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Abstract

In mobile speech communication, speech signals can be severely corrupted by background noise 

when the far-end talker is in a noisy acoustic environment. To suppress background noise, speech 

enhancement systems are typically integrated into mobile phones, in which one or more 

microphones are deployed. In this study, we propose a novel deep learning based approach to real-

time speech enhancement for dual-microphone mobile phones. The proposed approach employs a 

new densely-connected convolutional recurrent network to perform dual-channel complex spectral 

mapping. We utilize a structured pruning technique to compress the model without significantly 

degrading the enhancement performance, which yields a low-latency and memory-efficient 

enhancement system for real-time processing. Experimental results suggest that the proposed 

approach consistently outperforms an earlier approach to dual-channel speech enhancement for 

mobile phone communication, as well as a deep learning based beamformer.
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I. Introduction

IN MOBILE communication, speech signals are corrupted by background noise when the 

far-end talker is in a noisy acoustic environment. In order to attenuate background noise, 

speech enhancement algorithms have been integrated into most mobile phones, where one or 

more microphones are deployed. More microphones typically yield better enhancement 

results. However, the number of the microphones is subject to practical limitations such as 

the size, power consumption, and expense of the array. Therefore, a dual-microphone 
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configuration is a common choice. In a typical dual-microphone setup, a primary 

microphone is placed on the bottom of a mobile phone and a secondary microphone on the 

top, as illustrated in Fig. 1.

In the past decade, a variety of algorithms have been developed for dual-channel speech 

enhancement. Yousefian et al. [43] developed a Wiener filter that exploits the power level 

difference (PLD) between the signals received by two microphones. The experimental 

results show that their approach improves speech quality. Jeub et al. [16] designed a PLD-

based noise estimator, which uses the normalized inter-channel PLD as speech presence 

probability (SPP). The estimated noise spectrum is used to compute a spectral gain, which is 

subsequently applied to the noisy spectrum to derive the enhanced spectrum. The results 

show that their approach outperforms the approach in [43], in terms of objective 

intelligibility. A similar method was proposed in [44], in which the power level ratio of the 

dual-channel signals is used to calculate a spectral gain. This method produces comparable 

results to the PLD-based method in [16], while more efficient computationally. More 

recently, Fu et al. [8] developed a SPP-based noise correlation matrix estimator, where the 

inter-channel posteriori signal-to-noise ratio difference (PSNRD) is utilized to estimate SPP. 

The estimated noise correlation matrix is subsequently used to derive a minimum variance 

distortionless response (MVDR) spatial filter for noise reduction. Their results show that the 

PSNRD method is more robust than the PLD method in [16] against different sensitivities of 

two microphones. Other related studies include [22], [19] and [3].

Speech enhancement has been recently formulated as supervised learning, inspired by the 

concept of time-frequency (T-F) masking in computational auditory scene analysis (CASA) 

[36]. Thanks to the use of deep learning, the performance of supervised speech enhancement 

has been dramatically improved in the past decade [37]. Compared to the dual-channel 

setup, speech enhancement for mobile phones needs to consider short speaker-microphone 

distances and head shadow effects. To our knowledge, the first deep learning based 

enhancement method for dual-microphone mobile phones was designed by López-Espejo et 
al. [18], where a deep neural network (DNN) is trained to produce a binary mask from the 

log-mel features of the noisy array signals. A truncated-Gaussian based imputation 

algorithm is used to produce the enhanced spectrum from the estimated mask. In a 

subsequent study [20], they trained a DNN to estimate the noise spectrum from the log-mel 

features of dual-channel noisy speech. The noise estimate, along with the primary-channel 

noisy signal, is used to produce the primary-channel enhanced spectrum by a vector Taylor 

series feature compensation method. The enhanced spectrum is subsequently passed into a 

speech recognizer for evaluation. Their results show that the DNN-based approach yields 

significantly higher word accuracy than several conventional approaches.

Real-time speech enhancement is needed for mobile communication, and it poses several 

requirements on model design. First, the model should use no or few future time frames. For 

example, causal DNNs for speech enhancement have been recently developed [23], [31]. 

Second, the model should not have a high computational cost for the sake of processing 

latency and power consumption. Third, memory consumption should fit the given capacity 

of mobile phones. It should be noted that memory consumption has two main aspects, i.e. to 
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store trainable parameters and intermediate results (e.g. the activations from lower DNN 

layers).

In a preliminary study [33], we recently proposed a convolutional recurrent network (CRN) 

for real-time dual-microphone speech enhancement, motivated by an earlier study on CRN 

[31]. The proposed method produces a phase-sensitive mask (PSM) [6], [39] from 

magnitude-domain intra- and inter-channel features. The present study extends the CRN-

based method to improve its robustness. The present work differs from the preliminary study 

in the following main aspects. First, we extend the CRN architecture into a densely-

connected CRN (DC-CRN). Specifically, each convolutional or deconvolutional layer is 

replaced by a densely-connected block. In addition, each skip connection between the 

encoder and the decoder is replaced by a densely-connected block. Second, we train the DC-

CRN to learn a mapping from the real and imaginary spectrograms of the dual-channel noisy 

mixture to those of the primary-channel clean speech signal, inspired by recent advances in 

complex-domain speech enhancement [42], [7], [32]. Third, we propose a structured pruning 

technique to compress the DC-CRN, which significantly reduces the model size without 

significantly affecting the enhancement performance. Fourth, we simulate array signals by 

spatializing speech and noise signals by covering a reasonable range of source-array 

distances and including the head shadow effect. Such a data simulation method accounts for 

various ways of holding a mobile phone, more robust than using close-talk inter-channel 

relative transfer functions [33].

