Skip to main content
. 2021 May 24;10(6):623. doi: 10.3390/antibiotics10060623

Table 2.

Summary of carbon quantum dots synthesized from different carbon sources, their antibacterial activity and efficacy (i.e., MIC values).

Carbon Source Synthetic Method Antibacterial Activity Bacterial Strains Used MIC *
(µg/mL)
Ref.
From Organic Reagents
Polyamine, polyamine combined with ammonium, dopamine Pyrolysis, microwave-assisted synthesis Bacterial killing through cell wall damage; ROS generation Gram-positive
Staphylococcus aureus, Bacillus subtilis, Salmonella enterica, methicillin-resistant S. aureus (MRSA)
0.9–8 [19,37,38]
Gram-negative
Escherichia coli, Pseudomonas
aeruginosa
0.9–8
Bis-quaternary ammonium salt Hydrothermal method Bacterial killing through cell wall damage; ROS generation; biofilm growth inhibition; biofilm dispersal through electrostatic interactions Gram-positive
MRSA, S. aureus
2–4 [47]
Gram-negative
E. coli, ampicillin-resistant E. coli (AREC)
8
Dimethyloctadecyl- [3-(trimethoxysilyl)propyl]ammonium chloride Hydrothermal method Biofilm dispersal through electrostatic and hydrophobic interaction with Gram-positive bacteria Gram-positive
S. aureus
No MIC reported [74]
Gram-negative
E. coli
No activity
3-[2-(2- aminoethylamino)ethylamino]propyl-trimethoxysilane, glycerol, quaternary ammonium compound lauryl betaine Pyrolysis Bacterial killing through cell wall damage Gram-positive
S. aureus, Micrococcus luteus, B. subtilis
8 – 12 [89]
Gram-negative
E. coli, P. aeruginosa, Proteusbacillus vulgaris
>200
Dimethyldiallyl ammonium chloride, glucose Pyrolysis Acted on ribosomal proteins in Gram-positive bacteria and downregulated metabolization-related proteins of Gram-negative bacteria Gram-positive
S. aureus, MRSA, Staphylococcus epidermidis, Enterococcus faecalis
12.5–25 [90]
Gram-negative
E. coli, P. aeruginosa
25–50
Diallyldimethylammonium chloride, 2,3-epoxypropyltrimethylammonium chloride Pyrolysis Affected protein translation, posttranslational modification and protein turnover Gram-positive
S. aureus, MRSA, S. epidermidis, Listera monocytogenes, E. faecalis
5 – 20 [91]
Gram-negative
E. coli, Serratia marcescens, Salmonella paratyphi-β
No activity
Citric acid, l-glutathion, polyethene polyamine Pyrolysis Bacterial killing through cell wall damage; ROS generation Gram-positive
S. aureus, MRSA, L. monocytogenes, E. faecalis
15–60 [92]
Gram-negative
E. coli, P. aeruginosa, S. marcescens, Drug-resistant P. aeruginosa, Drug-resistant E. coli
120–480
Citric acid combined with aminoguanidine Hydrothermal method Bacterial killing through cell wall damage; biofilm growth inhibition Gram-positive
S. aureus, B. cereus
No activity [84]
Gram-negative
E. coli, Salmonella enteritidis, Salmonella typhimurium, P. aeruginosa
0.5–1
(P. aeruginosa),
>1000
(other strains)
Citric acid combined with branched polyethyleneimine, 2,3-dimethylmaleic anhydride Hydrothermal method Biofilm dispersal through electrostatic and hydrophobic interaction with Gram-positive bacteria Gram-positive
S. epidermidis
No MIC reported [75]
Gentamicin sulfate Pyrolysis Biofilm dispersal; bacterial killing through cell wall damage; ROS generation and maintenance of antibiotic features Gram-positive
S. aureus
0.002
(at pH 5.5)
[39]
Gram-negative
E. coli
0.203
(at pH 5.5)
Ciprofloxacin hydrochloride Hydrothermal method Bacterial killing through maintenance of antibiotic features Gram-positive
S. aureus
1.0 [48]
Gram-negative
E. coli
0.025
Metronidazole Hydrothermal method Bacterial killing through maintenance of antibiotic features Gram-positive
S. mutans
No activity [49]
Gram-negative
E. coli, Porphyromonas gingivalis
No MIC reported
Vitamin C Electrochemical method Bacterial killing through cell wall damage Gram-positive
S. aureus, Bacillus sp. WL-6, B. Subtilis
No MIC reported [61]
Gram-negative
E. coli, AREC
No MIC reported
Poly-oxyethylene, -oxypropylene, -oxyethylene Pluronic 68 Pyrolysis Bacteria killing through ROS production upon blue light irradiation Gram-positive
S. aureus, B. cereus
No MIC reported [76]
Gram-negative
P. aeruginosa
No MIC reported
From Inorganic Carbon Sources
Carbon nanopowder, 2,2′-(ethylenedioxy) bis(ethylamine) Acidic oxidation Bacterial killing through ROS production upon visible light irradiation Gram-positive
B. subtilis
64 [24,29,30,34,93]
Gram-negative
E. coli
64
Graphite Acidic oxidation Bacterial killing through ROS generation under laser irradiation Gram-positive
MRSA, S. aureus
No MIC reported [31,32,33]
Gram-negative
E. coli
No MIC reported
Carbon fibers Acidic oxidation Biofilm dispersal through interference with the self-assembly of amyloid peptides Gram-positive
S. aureus
No MIC reported [94]
From Natural Carbon Sources
Lactobacillus plantarum Hydrothermal methods Biofilm growth inhibition Gram-negative
E. coli
No MIC reported [23]
Artemisia argyi leaves Smoking Bacterial killing by cell wall damage through cell wall-related enzyme inhibition Gram-positive
S. aureus, B. Subtilis
No activity [78]
Gram-negative
E. coli, P. aeruginosa, P. vulgaris
No MIC reported
Cigarettes Smoking Bacterial killing through destruction of DNA double helix structure Gram-positive
S. aureus, AREC, B. subtilis
No MIC reported [79]
Gram-negative
E. coli, kanamycin-resistant E. coli, P. vulgaris, P. aeruginosa
No MIC reported

* MIC values for quantum carbon dots are based on weight per unit volume, but values may not be directly comparable with the traditional MIC value of antibiotics. MIC values of antibiotics refer to the weight of dissolved molecules, while carbon quantum dots are nanoparticles with diameters that are larger than of molecules.