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Abstract

This research is motivated from the data from a large Selenium and Vitamin E Cancer Prevention 

Trial (SELECT). The prostate specific antigens (PSAs) were collected longitudinally, and the 

survival endpoint was the time to low-grade cancer or the time to high-grade cancer (competing 

risks). In this article, the goal is to model the longitudinal PSA data and the time-to-prostate 

cancer (PC) due to low- or high-grade. We consider the low-grade and high-grade as two 

competing causes of developing PC. A joint model for simultaneously analysing longitudinal and 

time-to-event data in the presence of multiple causes of failure (or competing risk) is proposed 

within the Bayesian framework. The proposed model allows for handling the missing causes of 

failure in the SELECT data and implementing an efficient Markov chain Monte Carlo sampling 

algorithm to sample from the posterior distribution via a novel reparameterization technique. 

Bayesian criteria, ΔDICSurv, and ΔWAICSurv, are introduced to quantify the gain in fit in the 

survival sub-model due to the inclusion of longitudinal data. A simulation study is conducted to 

examine the empirical performance of the posterior estimates as well as ΔDICSurv and ΔWAICSurv 

and a detailed analysis of the SELECT data is also carried out to further demonstrate the proposed 

methodology.
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1 Introduction

In many clinical trials and medical studies, often both longitudinal (repeated measurements 

of a response) and time-to-event (time until the occurrence of an event of interest) outcomes 

are collected along with some other baseline covariates. Studies dealing with such outcomes 

mainly concern to investigate how the change in longitudinal outcome is associated with 

different covariates and also to determine the relationship among the longitudinal outcome, 

the survival outcome and other covariates. The traditional random effects model (Laird and 

Ware, 1982) and Cox proportional hazards model (Cox, 1972) may be considered for 

analysing the longitudinal and survival outcomes separately. However, a separate analysis of 

these two outcomes often leads to biased estimates of the model parameters (Hu et al., 

2009). It is due to the fact that the longitudinal measurements are often incomplete (missing) 

and are subject to measurement error (Tsiatis et al., 1995), which may induce informative 

censoring mechanism for the survival outcome (Wulfsohn and Tsiatis, 1997). Thus, treating 

longitudinal outcome as a time-dependent covariate in the survival model fails to capture the 

endogenity of the longitudinal process and may lead us to a wrong interpretation of the 

model parameters (Prentice, 1982). In such cases, joint modelling of longitudinal and 

survival outcomes (Faucett and Thomas, 1996; Wulfsohn and Tsiatis, 1997; Henderson et 

al., 2000; Rizopoulos, 2012) has been widely used in clinical studies.

The standard joint model assumes that the event of interest takes place due to only one 

cause. However, the event of interest may occur due to one of the many plausible causes 

under consideration. This study is motivated from the Selenium and Vitamin E Cancer 

Prevention Trial (SELECT), where the main variable of interest is the time-to-diagnosis of 

prostate cancer (PC) due to low-grade or high-grade. We consider the two grades of PC as 

two distinct causes of PC. In the SELECT data, prostate specific antigens (PSAs) of the 

subjects are collected longitudinally, which is considered to be an important biomarker for 

the PC. In this study, our goal is to quantify the improvement in the fit of the time-to-PC due 

to low or high grade after the inclusion of longitudinal PSA in the survival sub-model. We 

also intend to quantify the cause-specific association between the time-to-PC and 

longitudinal progression of PSA.

Joint modelling of longitudinal and competing risks survival data has been proposed in the 

literature. In the joint modelling setting, Elashoff et al. (2007, 2008) extended the cause-

specific hazards model and the mixture model by allowing latent variables to adjust for the 

association between the longitudinal and survival outcomes. However, the development in 

this area has not been in line under the Bayesian paradigm. A Bayesian extension of the 

cause-specific hazards models to analyse longitudinal and survival outcomes has been 

proposed by Huang et al. (2011) and Hu et al. (2009). However, the earlier works do not 

account for the missing causes of failure, which is common in clinical studies.

