network is expected to return the exact 

parameters that produced such reflectance curve. This inverse operation requires minimizing 

the mean square error (MSE) between the actual value y and the network’s estimate y. 

Optical property estimation inputs were established within well-known value ranges: 

μs′ ∈ [0.01, 4.0] ⊃ [0.4, 1.8] mm−1, γ ∈ [1.0, 4.0] ⊃ [1.4, 2.2] mm−1 as per Kanick et al. [11] 

and McClatchy et al. [38]; and μa ∈ [0.01, 4.0] mm−1 and n = 1.4 as per Jacques [49] and 

Cuccia et al. [10]. Relevantly, reflectance data must be monotonically decreasing with 

respect to spatial frequency [9], [10], [38], [50]. This is not guaranteed for every possible 

triplet of μs′, μa, γ  in the aforementioned ranges when combining the diffuse and sub-diffuse 

models, as the subdiffuse model does not consider absorption, potentially resulting in a 

curve that is not monotonically decreasing. For those values, such a curve is not physically 

possible, and hence it makes no sense to use those combinations of OP values in training. 

Thus, in order to train a proper model that does not misinterpret the presence of noise or 

miscalibrated data as physically implausible optical properties, values for μs′, μa, γ  that did 

not result in a monotonically decreasing Rd(fx) were discarded from the training and test 

sets. As a result, the network must find a combination of optical properties that fits the data 
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and, simultaneously, results in a feasible curve. The network was trained on a synthetic 

dataset of 27 × 106 uniformly spaced points (300 × 300 × 300 grid) and tested on a sparser 

grid of 216,000 points (60 × 60 × 60 grid) until reaching a test MSE of 10−4, at least two 

orders of magnitude below the estimation errors inherent to the direct OP model [38], and 

equivalent to 1–5% MSE at the lowest reflectance values.

E. Bottleneck clamping

Generally, neural networks have fixed architectures that remain constant across training and 

inference. This implies that an autoencoder with a fixed bottleneck size will use all of its 

units to represent data. This contrasts with typical dimensionality reduction methods such as 

the Singular Value Decomposition (SVD) and/or Principal Components Analysis (PCA), 

where the size of the latent space can be chosen from a set of basis vectors. In these settings, 

the higher the number of vectors, the better reconstructions will be. To achieve a similar 

effect, the primary autoencoder employed a variant of bottleneck clamping, a technique used 

differently in other works [51] to restrict the content available at the bottleneck during 

training. In the proposed variant, clamping is performed by the gradients backpropagating 

towards the encoder for one or multiple units in z. In our particular case, we clamped the 

bottleneck stochastically, as shown in Fig. 4, so that for a given minibatch, the k-th unit is 

selected at random and trained to improve upon the reconstruction provided by the (k−1) 

previous bottleneck units, by establishing the following optimization problem:

minimize
θ, ϕ

  ℒ(r, r)

subject to ∂ℒ
∂zi

= 0,   ∀i ≠ k .
zi = 0,   ∀i > k .

(2)

A summarized schematic of the TensorFlow implementation is provided in Fig. 4. By 

changing k stochastically, the model attempts to minimize all the optimization problems in 

Equation 2 simultaneously. In general terms, the algorithm attempts to replicate the SVD but 

with a nonlinear network, where each individual unit is forced to improve the current 

reconstruction error by adding more information. This results in the network indirectly 

reserving parts of its capacity to solving each individual optimization problem, which we 

have observed results in slower convergence time at the expense of controlling 

reconstruction errors as a function of bottleneck size. Nonetheless, obtaining an adjustable 

bottleneck was fundamental in understanding the role of texture, as explained in Section III-

C.

III. Results and discussion

A total of five experiments were carried out. The training regimes of each individual 

network are given in Table III, and do not change unless stated otherwise. The exact 

dimensions of the networks and layers are provided in Section S.I.C of the Supplementary 

Material.
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A. Designing the primary autoencoder

The final primary autoencoder is the result of a series of design choices that are specified in 

Sections II.C and II.E, as well as Sections B and C in the Supplementary Material. Such 

decisions result in improved reconstruction errors and textural fidelity, which are crucial for 

the task at hand. For comparison, Fig. 5 shows a series of networks that gradually introduce 

each of the fundamental modifications that enable successful dataset replication. Six 

networks in total were tested under 3-fold sample-wise cross-validation (CV). The first four, 

namely (A) a Standard convolutional VAE, (B) the former VAE but including skip 

connections, (C) an MMD-VAE, and (D) the previous VAE with skip connections, utilize 

global averaging to connect the convolutional feature maps to the MLP sections. The last 

two are our contributions, i.e. (E) an MMD-VAE with skip connections and fully-connected 

layers connecting convolutional layers with MLP layers, and (F) the same network, with an 

auxiliary discriminator (G). All the networks are provided in the repository. Given a constant 

number of iterations, the final model is the best of all possible options in terms of test MSE 