The rest of this paper is organized as follows. In Section II, we formulate dual-channel 

speech enhancement for mobile phones. In Section III, we describe our proposed approach 

in detail. Experimental setup is provided in Section IV. In Section V, we present 

experimental and comparison results. Section VI concludes this paper.

II. Dual-channel Speech Enhancement for Mobile Phone Communication

Given a dual-channel signal recorded in a noisy and reverberant environment, the signal 

model can be formulated as

y(q)[k] = s[k] ∗ ℎs
(q)[k] + ∑

j
nj[k] ∗ ℎnj

(q)[k], (1)

where s and nj denote the speech source and the j-th noise source, respectively, and hs and 

hnj the room impulse responses (RIRs) corresponding to the speech source and the j-th noise 

source, respectively. Symbol * represents the convolution operation, k the time sample 

index, and q ∈ {1, 2} the microphone index. In the short-time Fourier transform (STFT) 

domain, the signal model can be written as

Y(m, f) = c(f)S1(m, f) + R(m, f) + N(m, f)
= [Y 1(m, f), Y 2(m, f)]T ∈ ℂ2 × 1, (2)

where S1 ∈ ℂ is the STFT of the target speech signal captured by the primary microphone 

(microphone 1 in this case), c(f) = [1, c(f)]T ∈ ℂ2 × 1 is the relative transfer function between 

the two microphones, and R and N denote the STFTs of speech reverberation and 
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reverberant noise, respectively. Y1 and Y2 are the STFTs of y(1) and y(2), respectively. 

Symbols m and f index the time frame and the frequency bin, respectively. In this study, we 

aim to extract the target speech signal captured by the primary microphone, i.e. 

s1 = ℱ−1{S1}, where ℱ−1 represents the inverse STFT (iSTFT). We focus on noise 

reduction and assume that reverberation energy is relatively weak, which is reasonable with 

relatively short speaker-phone distances in mobile communication.

There are broadly two kinds of mobile phone use scenarios: hand-held and hands-free. In a 

hand-held scenario, the primary microphone is typically close to the talker’s mouth and the 

secondary microphone close to the ear. In a hands-free scenario, the mobile phone can be 

placed at some distance, e.g. on a desk in front of the talker. Note that the terms hand-held 
and hands-free in this paper should not be interpreted literally, but are meant to differentiate 

the locations of the two microphones relative to the head.

In the hand-held scenario, the sound level of the speech signal coming from the talker’s 

mouth is reduced by the head obstruction, prior to reaching the secondary microphone near 

the ear. This head shadow results in a difference between the received speech levels at the 

two microphones. An example of the power spectral density (PSD) ratio of the primary 

channel to the secondary channel is shown in Fig. 2(a), where the dual-channel signals are 

recorded in a hand-held setup without background noise. It can be observed that the primary 

signal has a larger PSD than the secondary signal in almost all frequency bands. In the 

hands-free scenario without the head shadow effect, as illustrated in Fig. 2(c), the speech 

level at the primary channel is not always higher than that at the secondary channel. In both 

scenarios, the inter-channel intensity difference (IID) is a useful spatial cue for speech 

enhancement, corresponding to the magnitude difference between Y1 and Y2 (see Eq. (2)), 

which is leveraged by most studies for dual-channel speech enhancement. Another useful 

spatial cue is the inter-channel phase difference (IPD) or inter-channel time difference 

(ITD), which is highly correlated with the direction of arrival with respect to the dual-

channel array. Specifically, the IPD can be calculated as θy1 – θy2, where θy1 and θy2 are the 

phases of Y1 and Y2, respectively. Figs. 2(b) and 2(d) show the IPDs, wrapped into [−π, π], 

for the corresponding hand-held and hands-free scenarios, respectively.

Both IID and IPD (or ITD) can be implicitly exploited by learning a multi-channel complex 

spectral mapping [41], where the IID and the IPD are encoded in the dual-channel complex 

spectrogram of the noisy mixture. In contrast to conventional beamforming that typically 

exploits second-order statistics of multiple channels [34], such an approach has the potential 

to extract all discriminative cues in dual-channel complex-domain inputs through deep 

learning. In addition, complex spectral mapping simultaneously enhances magnitude and 

phase responses of target speech [32], which is advantageous over magnitude-domain 

approaches that ignore phase.

III. Model Description

In this section, we first introduce our proposed densely-connected convolutional recurrent 

network for dual-channel complex spectral mapping, and then elaborate the network 

configurations for a noncausal enhancement system with a large model size, as well as a 
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causal and lightweight version for real-time processing. We also propose a structured 

pruning technique to compress the DC-CRN without significantly sacrificing the 

enhancement performance.