In the SELECT data, there are a substantial number of subjects who developed PC without 

knowing whether PC should be attributed to low-grade or high-grade. This missing cause of 

PC could happen when subjects reported cancer diagnostics outside the studies home 

institution. Considering the subjects with unknown causes as missing or ignoring those 

subjects from the analysis may lead to biased parameter estimates and thus the inference 
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could be misleading (Lu and Tsiatis, 2001). Particularly, when the missing percentage is 

substantial (e.g., about 26% for SELECT data), the analysis could be erroneous. Within the 

competing risks setting, multiple imputation technique has been proposed by Lu and Tsiatis 

(2001), while Gao and Tsiatis (2005) developed an inverse probability weighted complete 

case estimator. Within the joint modelling framework, the literature to account for the 

missing causes under the competing risks setting is still sparse. In this study, we propose a 

shared parameter joint model within the Bayesian framework. Our proposed joint model 

imputes the missing causes of PC within the Markov chain Monte Carlo (MCMC) sampling 

algorithm.

In the SELECT data, the substantially large sample size of 32 261 might also impact the 

performance of the joint model resulting in weak convergence of the variance covariance 

matrix of the random effects (Zhang et al., 2019). This can also influence the convergence of 

other parameters that depend on the random effects in MCMC sampling. To deal with this 

issue, we use the Cholesky factorization of the variance covariance matrix of the random 

effects similar to Zhang et al. (2019) and propose a novel reparameterization of the 

regression coefficients associated with the random effects under the survival sub-model, 

which leads to a convenient but efficient implementation of the MCMC sampling algorithm 

under the joint model.

One of the main goals of this study is to quantify the improvement in the fit of the 

competing risks survival data due to the inclusion of the longitudinal PSA. Several 

measures, for example, Akaike information criterion (AIC), Bayesian information criterion 

(BIC), widely applicable or Watanabe–Akaike information criterion (WAIC; Watanabe, 

2010), deviance information criterion (DIC; Spiegelhalter et al., 2002), etc., have been 

routinely used to quantify the overall fit of the model under consideration. Under the joint 

modelling setting, in order to quantify the overall goodness of fit, it is often desirable to 

assess the separate contribution of each component of the joint model towards the overall fit. 

Zhang et al. (2014) developed a decomposition of AIC and BIC under the joint model of 

longitudinal and survival outcomes. A useful SAS macro has been developed by Zhang et al. 

(2016) that allows to use various flexible models under the joint modelling framework and 

computes the decomposition of AIC and BIC. Within the Bayesian framework, a novel 

decomposition of DIC and logarithm of the pseudo-marginal likelihood (LPML; Ibrahim et 

al., 2001) has been proposed by Zhang et al. (2017). To investigate the performance of our 

proposed model, we define a BIC, ΔDICSurv that quantifies the gain in the performance of 

joint model due to the inclusion of the longitudinal data. In addition, we extend the idea of 

Huang et al. (2005) to adjust for the unobserved random effects while calculating DIC under 

the joint model within the Bayesian framework. We also define ΔWAICSurv, and the gain in 

fit of the SELECT data under the proposed model has been assessed by ΔDICSurv and 

ΔWAICSurv. The Bayesian criteria, ΔDICSurv and ΔWAICSurv, could be related to the 

association parameters, which are the regression coefficients associated with the random 

effects (‘covariates’) under the survival sub-model. To assess the change in ΔDICSurv and 

ΔWAICSurv due to the change in the association parameters, we carry out a simulation study 

under the two different scenarios of the association parameters.
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The remainder of the article is organized as follows. The description of the SELECT data 

and some preliminary statistics are presented in Section 2. The development of the proposed 

methodologies is discussed in Section 3. The Bayesian inference and computation are 

presented in Section 4. The simulation study design and results are presented in Section 5. A 

detailed analysis of the SELECT data is carried out in Section 6. We conclude the article 

with a brief discussion in Section 7. The technical details of MCMC sampling are given in 

the Supplementary Materials (http://www.statmod.org/smij/archive.html).

2 SELECT data

The dataset for this study is extracted from the SELECT data which was sponsored by 

National Cancer Institute. Enrolment of the patients into this study started in 2001 and ended 

in 2004. A total of 35 261 male patients from United States, Puerto Rico and Canada 

participated in this study. In this study, race, Hispanic status, family history of cancer and 

smoking status were collected at baseline. Also, height, weight, body mass index (BMI) and 

PSA were collected longitudinally over the study period. The follow-up process for a patient 

was terminated when the patient developed PC due to low-grade or high-grade.