(Fig. 5.(a)), test Structural Self-Similarity (SSIM) (violin plots of Fig. 5.(b)) and average 

variance of the Laplacian across channels, as shown in Fig. 5.(c). Architectures (F) and (G), 

which include the intermediate fully-connected layers achieve faster convergence and lower 

MSE/SSIM, while (G) best fits the Laplacian variance histogram. The latter metric 

demonstrates that (G) preserves high-frequency information, observed after applying the 

Laplacian operator across the x and y dimensions of the patch, has the same distribution as 

the real data.

These quantitative results can be qualitatively observed in the reconstructions provided by 

each individual network in Fig. 5(d)–(i), by comparing them to the target images (Fig. 5(j)). 

While these networks work well in benchmarked datasets such as MNIST and CIFAR-10 

(see provided code), modeling texture in SFDI data proves to be a much more delicate and 

ill-posed problem, which is challenging to most architectures. Two relevant concepts must 

be noted here. First, that wall clock time differs between architectures, e.g. ~3 hours for VAE 

(A) vs. ~24 hours for (G). However, all architectures saturate at MSE/SSIM scores orders of 

magnitude above (F) and (G), and all except (G) fail to replicate the variance-of-the-

Laplacian histogram of the patch dataset. Secondly, it is important to note that bottleneck 

clamping is not implemented in networks (A) through (E), which means that convergence 

for the last two networks would be faster if they were allowed to train with 256-long words 

for all minibatch steps.

B. 2D representations

Low-dimensional, unsupervised representations of the 256-dimensional keywords, when 

combined with adequate validation tests, can provide significant insight with regards to how 

well each pathology is uniquely identifiable. Fig. 6 presents the same experiment, performed 

separately for 31 × 31-pixel patches (shown in the top row) and individual spectra (bottom 

row). In Figs. 6.(a) and (f), the 2D projection of the 256-dimensional feature-space keywords 

is shown, color-coded by tissue category. The point cloud corresponds to 80% of the dataset, 

while 20% was left aside for validation control. Identical scatter plots are given in (b) and 

(g), but are instead color-coded by the specimen number of origin. Generally, there appears 

to be a gradual change in imaging conditions. Such differences may be consequence of 
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improvements in the acquisition protocol, given the experimental nature of the imaging 

device and dataset, and considering the fact that this separation becomes negligible for later 

samples.

Some conclusions can be drawn from these maps. First, that there is significant overlap 

between connective tissue, malignant tumors and fibrocystic disease, even with texture 

analysis, suggesting that there are spectral and/or textural properties shared among these 

categories. This is consistent with recent work in multiphoton histology, where collagen 

fibers have been observed providing structure to malignant tumors [36]. Macroscopically, 

this would present as a spectral superposition of structural (scattering) and chemical 

(absorption) properties, which inevitably hinder classification. Secondly, adipose tissue and 

benign lesions show significant unsupervised separability in both simulations, with reduced 

inter-sample variability in the 2D maps, implying that these particular categories 

consistently respond with a specific spatial frequency and spectral signature that can be 

identified by unsupervised means.

These unsupervised, qualitative results can be contrasted with what is returned by the 

classification branch of the framework. During training, a large generalization gap was 

reported in 5-fold CV for both pixel-wise and patch-wise analysis, as can be observed in Fig. 

6.(c) and (h). In fact, both models overfit past the first ten thousand iterations for 5-fold CV. 

The best possible results for 5-fold CV (at 7 × 103 and 10×103 training iterations for patches 

and pixels, respectively) are left in Fig. 6.(d) and (i), showing severe accuracy deficiencies. 

While patch-wise analysis improves malignancy detection accuracy by about 15% (which 

could be observed succinctly by how point clouds for malignant subtypes are slightly more 

separated from connective and fibrocystic tissue in Fig. 6.(a)), these cross-validation results 

agree with the best global classification accuracy reported with this dataset, i.e. 75–80%, on 

previous work that evaluated leave-one-out cross-validation on an ensemble of patch 

analysis networks [41]. In contrast, using half of each ROI for training and the other half for 

testing shows that overfitting never truly occurs –albeit the model shows an evident, reduced 

generalization gap– implying that if inter-sample variability is eliminated from the problem, 

classification becomes trivial. Such results allow us to conclude that the presence of 

connective tissue in breast cancer, and the fact that Fibrocystic Disease presents in most 

cases as a combination of benign growths and connective tissue [52] both constitute the 

main sources of errors in a vanilla classification environment, indicating that a successful 

algorithm will require the inclusion of local, case-specific information to reliably assess 

tumor margin status.