A. Densely-connected Convolutional Recurrent Network

In [32], we have recently developed a gated convolutional recurrent network (GCRN) to 

perform complex spectral mapping for monaural speech enhancement, which substantially 

outperforms an earlier convolutional neural network (CNN) that learns complex spectral 

mapping [7]. The GCRN has an encoder-decoder architecture with skip connections between 

the encoder and the decoder. A two-layer long short-term memory (LSTM) is inserted 

between the encoder and decoder to aggregate temporal contexts. The encoder is a stack of 

gated convolutional layers, and the decoder a stack of gated deconvolutional layers. Such an 

architecture benefits from both the feature extraction capability of the convolutional 

autoencoder and the sequential modeling capability of the LSTM, and can effectively 

capture the local and global spectral structure in a spectrogram.

This study develops the CRN architecture for dual-channel complex spectral mapping. The 

diagram of the proposed approach is shown in Fig. 3. The input complex spectrograms are 

computed by applying STFT to the time-domain waveforms of the dual-channel mixtures. 

We concatenate the real and imaginary components of the dual-channel spectrograms [42], 

which amount to a 3-dimensional (3-D) representation with four channels. Subsequently, the 

3-D representation is passed into a convolutional encoder, which comprises a stack of five 

convolutional densely-connected (DC) blocks. The 3-D representation learned by the 

encoder is reshaped to a sequence of 1-D features, which is then modeled by a recurrent 

neural network (RNN). We reshape the output of the RNN back to a 3-D representation and 

subsequently feed it into a decoder, i.e. a stack of five deconvolutional DC blocks. The 

output of the last block is split into two equal-sized 3-D representations along the channel 

dimension, one for the real spectrum estimation and the other for the imaginary spectrum 

estimation. These two 3-D representations are individually reshaped to a sequence of 1-D 

features, and then passed through a linear projection layer to produce estimates of the real 

and imaginary components of the clean spectrogram, respectively. We apply the iSTFT to 

the estimated real and imaginary spectrograms to resynthesize the time-domain waveform of 

enhanced speech for the primary channel.

Unlike the skip connections that directly bypass the output of each encoder layer to the 

corresponding decoder layer in [33] and [32], a convolutional DC block is employed to 

process the features learned by each DC block in the encoder, prior to concatenating them 

with the output of the corresponding DC block in the decoder. Such a design is inspired by 

U-Net++ [47] for image segmentation, which uses DC blocks to bridge the semantic gap 

between the feature maps of the encoder and the decoder prior to fusion. The introduction of 

DC block based skip pathways can enrich the feature maps from the encoder, which would 

help to increase the similarity between the feature maps from the encoder and the decoder 

and thus improves their fusion.
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As shown in Fig. 4(a), we propose a dense connectivity pattern in each DC block to improve 

the information flow between layers, i.e. introducing direct connections from any layer to all 

subsequent layers. In other words, each layer receives the outputs of all preceding layers:

zl = ℋl([z0, …, zl − 1]), l = 1, …, L, (3)

where ℋl denotes the mapping function defined by the l-th layer in the DC block, and [·,

…,·] the concatenation operation. The output of the l-th layer is represented by zl, and z0 is 

the input to the DC block. By encouraging feature reuse, the dense connections exploit the 

differences learned by different preceding layers. In this study, we set L to 5. Specifically, 

each of the first four layers in a DC block consists of a 2-D convolutional layer successively 

followed by batch normalization [15] and exponential linear activation function [4]. The last 

layer in the DC block is a gated convolutional or deconvolutional layer as illustrated in Fig. 

4(b), which incorporates the gated linear units developed in [5]. Note that “Conv-DC-Block” 

in Fig. 3 performs gated convolution in the last layer, and “Deconv-DC-Block” gated 

deconvolution in the last layer.

It should be noted that using an RNN for sequential modeling is typically more memory-

efficient than time-dilated convolutions [30], [24] or temporal attention [17], particularly 

with strict memory limitation. The use of time-dilated convolutions necessitates storing 

intermediate activations for many past time steps in the receptive fields of all layers. 

Similarly, it is necessary to store intermediate activations from many past time steps in order 

to perform temporal attention. In contrast, an RNN only needs the input at the current time 

step and the hidden state from the last time step to calculate the output at the current step. 

Therefore, the RNN would demand far less working memory than a comparably sized DNN 

based on time-dilated convolutions or temporal attention, even if the RNN may have more 

trainable parameters than the DNN.

B. Network Configurations

1) Noncausal DC-CRN: In order to systematically examine the proposed architecture, 

we first configure the DC-CRN into a noncausal system with a reasonably large model size. 

In each convolutional or deconvolutional DC block, each of the first four layers has 8 output 

channels with a kernel size of 1×3 (time×frequency), where a zero-padding of size 1 is 

applied to each side of the feature maps along the frequency dimension. For the DC blocks 

in the encoder and the decoder, the last layer in each of them has a kernel size of 1×4, where 

a stride of 2 and a zero-padding of 1 (for each side) is applied along the frequency 

dimension. Note that the kernel size is set to 1×4 rather than 1×3 in order to alleviate the 

checkerboard artifacts [1], which arise when the kernel size of a strided deconvolution is not 

divisible by the stride. Moreover, the DC blocks in the encoder have 16, 32, 64, 128 and 256 

output channels successively, and those in the decoder have 256, 128, 64, 32 and 16 output 

channels successively. The convolutional DC blocks in the skip pathways have the same 

hyperparameters as those in the encoder, except that the last layer uses a stride of 1 and a 

kernel size of 1×3. Similarly, these DC blocks have 16, 32, 64, 128 and 256 output channels 

successively.
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In this noncausal DC-CRN, the RNN used for sequential modeling is a two-layer 

bidirectional LSTM (BLSTM), of which each layer contains 640 units in each direction. As 

in [32], we adopt a grouping strategy [9] to reduce the number of trainable parameters in the 

BLSTM without significantly affecting the performance. The number of groups is 

empirically set to 2.