The main variable of interest is the time-to-PC due to low-grade or high-grade (survival 

outcome), where the low- and high-grades are considered as two different causes of PC. The 

main objective of this study is to investigate the association between the longitudinal PSA 

(longitudinal outcome) and the competing risks survival outcome adjusting for other 

covariates. We include the cases in the analysis, in which the number of follow-up visits is at 

least two, leading to a total of 22 792 patients. The follow-up visiting times and event times 

are recorded in years for each patient. For the longitudinal PSAs, the median follow-up 

times are 4.02 years and 1.95 years, respectively, for the censored and observed patients with 

an overall median follow-up time of 3.96 years. The observed minimum, median and 

maximum survival times are 0.003, 8.071 and 14.249 years, respectively. The median 

number of follow-up visits for the patients is 6 with the minimum and maximum of 2 and 

10, respectively. Figure 1 shows the percentage distribution of the number of repeated 

measurements for different censoring status. We observe that for low-grade and high-grade, 

the percentage for the patients with less than five repeated measurements is higher compared 

to those for censored and missing-grade patients.

In Table 1, the distribution of PC status and the causes are presented. It is observed that 

about 7% patients developed cancer among whom for more than 26% patients, the cause of 

PC is missing. In Figure 2, the longitudinal trajectories and corresponding survival times for 

eight selected patients are presented. The figure shows that with the increasing PSA 

trajectory, the survival time tends to be lower compared to those for non-increasing PSA 

trajectory cases. This motivates us to develop the model to investigate the association 

between longitudinal PSA measures and the time to PC due to two different causes. Also, 

the missing cause cases should also be taken care of by imputation in MCMC sampling for 

carrying out an appropriate inference of the SELECT data.
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3 Joint modelling of longitudinal and competing risks survival data

The joint model is comprised of a longitudinal sub-model and a survival sub-model. In the 

following subsections, the notation and the sub-models are defined under the general setting.

3.1 Longitudinal sub-model

Suppose there are n subjects in the study and for the ith subject, mi longitudinal 

measurements are collected for i = 1,…,n. Let yi(aij) denote the longitudinal measurement at 

time aij for j = 1,…,mi and i = 1,…,n. We assume a mixed effects model (Verbeke and 

Molenberghs, 2009) for the longitudinal outcome yi(aij) given by

yi(aij) = g(aij)′θi + xi′γ + ϵi(aij), (3.1)

where g(aij) is a (q + 1)-dimensional vector of functions of time aij, θi is a (q + 1)-

dimensional vector of the random effects, γ is a p-dimensional vector of regression 

coefficients corresponding to the p-dimensional covariates xi and the measurement error 

ϵi(aij) is assumed to follow N(0, σ2). We assume that θi = (θ + θi
∗), where θi

∗ ∼ N(0, Ω), Ω is a 

(q + 1) × (q + 1) positive definite variance-covariance matrix, and θ is the vector of overall 

effects. We further assume that the subject-specific random effects θi and the measurement 

error terms ϵi(aij)’s are independent. We note that the trajectory function g(aij)′θi is a linear 

trajectory if q = 1, g(aij)′ = (1, aij) and a quadratic trajectory if q = 2, g(aij)′ = (1, aij, aij2 ). 

The trajectory function captures the unobserved subject-specific progression of the 

longitudinal outcome, and it is a critical component in the longitudinal sub-model.

This study is motivated from the PC data-SELECT (discussed in Section 2), where PSA 

measurements are collected longitudinally. The earlier studies (Ferrer et al., 2016) suggest 

that the logarithm of PSAs can be explained by a linear mixed effects model with a latent 

linear trajectory function of observation time. In this study, we consider a linear trajectory 

for the longitudinal sub-model defined in (3.1). Within the Bayesian framework, the 

posterior estimation of Ω depends on the data only through the random effects θi
∗’s which 

results in slow convergence of MCMC sampling (Zhang et al., 2019). To overcome the 

convergence issue of the covariance matrix of random effects, we consider the Cholesky 

decomposition of Ω = ΓΓ′ and introduce a novel reparameterization

θi
∗ = Γθi

R, (3.2)

where θi
R ∼ N(0, I2). We redefine the linear mixed effects model using this 

reparameterization as

yi = g(aij)′(θ + Γθi
R) + xi′γ + ϵi, (3.3)

where Γ =
b11 0
b21 b22

 with b11 > 0 and b22 > 0. This reparameterization will facilitate fast 

convergence and better mixing of Gibbs sampling from the resulting posterior distribution 
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for the covariance matrix of random effects. More details regarding the posterior 

computation and estimation are discussed in Section 4.