C. The role of texture in classification accuracy

The previous study is demonstrably insufficient to prove that texture truly contributes in 

pathology identification as, perhaps, mere redundancy could be the cause of accuracy 

improvements observed in Fig. 6.(e). Proper empirical proof can be obtained with an 

ablation test on a primary AE trained with bottleneck clamping, which allows for plotting 

graphs analogous to those used in PCA/SVD-based dimensionality reduction, where 

reconstruction accuracy (or explained variance) can be plotted with respect to latent space 

size. The experiment required inter-sample variability to be omitted and, thus, ROI halving 
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validation was performed: the top half of each ROI was used for training, and the bottom 

half was used for testing, and viceversa, resulting in two validation folds that only reflect 

intra-sample variability.

Results are provided in Fig. 7. In this simulation, the size of the bottleneck was iteratively 

increased from nz = 1 to nz = 256, and a classifier was trained for keywords of length nz. 

This was feasible in practice thanks to clamping the bottleneck during training, and therefore 

a single VAE needed to be trained, following Table III.(2). The nz-th classifier is trained with 

the first nz coordinates from this autoencoder. Reconstructions with only these coordinates 

can be obtained as in Fig. 4.(b), by setting the remaining coordinates to zero. The proposed 

framework, in its current configuration, allows us to observe the effect of bottleneck size in 

two different domains simultaneously, namely the classification domain (Fig. 7.(a)) and the 

measurements domain (Fig. 7.(b) and (c)). First, classifier accuracy for each of the tissue 

supercategories is left in Fig. 7.(a). Fig. 7.(b) presents the MSE for the complete dataset as a 

function of bottleneck size, as well as the MSE between the average spectrum of each patch 

and the average spectrum of its reconstruction at the primary AE output. Fig. 7.(a) shows a 

set of patches reconstructed with nz-long keywords (nz = 1, … , 50) at fx = 0.15 mm−1 and λ 
= 550 nm.

Interestingly, the first crucial observation is that the average spectral properties of individual 

patches (in both spatial frequency and wavelength) stabilize at about nz = 20, while patch 

reconstruction errors consistently improve with nz. In the patch domain –Fig. 7.(c)–, 

reconstructions from nz = 1 to nz = 20 qualitatively corroborate that low-frequency spatial 

information (i.e. the presence of darker or lighter corners, or the presence of millimeter-sized 

objects) is gradually included as nz is increased. These phenomena would correspond to 

changes in illumination, tumor boundaries, or folds resulting from positioning the sample, 

which typically would be observed in the first Principal Components or Singular Vectors. 

Further information, which does not improve the average spectral properties as significantly, 

are introduced circa nz = 20. These components correspond to higher frequency spatial 

information, i.e. finer details and texture, and as seen in Fig. 7.(c). It is during this transition, 

at nz = 10, …, 40, where the introduction of finer details coincides with an improvement in 

classification performance for Fibrocystic Disease and Connective tissue, from ~ 70% to ~ 

85% accuracy. In other words, performance improves as local structural variations 

surrounding a pixel is introduced and/or learned, to the point of allowing for individual 

identification, supporting parallel work that showed similar results on single-frequency, 

single-wavelength patch analysis [40]. It is important to note, however, that malignant tissue 

subtypes reach peak accuracy before higher-frequency texture is encoded in the keywords, 

suggesting the possibility of patient-specific spectral information that could be used in a 

case-by-case basis for margin delineation.

D. Sample generation

Prior to quantification, it is interesting to consider the qualitative properties of the generated 

patches in the multiple available observation domains. Fig. 8 shows real and synthesized 

patches for the five individual super-categories of interest. Data was obtained from an LS-

GAN stack trained with 80% of the patch dataset (with 20% left for validation). The outputs 
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of the LS-GAN stack are then provided to the primary bottleneck, where the primary 

decoder transforms the feature keywords into 31 × 31-pixel patches. The plots show RGB 

reconstructions of individual patches, where each column represents a single patch at the 

four available spatial frequencies. CIE 1931 Color Matching Functions with a D-65 

illuminant were used for the reconstructions [53]. The same points can also be observed in 

2D space, in Figs. 8.(a’) through (.e’). These scatter plots show the original training data in 

bright colors, and the synthesized data in a darker shade of the same color, for each of the 

individual pathologies. The complete 2D map is provided as a faint gray scatterplot, so that 

each figure can be consistently compared with Fig. 6.(a).