2) Causal DC-CRN: A causal and small DC-CRN can be easily derived by simply 

changing the network configurations. First, we set the number of output channels of all DC 

blocks to 16, except that the last DC block in the decoder only has 2 output channels. 

Second, we use a two-layer unidirectional LSTM for sequential modeling, which has 80 

units in each layer. All other settings are the same as in the noncausal DC-CRN.

C. Training Objective

Following [41], we train the DC-CRN to perform dual-channel complex spectral mapping 

with a loss function as follows:

ℒRI+Mag = 1
M ⋅ F ∑

m, f
S1

(r)(m, f) − S1
(r)(m, f)

+ S1
(i)(m, f) − S1

(i)(m, f)
+ ∣ S1(m, f) ∣ − ∣ S1(m, f) ∣ ,

(4)

where S1
(r)

, S1
(i)

, S1
(r) and S1

(i) represent the real (r) and imaginary (i) components of the 

enhanced spectrogram S1 and the clean spectrogram S1 for the primary channel, 

respectively. Here ∥·∥1 denotes the ℓ1 norm, and M and F the number of time frames and 

frequency bins respectively. The estimated spectral magnitude is calculated from the 

estimated real and imaginary spectra, i.e. ∣ S1(m, f) ∣ = S1
(r)(m, f)2 + S1

(i)(m, f)2.

The inclusion of the magnitude loss term penalizes the magnitude estimation error 

accompanied with the phase estimation error, given that the magnitude and the phase are 

coupled in the real and imaginary components. This penalty is beneficial due to the relative 

importance of the magnitude over the phase [35].

D. Iterative Structured Pruning

To further reduce the number of trainable parameters, we propose a structured pruning 

method to compress the causal DC-CRN, without significantly sacrificing the enhancement 

performance. Structured pruning is a class of coarse-grained parameter pruning techniques, 

and it leads to more regular sparsity patterns than unstructured pruning. For example, 

structured pruning can remove an entire column of a weight matrix, unlike unstructured 

pruning that prunes individual weights. The regularity of sparse structure makes it easier to 

apply hardware acceleration [21].

To prune the DC-CRN, we define the pruning granularity as follow. For each of the 

convolutional and deconvolutional layers, the weights compose a 4-D tensor of shape 

C1×C2×K1×K2, where C1 and C2 represent the output and input channel dimensions 
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respectively, and K1 and K2 the shapes of convolution kernels. We treat each kernel (i.e. a 

K1×K2 matrix) as a weight group for pruning. Moreover, each of the LSTM layers is defined 

by the following equations:

it = σ(Wiixt + bii + Wℎiht − 1 + bℎi), (5)

ft = σ(Wifxt + bif + Wℎfht − 1 + bℎf), (6)

gt = tanh(Wigxt + big + Wℎght − 1 + bℎg), (7)

ot = σ(Wioxt + bio + Wℎoht − 1 + bℎo), (8)

ct = ft ⊙ ct − 1 + it ⊙ gt, (9)

ht = ot ⊙ tanh(ct), (10)

where xt, gt, ct and ht denote the input, forget, cell and output gates at time step t, 
respectively. Here W’s and b’s represent weight matrices and bias vectors respectively, and 

σ and ⊙ the sigmoid nonlinearity and the element-wise multiplication respectively. In the 

implementation of LSTM, the weight matrices for the four gates are typically concatenated, 

i.e. Wi = [Wii, Wif, Wig, Wio] ∈ ℝ4D1 × D2 and Wℎ = [Wℎi, Wℎf, Wℎg, Wℎo] ∈ ℝ4D1 × D1, 

where D1 and D2 are the output and input dimensions of the LSTM layer, respectively. We 

treat each column of Wi and Wh as a weight group for pruning. Similarly, we treat each 

column of the weight matrix of each linear layer as a weight group for pruning. Since the 

number of biases is small relative to that of weights, we only prune weights.
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Algorithm 1 Per-tensor sensitivity analysis

Input: (1) Validation set V; (2) set Gl of all nonzero weight

groups in the l‐th weight tensor Wl, ∀l; (3) loss function
ℒRI+Mag(V, Θ), where Θ is the set of all nonzero trainable
parameters in the model; (4) predefined tolerance value α .
Output:Pruning ratio βl for weight tensor Wl, ∀l .