3.2 Survival sub-model

Let ti be the event time or censoring time and also let δi denote the censoring indicator for 

the ith subject. The censoring indicator δi takes a value of 0 for a censored event and δi = k 
indicates that an event occurred for the ith subject due to the kth cause for k = 1, 2. In this 

article, we consider the cause-specific hazards model in which, the random effects are 

included as covariates along with other fixed covariates. The proposed model is defined on 

the setting when there are two causes of failure and the dimension of the random effects is 

two. The cause-specific hazards model for the kth observed cause of failure is defined as

ℎk(t ∣ zi) = ℎk0(t) exp(αk′ θi
∗ + zi′βk), k = 1, 2, (3.4)

where βk is the vector of the coefficients corresponding to the fixed effects zi, αk is the 

vector of regression coefficients for the random effects θi
∗ and hk0(t) is the baseline hazard 

function for the kth cause of the event at time t. In the survival sub-model, the random 

effects are linked to the longitudinal sub-model through the association parameter αk. To 

account for the missing causes of failure for the uncensored subjects, we propose the 

following additive hazards model

ℎ12(t ∣ zi) = ∑
k = 1

2
ℎk0(t) exp(αk′ θi

∗ + zi′βk) . (3.5)

With the reparameterization of θi
∗ = Γθi

R, the random component of the survival sub-model 

can be expressed as

αk′ θi∗ = (αk1b11 + αk2b21)θi1
R + (αk2b22)θi2

R = αk
∗′θiR, k = 1, 2,

where

αk1
∗ = αk1b11 + αk2b21, αk2

∗ = αk2b22 . (3.6)

With this reparameterization, the hazard model (3.4) for the kth cause of event is redefined 

as

ℎk(t ∣ zi) = ℎk0(t) exp(αk
∗′θi

R + zi′βk), k = 1, 2, (3.7)

and the hazard function (3.5) for the unknown cause of failure is redefined as

ℎ12(t ∣ zi) = ∑
k = 1

2
ℎk0(t) exp(αk

∗′θi
R + zi′βk) . (3.8)
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We further assume that the baseline hazard function due to the kth cause has a piecewise 

constant form with Gk partitions of the time axis, 0 = sk0 < sk1 < ⋯ < skGk = ∞,

ℎk0(t) = λkg, t ∈ (sk, g − 1, sk, g], g = 1, 2, …, Gk, k = 1, 2 . (3.9)

Let [λk = (λk1, …, λkGk), k = 1, 2} denote the vectors of piecewise constants of the baseline 

hazard functions defined in (3.9). The likelihood function under the proposed joint model is 

constructed in the following subsection.

3.3 Likelihood construction

Let φ = (φ1, φ2), where φ1 = (θR, θ, γ, σ2, Γ), φ2 = (λ1, λ2, α1
∗, α2

∗, β1, β2) and 

θR = (θ1
R′, …, θn

R′)′. Let Dobs = (DLong,obs, DSurv,obs) denote the observed data, where 

DLong,obs = {(yi, xi), i = 1,…,n} and DSurv,obs = {(ti, δi, zi), i = 1,…,n}. For the ith subject, 

the censoring indicator δi ∈ {0, 1, 2}, where 0 indicates censoring, 1 and 2 indicate two 

distinct causes of failure. For instance, in the SELECT data, δi takes a value of 0 for no PC, 

1 for low-grade cancer, and 2 for high-grade cancer. Let ui take a value of 1 when the ith 

subject is uncensored due to an unknown cause and takes a value of 0 when the cause of 

failure for the ith subject is known. In this article, we consider the unobserved random 

effects as the latent or unknown parameters, conditional on the random effects, the 

longitudinal data are independent of the survival data. The joint distribution of (yi, ti, θi
R) is 

written as

f(yi, ti, θi
R ∣ φ, δi, xi, zi) = f(yi ∣ θi

R, φ1, xi)f(ti ∣ δi, θi
R, φ2, zi)f(θi

R), (3.10)

where

f(yi ∣ θiR, φ1, xi) = 1
(2πσ2)mi ∕ 2

× exp − 1
2σ2 yi − g(aij)′(θ + ΓθiR) + xi′γ

′ yi − g(aij)′(θ + ΓθiR) + xi′γ ,

f(ti ∣ δi, θiR, φ2, zi) = ∏
k = 1

2
{ℎk0(ti) exp(αk

∗′θiR + zi′βk)}I(δi = k, ui = 0)