Many of the conclusions extracted via supervised methods can be repeated here. The 2D 

maps allow us to verify that each of the individual LS-GANs with multiple discriminators do 

not exhibit significant mode collapse, as all the different training set point clouds 

superimpose adequately with the original training data. Adipose and benign cysts present a 

very specific spectral signature, which is separable from each other and the rest of the 

categories. Once again, the presence of elastin and collagen in malignant subtypes and 

fibrocystic disease can be observed from a different perspective, as the three categories share 

a region in 2D space near the coordinate origin where connective tissue –Fig. 8.(b’)–is the 

most dominant subtype. Moreover, the presence (or lack thereof) of multiple modes or point 

clouds separated by specimen number in some pathologies suggests that certain signatures 

(e.g. adipose tissue and benign cysts showing few or no modes) are easily generalizable to 

all specimens, whereas others (FCD and malignant tumors) are not, again suggesting that the 

use of prior information would be beneficial in margin delineation with deep classifiers.

It is also important to note that some of the categories exhibit the presence of surgical ink, 

i.e. Fig. 8.(b), revealing that connective tissue is often marked with blue ink which, 

considering that all slides are intermediate cuts, implies some degree of perfusion of surgical 

ink, which may be obstructing proper classification. All in all, unsupervised qualitative 

analysis allows the observer to extract conclusions that can then be contrasted with canonical 

classification experiments, as in Fig. 6.(d), (e), (i), and (j).

E. Optical properties and inter-sample variability

In the following quantitative analysis, pixel optical properties are compared between real 

and generated data. The 80 : 20 dataset split for training/validation was used, since using 

ROI halving and/or 5-fold cross-validation will only show the variations in OPs between 

folds and/or halves, and we wish to compare how well the GAN stack can replicate and 

synthesize the variability observed in the complete dataset. Importantly, the OP estimator 

never observes actual data, and thus we only wish to analyze how well the trained GANs 

generate data with accurate optical properties, and how well the OP estimator fits the semi-

empirical function to the data.

Two figures were devised. Fig. 9 studies how well OP estimation can reconstruct the original 

data, by evaluating the coefficient of determination between the input data and the estimated 

reflectance, which is a result of fitting Rd(fx) (Equation 1) with the optical properties 

estimated by the neural network, μs′ , μa, γ . Fig. 10 indirectly compares real and synthesized 
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data by analyzing similarities in its optical properties, given the justified assumption that the 

OP estimator is sufficiently accurate. Results in Fig. 9 show that this assumption is valid, for 

both real –Fig. 9.(a)– and generated data –Fig. 9.(b)– but that model precision changes with 

respect to wavelength. Particularly, the first wavelengths show average standard errors 

within 15%, typical of LUT and least-squares fitting of Rd [32], [33], while the 700–800 nm 

region stays under 6–7%. This is due to two main reasons. Firstly, at 490 and 550 nm 

absorption due to hemoglobin is significant, thus violating the fundamental condition for the 

diffuse approximation of the RTE to hold μs′ ≫ μa . Secondly, light source instabilities and 

changes in illumination conditions due to the various shapes and sizes of the tumors reveal 

inconsistencies at higher frequencies. This is expected; note that the plot is in logarithmic 

scale, and we refer to variations for low reflectances (1% – 5%), where low SNR and 

changes in illumination with respect to a flat reference phantom will cause random 

fluctuations that may compromise monotonicity and consistent decay in the measurements, 

resulting in incorrect fitting of the theoretical model.

As a final demonstration, Fig. 10 presents the average optical properties per tissue category, 

as a proxy for analyzing the differences between real and synthesized data. Each row 

represents a different parameter, namely (1) reduced scattering coefficient μs′, (2) absorption 

coefficient μa, and phase function parameter γ, with respect to wavelength. The network 

extracts OPs at each wavelength individually, by processing the pixels at the center of each 

patch in both the real dataset (column A) and the synthesized dataset (column B). These two 

first columns are crucial in understanding the relevance of local information, as opposed to 

finding a global spectral/spatial signature for cancer. As observed by the unsupervised AEs, 

some tissue types present a differentiating feature (i.e. adipose tissue presents with a higher 

γ than other categories, and benign tumors present little absorption) but, in general, tissue 

optical properties are superimposed in the VisNIR regime. Further insight is revealed after 

analyzing the statistics between real and generated optical properties, which are shown in 

columns (C) through (G). In each plot, the complete category r-score is calculated, and 

shown in red. Its corresponding slope and intercept is plotted in red as well. Additionally, the 

category-average optical properties are analyzed and presented. The disparity between the 

average category r-score and the complete r-score is significant, but is explained by the fact 

that each category is multi-modal, i.e. not only one type of spectra is observed.