1: for each tensor Wl do
2: for β in {0 % , 5 % , 10 % , …, 90 % , 95 % , 100 % } do
3: Let U ⊆ Gl be the set of the β( % ) of nonzero

weight groups with the smallest ℓ1 norms in tensor Wl;
4: Calculate ℐU = ℒRI+Mag(V, Θ ∣ g = 0, ∀g ∈ U) −

ℒRI+Mag(V, Θ);
5: if ℐU > α then
6: βl β − 5 % ;
7: break
8: end if
9: end for

10: if βl is not assigned any value then
11: βl 100 % ;
12: end if
13:end for
14:return βl for weight tensor Wl, ∀l

In order to achieve a high compression rate, we adopt a group sparse regularization 

technique [27] to impose the group-level sparsity of the weight tensors. Specifically, we 

introduce the following sparse group lasso (SGL) [28] penalty:

ℛSGL = λ1
n(W) ∑

w ∈ W
∣ w ∣ + λ2

n(G) ∑
g ∈ G

pg‖g‖2, (11)

where W and G denote the set of all weights and that of all weight groups, respectively. The 

function n(·) calculates the cardinality of a set, and ∥·∥2 the ℓ2 norm. The number of weights 

in each weight group g is represented by pg. Here λ1 and λ2 are predefined weighting 

factors. Hence, the new loss function can be written as

ℒ = ℒRI+Mag + ℛSGL . (12)

The importance of a specific set U of weight groups can be quantified by the error induced 

by removing (or zeroing out) it. This induced error can be measured as the increase in the 

loss on a validation set V:
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ℐU = ℒRI+Mag(V, Θ ∣ g = 0, ∀g ∈ U) − ℒRI+Mag(V, Θ), (13)

where Θ is the set of all trainable parameters in the model, and U can be any subset of G. To 

determine the pruning ratio for each weight tensor, we perform a per-tensor sensitivity 

analysis following Algorithm 1. Subsequently, we perform group-level pruning as per 

tensor-wise pruning ratios, and then fine-tune the pruned model. We evaluate the fine-tuned 

model on the validation set by two standard metrics, i.e. short-time objective intelligibility 

(STOI) [29] and perceptual evaluation of speech quality (PESQ) [26]. This procedure is 

repeated until the number of pruned weights becomes trivial in an iteration or a significant 

degradation of STOI or PESQ is observed on the validation set. Note that the parameter set 

Θ becomes smaller after each iteration.

IV. Experimental Setup

A. Data Preparation

In our experiments, we use the training set of the WSJ0 corpus [10] for evaluation, which 

includes 12776 utterances from 101 speakers. These speakers are split into three groups for 

training, cross validation and testing, which contain 89, 6 (3 males and 3 females) and 6 (3 

males and 3 females), respectively. Specifically, these groups include 11084, 846 and 846 

clean utterances for creating the training, validation and test sets, respectively. We simulate a 

rectangular room with a size of 10×7×3 m3 using the image method [2]. The target speech 

source (mouth) is located at the center of the room, while the primary microphone is placed 

on a sphere centered at the target speech source with a radius randomly sampled between 

0.01 m and 0.15 m. Such a distance range covers both hand-held and hands-free scenarios. 

We fix the geometry of the dual-channel microphone array, where the distance between 

microphones is 0.1 m. Thus the location of the secondary microphone is randomly chosen 

on a sphere with a radius of 0.1 m, which is centered at the primary microphone. The 

reverberation time (T60) is randomly sampled between 0.2 s and 0.5 s. Following this 

procedure, we simulate a set of 5000 dual-channel RIRs for training and cross validation, 

and another set of 846 dual-channel RIRs for testing.

As illustrated in Fig. 5, we simulate a diffuse babble noise in the following way. We first 

concatenate the utterances spoken by each of the 630 speakers in the TIMIT corpus [11], and 

then split them into 480 and 150 speakers for training and testing. Following [45], we 

randomly select 72 speech clips from 72 randomly chosen speakers, and place them on a 

horizontal circle centered at and with the same height as the primary microphone, where the 

azimuths range from 0° to 355° with 5° steps. The distance between the primary microphone 

and each of the interfering sources is 2 m.

We create a training set including 40000 mixtures, each of which is simulated by mixing a 

diffuse babble noise and a randomly sampled WSJ0 utterance convolved with a randomly 

selected RIR. To create the validation set, we convolve each of the 846 validation utterances 

with a randomly selected RIR, and then mix the reverberant speech signal with a random cut 

of diffuse babble noise at each channel. In order to mimic the head shadow effect, we 

downscale the amplitude of the speech signal at the secondary channel prior to mixing, 
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where the downscaling ratio is randomly sampled between −10 and 0 dB. For both training 

and validation data, the SNR is randomly sampled between −5 and 0 dB, where the SNR is 

with respect to the reverberant speech signal and the reverberant noise signal at the primary 

channel. Similarly, we create a test set consisting of 846 mixtures for each of four SNRs, i.e. 

−5, 0, 5 and 10 dB.

In our experiments, all signals are sampled at 16 kHz. We rescale each noisy mixture by a 

factor, such that the root mean square of the mixture waveform is 1. The same factor is used 

to rescale the corresponding target speech waveform. Such noncausal signal level 

normalization is applied because we focus on speech enhancement and assume that the root 

mean square power of all input signals is the same. Thus the causal models can benefit from 

this noncausal normalization in our experiments. Real applications may need a causal 

automatic gain control for signal level normalization. Moreover, we use a 20-ms Hamming 

window to segment time-domain signals into a set of frames, with a 50% overlap between 

adjacent frames. A 320-point (16 kHz × 20 ms) discrete Fourier transform is applied to each 

frame, yielding 161-D one-sided spectra.