× exp − ∑
k = 1

2
Hk0(ti) exp(αk

∗′θiR + zi′βk)

× ∑
k = 1

2
ℎk0(ti) exp(αk

∗′θiR + zi′βk)
I(δi > 0, ui = 1)

,

f(θiR) = 1
2π exp ( − 1

2θiR′θiR) .

In the following Section 4, we present the Bayesian estimation of the parameters under the 

joint model.
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4 Bayesian inference

The Bayesian estimation of the proposed model involves sampling from the full conditional 

distributions, adaptive rejection sampling (Gilks and Wild, 1992) and Metropolis–Hastings 

sampling(Metropolis et al., 1953; Hastings, 1970). In the SELECT data, there are a 

substantial percentage of missing causes of failure. In MCMC sampling from the posterior 

distribution, we add one additional step to impute the missing causes of failure. Let {δi
m, 

i ∈ ℐm} be the set of censoring indicators with the missing grade, where ℐm be the set of 

patients with missing grade. The occurrence of PC is decided due to low-grade with 

probability

1
1 + exp( − {log ℎ10(ti)

ℎ20(ti)
+ θi

R′(α1
∗ − α2

∗) + zi′β1 − zi′β2})
, i ∈ ℐm .

(4.1)

The probability for high-grade cancer can be calculated similarly. Let {δi
o, i ∈ ℐo} be the set 

of observed censoring status, where ℐo denotes the set of subjects with observed causes or 

censored. We let δi
∗ = δi

m if i ∈ ℐm and δi
∗ = δi

o if i ∈ ℐo, constituting the complete set of 

censoring status {δi
∗, i = 1,…,n}. With the imputed censoring status, we sample the model 

parameters from the posterior distribution derived from the augmented likelihood. 

Particularly, the distribution of the survival time in the augmented likelihood is given by

f(ti ∣ δi
∗, θi

R, φ2, zi) = ∏
k = 1

2
{ℎk0(ti) exp(αk

∗′θi
R + zi′βk)}I(δi∗ = k)

× exp − ∑
k = 1

2
Hk0(ti) exp(αk

∗′θi
R + zi′βk) .

(4.2)

The other components of the augmented likelihood remain the same as defined in (3.10). In 

the augmented data likelihood, the longitudinal and survival data are independent to each 

other conditional on the random effects. Thus, the posterior distributions of the longitudinal 

and survival sub-model parameters depend on the random effects, which are unobserved. We 

sample the random effects θR from the posterior distribution and conditional on the sampled 

random effects, the survival and longitudinal sub-model parameters are updated in MCMC 

sampling. Full details regarding the prior and MCMC sampling are presented in the 

Supplementary Materials (http://www.statmod.org/smij/archive.html). We compute and 

report the posterior means, the posterior standard deviations and the 95% highest posterior 

density (HPD) intervals of the model parameters. The convergence of MCMC sampling is 

investigated via the trace plots of MCMC samples.

4.1 Model assessment: DICSurv, ΔDICSurv, WAICSurv and ΔWAICSurv

DICSurv: The (DIC; Spiegelhalter et al., 2002) has been widely used as a Bayesian model 

assessment measure. In this article, we are mainly interested in the model assessment for the 

competing risks data and to investigate how much the performance of the model is improved 
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by the inclusion of longitudinal data into the survival model. The DIC for the survival sub-

model is defined as

DICSurv = DevSurv E(φ2 ∣ DSurv,obs), E(θR ∣ DSurv,obs) + 2PD[Surv],

where PD[Surv] = E(DevSurv(φ2, θR∣DSurv,obs)) – DevSurv (E(φ2∣DSurv,obs), E(θR∣DSurv,obs)) is 

the effective number of model parameters and the deviance function is defined as

DevSurv(φ2, θR ∣ DSurv,obs) = − 2 log L(φ2, θR ∣ DSurv,obs) .