The presence of latent space clusters for a given tissue category has been discussed in 

Section III-D; its causes may include inter-sample variability, the presence of perfusing 

surgical ink, and minor acquisition inconsistencies, among others. For illustrative purposes, 

500 randomly selected real-synthesized pairs of OPs (in transparent grey) are shown in Fig. 

10, columns (C) through (G). These plots show symmetries along the y = x axis, revealing 

separate clusters in scattering and absorption for all categories. Such a result allows us to 

prove that no modes have collapsed during GAN training; otherwise, the gray plots would 

not be symmetrical.

IV. Summary

This work makes use of a neural network-based framework to study the effects of pathology 

on tissue optical properties in breast cancer. Developing a complete framework with 
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supervised and unsupervised elements has been shown to be useful in previous work –

particularly, melanoma detection– with conventional statistical tools and linear 

dimensionality reduction [54]. However, in many problems –as is the case in this 

contribution– data is rarely well conditioned and exhibits non-linear behavior, and thus a 

successful implementation of a similar framework requires the development of ad hoc neural 

architectures and methods that leverage the power of deep learning models to compensate 

for these problems, which cannot be resolved with conventional approaches to HSI/SFDI 

imaging. In the case of SFDI images of breast cancer lumpectomies, three fundamental 

developments were necessary prior to this work: (1) designing and training an autoencoder 

that could encode the ill-conditioned, subtle textural properties of tissues under modulated 

light, (2) finding a generator stage that could synthesize data with evident inter-sample 

variability without significant mode collapse, and (3) defining a neural LUT for real-time 

optical properties estimation that would include both diffuse and sub-diffuse reflectance 

data.

Interconnecting these models, once functionality is guaranteed, results in a variety of 

conclusions, which are indicative of the specific properties required to design a functional 

margin delineation system in practice. By employing bottleneck clamping, it is possible to 

observe that average spectral properties can be explained with few dimensions, and that 

texture presents as low-variance, high-dimensional fluctuations that are embedded within 

spectral information. Furthermore, it can be concluded that pixel-wise optical properties are 

sufficient for identifying malignant tissue, but that the inclusion of local textural information 

helps to uniquely identify categories with prominent textural features, such as Fibrocystic 

Disease and connective tissue, as long as inter-patient variability is compensated, supporting 

work that analyzes textural information exclusively [40]. Moreover, the dataset shows a 

detectable superposition between connective tissue and malignant tissue subtypes in feature 

space, suggesting that the presence of collagen and elastin in malignant growths, recently 

observed in multiphoton microscopy [36], could perhaps be measured macroscopically; 

further research is needed to ascertain if such presence of connective tissue could be 

quantified.

Classifying over the primary AE’s extracted features and following classical validation 

methods demonstrates the fundamental effects of inter-sample variability, as opposed to 

local variability. While textural methods are able to improve malignancy detection accuracy 

by up to 15% upon pixel-wise analysis, the similarities in the confusion matrices of Fig. 6 

certainly suggests that a proper margin delineation tool must work locally. Solutions to this 

problem such as the use of one-shot deep learning, the inclusion of patient biopsy 

information, and/or problem constraining methods that define comparing metrics instead of 

absolute ones, will be researched and studied, as they seem to be the most viable option to 

achieving real-time assessment of tumor margins.

A functional primary AE also allows for high-fidelity sample generation with Generative 

Adversarial Networks, as most of the compression effort is achieved a priori, and can 

therefore be leveraged and reused with smaller generative networks. The alternative would 

be to train multiple, larger conditional GANs, or conditional VAE-GANs with more 

parameters and modules that ensure true conditional generation with no mode collapse, with 
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their corresponding additional compute and time requirements. The proposed solution 

allows its user to produce complete datasets for multiple categories with millions of samples 

closely resembling the spectral and textural properties of actual patient data. By reusing the 

primary autoencoder features, classes and partitions of such classes could be prepared in 

hours’ time with relatively constrained computational resources. Furthermore, synthesized 

data –or the models themselves— do not need to adhere to the same ethical constraints as 

private patient information, and could be potentially open-sourced, as long as adequate 

ethical provisions are guaranteed.