B. Baselines

In our preliminary study [33], the PSM is used as the training target, which is originally 

defined for the primary channel as follows:

PSM1(m, f) = Re ∣ S1(m, f) ∣ ejθs1

∣ Y 1(m, f) ∣ ejθy1

= ∣ S1(m, f) ∣
∣ Y 1(m, f) ∣ cos(θs1 − θy1),

(14)

where ∣S1(m, f)∣ and ∣Y1(m, f)∣ denote the spectral magnitudes of clean speech and noisy 

speech within the T-F unit at frame m and frequency f respectively, and θs1 and θy1 the 

phases of clean speech and noisy speech within the unit respectively. Re{·} computes the 

real component. In [33], however, a modified version is used:

PSM2(m, f) = Re ∣ S1(m, f) ∣ ejθs1

∣ Y 1(m, f) ∣ ejθy1 − y2

= ∣ S1(m, f) ∣
∣ Y 1(m, f) ∣ cos(θs1 − θy1 − y2),

(15)

where θy1–y2 represents the phase of the noisy signal difference between channels, i.e. y1 – 

y2. For PSM2, θy1–y2 is used to resynthesize waveforms, which was shown to improve both 

STOI and PESQ over using PSM1 and θy1. An interpretation is that the inter-channel PLD of 

speech signals is typically larger than that of noise signals due to the head shadow in hand-

held scenarios. With a possible signal cancellation effect due to the subtraction, y1 – y2 may 

have a higher SNR and thus cleaner phase than y1.

In [33], a CRN is employed to estimate PSM2 from both intra-channel features (i.e. ∣Y1∣ and 

∣Y2∣) and inter-channel features (i.e. ∣Y1−Y2∣ and ∣Y1+Y2∣). We refer to the approach in [33] 
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as “C-CRN-PSM2” (“C-CRN” indicates causal CRN), and another version that estimates 

PSM1 as “C-CRN-PSM1”. In addition, we train a noncausal version of each of these two 

baselines, where the configuration of the CRN is changed as follows. The numbers of output 

channels for the layers in the encoder are changed to 16, 32, 64, 128 and 256 successively, 

and those for each layer in the decoder to 128, 64, 32, 16 and 1 successively. The two-layer 

LSTM is replaced by a two-layer BLSTM, of which each layer contains 512 units in each 

direction. These noncausal baselines are denoted as “NC-CRN-PSM1” and “NC-CRN-

PSM2”.

C. Training Methodology

The models are trained on 4-second segments using the AMSGrad optimizer [25] with a 

minibatch size of 16. The learning rate is initialized to 0.001, which decays by 0.98 every 

two epochs. We apply gradient clipping with a maximum ℓ2 norm of 5 during training. The 

validation set is used for both selecting the best model among different epochs and 

performing the sensitivity analysis prior to pruning.

For structured pruning, the initial values of λ2 and λ2 (see Eq. (11)) are empirically set to 1 

and 0.1, both of which decay by 10% every pruning iteration. We alternately prune and fine-

tune the causal DC-CRN for 6 iterations. The tolerance value α for sensitivity analysis (see 

Algorithm 1) is set to 0.02.

V. Experimental Results and Comparisons

A. Model Comparison

Comprehensive comparisons among alternative models are shown in Table I, in terms of 

STOI, PESQ and SNR, where the numbers represent the averages over the test set in each 

condition. The proposed models with noncausal and causal DC-CRNs are denoted as “NC-

DC-CRN-RI” and “C-DC-CRN-RI”, respectively. The pruned DC-CRN model for the k-th 

iteration is represented by “C-DC-CRN-RI-Pk”.

We can observe that using PSM1 yields similar results to using PSM2, unlike the finding that 

PSM2 produces significantly better results than PSM1 in [33]. This is likely because θy1–y2 
is not always cleaner than θy1 due to the variety of inter-channel decay ratios and no head 

shadow in hands-free scenarios. Moreover, our proposed approach substantially outperforms 

the approach in [33] in all the metrics. At - 5 dB SNR, for example, “NC-DC-CRN-RI” 

improves STOI by 7.6%, PESQ by 0.89 and SNR by 4.77 dB, over “NC-CRN-PSM2”. 

Similar improvements are observed for “C-DC-CRN-RI” over “C-CRN-PSM2”. We 

additionally compare our approach with two ideal masks, i.e. the PSM (PSM1) and the ideal 

ratio mask (IRM) [38], defined as

IRM(m, f) = ∣ S1(m, f) ∣
∣ S1(m, f) ∣ + ∣ H1(m, f) + N1(m, f) ∣ , (16)

where H1 and N1 are the STFTs of reverberation and reverberant noise at the primary 

channel, respectively. As shown in Table I, our noncausal enhancement system (“NC-DC-
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CRN-RI”) produces better results than the IRM in terms of all the three metrics. In addition, 

our system yields slightly lower STOI and PESQ but higher SNR than the PSM.

To demonstrate the generalization capability of the trained models, we create an additional 

test set by mixing real-recorded speech signals and simulated diffuse noise signals at −5, 0, 5 

and 10 dB SNRs. Specifically, the diffuse noise is simulated using the same recipe as 

described in Section IV-A, where the noise source signals are recorded in eight different 

environments. The speech signals are recorded by a dual-microphone mobile phone (Meizu 

15) that is mounted on a dummy head. The source signals1 contain 20 utterances from four 

speakers (two males and two females), where each speaker reads five IEEE sentences [14]. 