In this article, the random effects θR are considered as unknown parameters and the DIC 

could be influenced by the inappropriate posterior estimate of these unknown parameters. 

Following Huang et al. (2005), we extend the standard DIC by considering a linear 

combination of the parameters which is defined as

DICSurv = DevSurv E(g(φ2, θR) ∣ DSurv,obs) + 2PD[Surv], (4.3)

where g(φ2, θR) = (λ1, λ2, α1
∗′θR, α2

∗′θR, β1, β2), the effective number of parameters,

PD[Surv] = E DevSurv g(φ2, θR) ∣ DSurv,obs − DevSurv E(g(φ2, θR) ∣ DSurv,obs) ,

and the deviance function

DevSurv g(φ2, θR) ∣ DSurv,obs = − 2 log L(g(φ2, θR) ∣ DSurv,obs) .

ΔDICSurv: Another important aspect of the model assessment is to measure the gain in fit 

due to the inclusion of longitudinal data into the survival model. For this, we fit the survival 

data alone, that is, considering α1
∗ = α2

∗ = 0 and the cause-specific hazard function takes the 

form

ℎk(t ∣ ℎk0, αk
∗ = 0, βk, zi) = ℎk0(t) exp(zi′βk) .

The DIC for the survival sub-model with the above consideration

DICSurv,0 = DevSurv,0 E(φ2
∗ ∣ DSurv,obs) + 2PD[Surv,0], (4.4)

where φ2
∗ = (λ1, λ2, β1, β2), DevSurv,0(φ2

∗ ∣ DSurv,obs) = − 2 log L(φ2
∗ ∣ DSurv,obs) and

PD[Surv,0] = E DevSurv, 0(φ2
∗ ∣ DSurv,obs) − DevSurv,0 E(φ2

∗ ∣ DSurv,obs) .

The following assessment criterion is defined
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ΔDICSurv = DICSurv,0 − DICSurv, (4.5)

which quantifies the gain in the fit in the competing risks survival sub-model due to the 

inclusion of longitudinal data penalizing the additional parameters in the competing survival 

sub-model.

WAICSurv: The WAIC (Watanabe, 2010) is another known Bayesian criterion for model 

assessment. The WAIC computes the logarithm of the pointwise posterior predictive density 

(LPPD) and adds the penalty term to adjust for overfitting (Gelman et al., 2014). LPPD for 

the survival sub-model is defined as

LPPDSurv = log E L(g(φ2, θR) ∣ DSurv,obs) .

The effective number of parameters is evaluated as

PWAIC[Surv] = 2 log E L(g(φ2, θR) ∣ DSurv,obs) − E log L(g(φ2, θR) ∣ DSurv,obs) .

Finally, the WAICSurv is defined as

WAICSurv = − 2(LPPDSurv − PWAIC[Surv]) . (4.6)

ΔWAICSurv: Similar to the formulation of ΔDICSurv, we first define WAICSurv,0, which is 

defined on the parameter vector φ2
∗ = (λ1, λ2, β1, β2) and setting α1

∗ = α2
∗ = 0. The WAICSurv,0 

is given by

WAICSurv, 0 = − 2(LPPDSurv, 0 − PWAIC[Surv, 0]), (4.7)

where LPPDSurv, 0 = log E L(φ2
∗ ∣ DSurv,obs)  and the effective number of parameter, 

PWAIC[Surv, 0] = 2 log E L(φ2
∗ ∣ DSurv,obs) − E log L(φ2

∗ ∣ DSurv,obs) . Finally, the ΔWAICSurv 

is given by

ΔWAICSurv = WAICSurv, 0 − WAICSurv . (4.8)

The interpretation of the ΔWAICSurv is similar to ΔDICSurv, which again quantifies the gain 

in fit due to the inclusion of longitudinal outcome in the survival sub-model.

5 A simulation study

5.1 Simulation design

We carry out a simulation study to examine the empirical performance of ΔDICSurv and 

ΔWAICSurv under different values of the association parameters α1 and α2. We define the 

sub-models and specify the design values of the parameters using the same notations 
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introduced in Sections 3 and 4. The longitudinal measurements are generated from the 

following sub-model

yi(aij) = g(aij)′(θ + Γθi
R) + xi′γ + ϵi(aij), (5.1)

where g(aij)′ = (1, aij), xi = (x1i, x2i) with x1i ~ N(0, 1) and x2i∣x1i ~ N(0.2x1i, 1), ϵi(aij) ~ 

N(0, σ2), and θi
R = (θ0i

R, θ1i
R) ∼ N(0, I2). The design values of the parameters are given as θ = 

(θ0, θ1)′ = (0.5, 1)′, Γ =
b11 b12
b21 b22

= 1 0
0.5 0.8 , γ = (γ1, γ2)′ = (0.15, 0.3)′ and σ2 = 0.5.