The ability to observe incoming data under different scopes simultaneously could, in fact, be 

already useful in a clinical setting. As an example, consider the plots in Figs. 11 and 12. 

These individual specimen summaries show five potential ways to observe a lumpectomy 

specimen with this architecture, namely with reflectance data –(a) and (b)–, unsupervised 

features –plots (c) and (d)–, supervised and feature-based segmentation –(e) and (f)– and 

direct optical properties –(g), (h), and (i). Unsupervised feature maps were generated by 

transforming the secondary autoencoder’s output into polar coordinates, and then converting 

them to HSV and RGB. Features and classification maps can be combined and produced in 

many ways to enhance contrast in margin assessment.

Future margin delineation methods designed to consider the lessons learned in this article 

should certainly focus on optimizing clinical applicability. Protocols for SFDI-based margin 

assessment could easily be integrated into already existing 2D/3D X-ray imaging in BCS, 

resulting in a multimodal approach to margin delineation. We consider that this can be 

achievable if four issues are addressed, namely that (a) the imaging device is capable of 

acquiring the necessary data in a clinically negligible time frame (e.g. 10–15 minutes or 

less); (b) that the margin assessment algorithm can respond in a fraction of the time spent 

acquiring–which can be achieved with sufficient compute power, in situ or within hospital 

premises–; (c) that the algorithm provides some metric of certainty or accountability on the 

generated diagnosis, and (d) that the surgeon can interact with the diagnostic maps and 

provide references to compensate for inter-sample variability. The first two conditions are 

fundamental to their implementation in a practical surgical workflow, while the latter are 

essential to ensure that the algorithm can be trusted, while keeping the human in the loop in 

charge.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Two lumpectomy samples from the breast tissue dataset, namely samples 23 (top row) and 

16 (bottom row). Structured light imaging reveals hidden textural contrast as a function of 

spatial frequency. Each of the specimens is accompanied by a set of Regions of Interest with 

known properties (a, f). Here, color reconstructions of demodulated reflectance data for f = 

0.0 (b, h), f = 0.15 (c, i), f = 0.61 (d, j), and f = 1.37 mm−1 (e, k) are shown to present how 

textural properties evolve as a function of the spatial frequency of the projected patterns. 

Best viewed in color.
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Fig. 2. 
General summary of the complete data extraction protocol. Each specimen is visually 

inspected (a) and co-registered with H&E stain histology data (b). This analysis results in 

conservative, manually-generated Regions of Interest (c) which are then uniformly sampled 

and filtered depending on additional requirements (d). Best viewed in color.
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Fig. 3. 
Network setup for the four domain problem. (a) Reflectance data r is introduced into a 

primary autoencoder (i.e. r z r), generating a low-dimensional translation of spectral 

and spatial data. (b) A secondary autoencoder z z′ z transforms this first domain into a 

two-dimensional domain z′, where the dataset can be represented. The same codeword z can 

be used for classification (c). Conditional sample generation is achieved with a set of small 

multilayer perceptron Least-Squares GANs (d), with multiple decoders to avoid mode 

collapse (e). Optical properties estimation is achieved via an MLP non-linear regressor, 

which is trained with domain randomization, using spectra generated by giving random OP 

values to a deterministic semi-empirical function (f). The following paths represent each of 

the objectives in Fig. 1, as follows: AB (Feature Extraction), ABEF  (Visualization), ABG
(Classification), H0/…/HnCD  (Generation), AA′J (pixel-wise OP estimation). Black arrows 

are real connections in the graph, while orange connections represent copying operations.
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Fig. 4. 
Bottleneck clamping for dimensionality reduction. Schematic analogous to [51] but for all 

coordinates in a bottleneck. (a) Process for generating words of length 3 (i.e. training the 

third unit in z) in a primary bottleneck with nz = 5. (b) Forward step, showcasing which 

values are transmitted to the decoder. Units past the third one are zeroed out. (b) Gradient 

backpropagation of the given keyword. The gradient is cut for all coordinates except the one 

under training, thus in this step the encoder must modify the third coordinate to improve the 

reconstruction error given previous unit values. Each unit is trained stochastically within a 

given minibatch. After training, all units in the bottleneck are left unclamped.
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Fig. 5. 
Autoencoder comparison via 3-fold cross-validation. (a) Mean Squared Error (MSE) for all 