The total duration of these utterances is roughly 80 seconds. They are mixed with the eight 

types of noises at the four SNRs, which amount to a set of noisy speech signals with a total 

duration of roughly 43 minutes (≈ 80×8×4 s). As shown in Table II, “C-DC-CRN-RI” and 

“C-DC-CRN-RI-P6” produce significantly higher STOI and PESQ than “C-CRN-PSM1”. 

Moreover, “C-DC-CRN-RI-P6” produces substantial improvements in STOI and PESQ over 

unprocessed mixtures, consistent with our finding from Table I. This suggests the robustness 

of our training data simulation method described in Section IV-A.

Furthermore, we compare the pruned DC-CRN models of different pruning iterations. As 

presented in Table I, the causal DC-CRN originally has 290.44 K trainable parameters. After 

6 iterations of pruning, the number of trainable parameters in the DC-CRN becomes 103.07 

K, which is comparable to that of the CRN in [33], i.e. 73.15 K. The model size reduction 

over pruning iterations is shown in Fig. 6(a). Compared with the original model, the 

performance of the pruned model after 6 iterations degrades only slightly. Take, for example, 

the 0 dB SNR case. Iterative pruning decreases STOI by 0.72%, PESQ by 0.05 and SNR by 

0.53 dB. Fig. 6(b) shows the STOI and PESQ scores on the validation set over pruning 

iterations.

Moreover, we calculate the number of multiply-accumulate (MAC) operations on a 4-second 

noisy mixture, which is another common metric for evaluating model complexity. The 

number of MAC operations decreases from 1.97 G for “C-DC-CRN-RI” to 502.40 M for 

“C-DC-CRN-RI-P6”. Thus the average number of MAC operations for processing a 1-

second input signal is 125.60 M, which is amenable to mobile phones on the market. We 

additionally measure the computation time for “C-DC-CRN-RI-P6” on a Lenovo ThinkPad 

X1 laptop with Intel Core i7-10510U@1.80GHz processors, and the average time of 

processing a 20-ms time frame is 2.78 ms, demonstrating real-time feasibility.

B. Ablation Study of Dense Connectivity

To investigate the contribution of dense connectivity in the DC-CRN, we conduct an ablation 

study at −5 dB SNR, as shown in Table III. Several variants of the causal DC-CRN are 

compared: (i) replacing the DC block based skip pathways by skip connections as in [33]; 

(ii) replacing each DC block in the encoder and the decoder by a corresponding gated 

convolutional or deconvolutional layer, as in [32]; (iii) doing both (i) and (ii). We can see 

that all these variants underperform the proposed causal DC-CRN, which suggests the 

1[Online] Available: https://docbox.etsi.org/stq/Open/TS%20103%20106%20Wave%20files/Annex_C_Dynastat%20Speech%20Data/
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effectiveness of dense connectivity. Without dense connectivity in the encoder and the 

decoder, for example, STOI decreases by 1.31% and PESQ by 0.14. Only removing the 

dense connectivity in the skip pathways does not significantly degrade the enhancement 

performance, if the DC blocks in the encoder and the decoder are preserved. However, going 

from (ii) to (iii) results in a significant performance loss. This is likely because the dense 

connectivity in the skip pathways compensates for the reduced representation power without 

DC blocks in the encoder and the decoder.

C. Inter-channel Features

The approach in [33] exploits both intra- and inter-channel features in the magnitude 

domain, while our proposed approach performs dual-channel complex spectral mapping 

without explicitly using any inter-channel features. We now investigate the inclusion of 

inter-channel features for both these approaches. As shown in Table IV, the inclusion of 

inter-channel features significantly improves STOI, PESQ and SNR for the magnitude-

domain approaches. For our approach based on complex spectral mapping, we use the real 

and imaginary components of Y1 − Y2 and Y1 + Y2 as the inter-channel features. With 

multi-channel complex spectral mapping, the explicit use of these inter-channel features 

does not produce performance gain, as shown in Table IV. Unlike the magnitude 

spectrograms, the complex spectrograms encode both magnitude and phase information. 

Hence inter-channel features can be captured implicitly through DNN training that learns 

multi-channel complex spectral mapping, consistent with [41] which demonstrates the 

effectiveness of multi-channel to singlechannel complex spectral mapping for speech 

dereverberation.

D. Comparison with Beamforming

We now compare the proposed approach with DNN-based beamforming (BF) [12], [13], 

[46]. Following [40], we formulate an MVDR beamformer, where the speech and noise 

covariance matrices are estimated as

Φs(f) = ∑
m

η(m, f)
∑mη(m, f)Y(m, f)Y(m, f)H, (17)

Φv(f) = ∑
m

ξ(m, f)
∑mξ(m, f)Y(m, f)Y(m, f)H, (18)

where (·)H denotes the conjugate transpose, and η(m, f) and ξ(m, f) the weighting factors 

representing the importance of each T-F unit for the covariance matrix computation. These 

weighting factors are calculated as the product of estimated T-F masks for different 

channels:

η(m, f) = ∏
i = 1

D
Mi(m, f), (19)
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ξ(m, f) = ∏
i = 1

D
(1 − Mi(m, f)), (20)

where D=2 is the number of channels, and Mi(m, f) the ratio mask for the i-th microphone. 