the tested architectures. Transparent dashed curves depict training errors, while continuous 

curves correspond to test errors for each fold. The average test error is shown as a thicker, 

non-transparent line for each network. Architecture E (MMD-SCVAE with fully connected 

connections at encoder and decoder, Gradually Upscaling Network and auxiliary fully 

connected feature maps) achieves the lowest average test MSE in the least amount of 

iterations. (b) This can also observed by evaluating the distance to a perfect test SSIM (1.0), 

where architectures E and F show up to an order-of-magnitude improvement in self-

similarity when compared to controls. (c) However, most architectures still return blurred 

reconstructed patches, which can be quantified by the average variance of the Laplacian 

across channels. By using an auxiliary GAN Discriminator (Architecture F), high frequency 

components can be better recovered, which translates in a variance histogram that better 

follows the true distribution. Reconstructions returned by each of the proposed architectures 

can be qualitatively observed in (d)–(i) and compared with the true data (j). Reflectance 

values are shown in the range [0.0, 0.04] at spatial frequency fx = 0.61 mm−1 and 

wavelength λ = 500 nm.
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Fig. 6. 
Initial dataset considerations provided by the neural framework. Top row shows (a) the 31 × 

31-pixel patch dataset projected into 2D, color-coded by tissue supercategory, (b) the same 

plot but color-coded by sample number of origin, (c) classifier accuracies observed during 

training for 1000 random samples of the training and test sets in 5-fold cross-validation and 

ROI halving experiments. Finally, the confusion matrices in (d) and (e) provide the best test 

(in bold) and training (between parentheses) accuracies per category, for 5-fold cross-

validation and ROI halving, respectively. Bottom row –plots (f) through (j)– provides 

analogous results for pixel-wise analysis. In this dataset, inter-sample variability dominates 

intra-sample variability by a significant margin, to the point that spectra can be nearly 

perfectly identified if the training set includes information from its specimen of origin.
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Fig. 7. 
An ablation test can evaluate the effect of bottleneck size on classification accuracy and 

reconstruction quality. Experiment results obtained via ROI halving. Subplot (a) shows per-

category classification accuracy for training and test sets for both halves, while (b) evaluates 

the patch-wise MSE and average spectral MSE between original and reconstructed patches. 

Finally, (c) shows reconstructions for different bottleneck sizes. Bottleneck clamping allows 

the use of a single autoencoder for this experiment. The rest of the coordinates are set to zero 

and the reconstruction is extracted at its output. A high-resolution version of (c) is provided 

in the Supplementary Material.
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Fig. 8. 
Generating patches at various frequencies with the LS-GAN stack. The following are 

outputs of the primary autoencoder to synthesized 256-dimensional feature keywords. This 

experiment uses the complete dataset (80% for training, 20% for validation). Plots (a) 

through (d) show spectra-to-RGB reconstructions of real and generated patches, where each 

column displays a patch at the four different spatial frequencies (0.0, 0.15, 0.61, and 1.37 

mm−1). Subplots (a’) through (e’) show 5000 artificially generated samples for each 

supercategory projected onto the 2D space of the secondary bottleneck (shown in Fig. 6.(a)). 

In these scatter plots, light colored points represent reference training data, and darker points 

correspond to the synthesized data. These 2D projections qualitatively ensure correct sample 

generation without significant mode collapse. Best viewed in color.
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Fig. 9. 
Optical properties estimation with a neural network LUT. Actual vs. predicted reflectance 

Rd(fx) on the real dataset (left column) and synthetic data (right column). Average standard 

errors for the dataset are within 5% – 15%, as is typical in SFDI-based OP extraction. Rows 

show the actual and predicted reflectances for individual wavelengths. Each plot includes 

coefficients of determination and standard errors for the complete dataset (in red) and the 

dataset averages (in black).
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Fig. 10. 
Quality assessment of synthesized spectra can be done indirectly, by analyzing optical 

properties. Rows (1), (2) and (3) show results pertaining to reduced scattering coefficient μs′, 
absorption coefficient μa, and phase function parameter γ, respectively. Columns (A) and 

(B) show the median optical properties per tissue category as error-bar plots, where whiskers 

represent one standard deviation, of real and synthesized spectra, respectively. Columns (C) 

through (G) randomly compare optical properties of real data with synthesized equivalents 

for each of the main tissue supercategories. In this grid, each subplot contains 500 pairs of 

optical properties from real and synthesized spectra in grey, the identity line y = x –plotted 

in blue–, and two linear regression tests. The red line and stats (namely, coefficient of 

determination and standard error) are the result of applying linear regression on the raw data, 

while the black line, errorbars and corresponding statistics correspond to analyzing average 

optical properties. The former provides little information due to the multimodal 

characteristics of the dataset; however, the latter demonstrates that, on average, the optical 

properties of the real and synthesized datasets match.
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Fig. 11. 
Summary for Sample 23 during 5-fold cross-validation (High Grade IDC embedded in 

connective tissue). Subplot (a) shows ROIs and average reflectance; (b) presents 10% of the 

reflectance data within those ROIs, at all four wavelengths. Processing the data with the 

primary and secondary autoencoder produces a map with two values per pixel, which was 

translated to HSV values to create a false color image (c). The corresponding colors for the 

false color map are shown with the test spectra from (b) –as well as training data for the 

categories of interest– in subplot (d). The classifier uses the 256-D pixels from the primary 

AE to produce a diagnostic map (e). Classification boundaries can also be projected onto 2D 

(f), by color-coding z-space with the classifier z′ z y . Finally, optical property maps 

can be plotted, namely reduced scattering μs′ (g) and phase function parameter γ (h). Local 

differences in OPs can be observed and plotted as usual (i). The complete training set in z-

space for this fold is left, for reference, in (j).
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Fig. 12. 
Summary for Sample 16 during 5-fold cross-validation (High Grade IDC in adipose tissue). 

Subplot (a) shows ROIs and average reflectance; (b) presents 10% of the reflectance data 

within those ROIs, at all four wavelengths. Processing the data with the primary and 

secondary autoencoder produces a map with two values per pixel, which was translated to 

HSV values to create a false color image (c). The corresponding colors for the false color 

map are shown with the test spectra from (b) –as well as training data for the categories of 

interest– in subplot (d). The classifier uses the 256-D pixels from the primary AE to produce 

a diagnostic map (e). Classification boundaries can also be projected onto 2D (f), by color-

coding z-space with the classifier z′ z y . Finally, optical property maps can be plotted, 

namely reduced scattering μs′ (g) and phase function parameter γ (h). Local differences in 

OPs can be observed and plotted as usual (i). The complete training set in z-space for this 

fold is left, for reference, in (j).
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Table I

Number of dataset samples, ROIs, and pixels

Tissue subtype Samples with ROI n Total pixels

Background 2–5, 7, 9–12, 15, 16, 19–21, 23–25, 27, 29, 30, 31–33, 36, 39, 41, 42, 46, 49, 51–53, 55, 56, 
57, 59, 60, 63, 64, 67

40 10,693,158

Adipose Tissue 2–5, 8, 9, 11, 12, 14, 16, 17, 22, 26, 28, 30, 34, 37, 39–42, 44, 45, 47–54, 58–60, 63, 64, 67, 
69, 70

39 158,070

Connective Tissue 6, 8, 12, 13, 22, 23, 33, 35, 40, 43, 47–50, 52, 53, 55, 58, 60, 63, 64, 65 22 89,470

Myofibroblastic 38 1 11,522

Benign Phyllodes 57 1 19,201

Normal Treated 20 1 20,740

Fibroadenoma 1, 19, 27, 32 4 45,350

Fibrocystic Disease 4, 5, 7, 9, 11, 32, 36 7 61,907

IDC (Low Grade) 12, 17, 28, 40, 47, 50, 51, 54, 61, 65, 68 11 21,137

IDC (Interm. Grade) 6, 8, 13, 29, 30, 33, 35, 36, 37, 41, 42, 53, 58, 63, 66, 67, 70 17 44,219

IDC (High Grade) 5, 16, 23, 24, 25, 39, 46, 56, 59, 64 10 70,520

ILC 2, 4, 21, 22, 26, 45, 48, 49, 52, 55 10 53,612

DCIS 3, 18, 31, 34, 37, 44, 62 7 26,119

Mucinous 10, 14, 43, 60 4 26,348

Tubular 11, 69 2 3,347

Metaplastic 15 1 18,955

Total non-background 70 137 670,517
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Table II

Tissue supercategories and total number of ROIs.

Tissue group Tissue subtypes n

Adipose Adipose 39

Connective Connective Tissue 22

Benign Fibroadenoma, Myofibroblastic, Benign Phyllodes 6

Fibrocystic Disease Fibrocystic Disease 7

Malignant IDC (Low Grade), IDC (Interm. Grade), IDC (High Grade), ILC, DCIS, Mucinous, Tubular, Metaplastic 62

Total 70 samples 136 ROIs
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