These ratio masks are individually estimated by a noncausal DC-CRN that is monaurally 

trained to estimate the IRM for each channel. We treat the primary channel as the reference 

channel, and estimate the inter-channel relative transfer function (i.e. steering vector) as

r(f) = P{Φs(f)} = [r1(f), r2(f)]T , (21)

c(f) = r(f)
r1(f) , (22)

where P{ ⋅ } computes the principal eigenvector. The MVDR filter is then calculated as

w(f) = Φv(f)−1c(f)
c(f)HΦv(f)−1c(f)

, (23)

and the enhanced spectrogram is obtained by S(m, f) = w(f)HY(m, f). To improve the 

enhancement performance, the monaural DC-CRN trained for IRM estimation is used as a 

post-filter (PF). As shown in Table V, this masking-based beamforming algorithm 

outperforms a noncausal DC-CRN that estimates the IRM from the magnitude spectrograms 

of the two channels, in terms of both STOI and PESQ.

In addition, we formulate a variant of the aforementioned MVDR beamformer following 

[41], where the speech and noise covariance matrices are estimated as

Φs(f) = 1
M ∑

m = 1

M
S(m, f)S(m, f)H, (24)

Φv(f) = 1
M ∑

m = 1

M
V(m, f)V(m, f)H, (25)

where M is the number of time frames. The complex spectrogram S is estimated by 

performing a monaural complex spectral mapping using a noncausal DC-CRN. Then the 

estimated noise spectrogram is calculated as V = Y − S. Akin to masking-based 

beamforming, we obtain the spatial filter using Eqs. (21)-(23). The DC-CRN for monaural 

complex spectral mapping is used as a post-filter. As shown in Table V, our proposed 

approach outperforms the beamformer in terms of both STOI and PESQ, which further 

suggests that dual-channel complex spectral mapping can effectively exploit spatial cues 

encoded in the dual-channel complex spectrogram.
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VI. Conclusion

In this study, we have proposed a novel framework for dual-channel speech enhancement on 

mobile phones, which employs a new causal DC-CRN to perform dual-channel complex 

spectral mapping. By applying an iterative structured pruning technique, we derive a low-

latency and memory-efficient enhancement system that is amenable to real-time processing 

on mobile phones. Evaluation results demonstrate that the proposed approach significantly 

outperforms an earlier method for speech enhancement for dual-microphone mobile phones. 

Moreover, our approach consistently outperforms a DNN-based beamformer, which suggests 

that multi-channel complex spectral mapping can effectively extract and utilize spatial cues 

encoded in the multi-channel complex spectrogram.
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Fig. 1. 
Illustration of a dual-microphone configuration of mobile phones.
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Fig. 2. 
Examples of inter-channel PSD ratio and phase difference in (a)-(b) hand-held and (c)-(d) 

hands-free scenarios.
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Fig. 3. 
Diagram of the DC-CRN for dual-channel complex spectral mapping.
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Fig. 4. 
Diagrams of the densely-connected block (a) and the gated convolution/deconvolution (b). 

The symbol ⊗ represents the element-wise multiplication.
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Fig. 5. 
Illustration of diffuse babble noise simulation.
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Fig. 6. 
The percent of the original number of trainable parameters at different pruning iterations (a), 

and corresponding STOI and PESQ scores on the validation set (b).
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TABLE III

Effects of Dense Connectivity at −5 dB SNR.

Test SNR −5 dB
# Param.

Metric STOI (%) PESQ SNR (dB)

Unprocessed 58.71 1.49 −5.03 −

C-DC-CRN-RI 87.57 2.56 8.61 290.44 K

 – DCSkip (i) 87.23 2.53 8.49 253.32 K

 – DCED (ii) 86.26 2.42 8.02 218.69 K

 – DCSkip – DCED (iii) 82.77 2.10 6.37 181.57 K
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TABLE IV

INVESTIGATION OF INTER-CHANNEL FEATURES FOR MAGNITUDE- AND COMPLEX-DOMAIN APPROACHES. “ICFs” REPRESENT 

THE INTER-CHANNEL FEATURES.

Test SNR −5 dB
Domain

Metric STOI (%) PESQ SNR (dB)

Unprocessed 58.71 1.49 −5.03 -

C-CRN-PSM1 w/ ICFs 78.20 1.72 5.25 Magnitude

C-CRN-PSM1 w/o ICFs 76.41 1.63 4.96 Magnitude

C-CRN-PSM2 w/ ICFs 78.77 1.76 5.13 Magnitude

C-CRN-PSM2 w/o ICFs 76.14 1.67 4.56 Magnitude

C-DC-CRN-RI w/ ICFs 87.64 2.56 8.44 Complex

C-DC-CRN-RI w/o ICFs 87.44 2.56 8.61 Complex
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TABLE V

Comparisons with Beamforming in Magnitude and Complex Domains at −5 and 0 dB SNRs.

Test SNR −5 dB 0 dB
Domain

Metric STOI (%) PESQ STOI (%) PESQ

Unprocessed 58.71 1.49 72.08 1.73 −

Mask-BF 68.85 1.64 81.37 1.92 Magnitude

Mask-BF-PF 86.32 2.49 92.60 2.91 Magnitude

NC-DC-CRN-IRM 85.21 2.42 90.95 2.79 Magnitude

RI-BF 71.93 1.65 82.51 1.93 Complex

RI-BF-PF 91.03 2.94 95.03 3.31 Complex

NC-DC-CRN-RI 92.77 3.07 96.09 3.41 Complex
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