For the survival sub-model, the same set of covariates is used as for the longitudinal sub-

model and set zi = xi. The exponential distribution for the baseline hazard functions is 

considered due to two different causes

ℎk0(t) = λk0, k = 1, 2, t ∈ R+ .

Thus the survival sub-model for the kth cause of failure becomes

ℎk(t ∣ λk0, αk
∗, θi

R, βk, zi) = λk0 exp(αk
∗′θi

R + zi′βk), k = 1, 2 . (5.2)

We generate the true event time due to the kth cause of failure as follows

tik = −λk0 exp(αk
∗′θiR + zi′βk) −1log(1 − U), k = 1, 2,

where U ∼ U(0, 1). The censoring times ci are generated from an exponential distribution 

with mean 25. Then the observed event time for the ith subject is computed as ti = min(ti1, 

ti2, ci). The censoring status for the ith subject is evaluated as δi = k if I(tik ≤ ci) for k = 1, 2 

and 0 otherwise. To simulate the unknown causes of failure, for each uncensored case, we 

first generate v ∼ U(0, 1), and the cause of failure is then set to be missing if v < 0.1.

The design values of the survival sub-model parameters are given as β1 = (0.5, 0.6)′, β2 = 

(0.2, −0.5)′, λ10 = 0.1 and λ20 = 0.08. For the longitudinal data, we consider a balanced 

study design with mi = 20 for i = 1,…,n. The observation times of the longitudinal 

measurements for the ith subject are evaluated at aij = 21 (j – 1)/365, j = 1,…, mi. We 

generate the datasets for the following two scenarios with all other parameter values 

specified as above:

1. True-SPM: In this scenario, we generate the data from the proposed share 

parameter joint model. In particular, we generate the longitudinal data from the 

model (5.1) and the survival data from the model (5.2) with α11
∗ = 0.2, α12

∗ = 0.8, 

α21
∗ = 0.5 and α22

∗ = 1.
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2. True-Surv: In this scenario, the data are generated from the survival data only 

model by specifying αk1
∗ = αk2

∗ = 0 for k = 1, 2. Thus, the survival sub-model 

defined in (5.2) becomes

ℎk(t ∣ λk0, βk, zi) = λk0 exp(zi′βk), k = 1, 2 . (5.3)

5.2 Simulation results

We generate two hundred simulated datasets independently with a sample size (n) of 6 000 

under each of the scenarios discussed above. The censoring percentages of True-SPM and 

True-Surv scenarios are about 20% and 17%, respectively. For each of the two scenarios, we 

fit the data using the proposed joint model and the survival data only model to evaluate 

ΔDICSurv and ΔWAICSurv. We take 2 000 burn-in iteration and 5 000 Gibbs samples with 

five thinned steps for each simulated dataset. For the True-SPM scenario, the simulation 

results under the proposed joint model and the survival data only model are presented in 

Tables 2 and 3, respectively. Table 2 shows that the joint model analysis of the simulated 

data under the True-SPM scenario leads to unbiased and efficient parameter estimates with 

high coverage probabilities. We also analyse the same simulated data under the True-SPM 

scenario by the survival data only model and the results are presented in Table 3. Table 3 

shows that the biases of the model parameters are higher compared to the joint model 

analysis and the coverage probabilities are substantially lower. Particularly, the coverage 

probabilities for λ1 and λ2 are zeros. The Bayesian criteria ΔDICSurv and ΔWAICSurv are 

evaluated for each simulated data under the True-SPM scenario.

We repeat a similar analysis for the simulated data under the True-Surv scenario. To preserve 

the space, we present the simulation results under the proposed joint model and the survival 

data only model in Tables S.1 and S.2, respectively, in the Supplementary Materials (http://

www.statmod.org/smij/archive.html). We also evaluate the ΔDICSurv and ΔWAICSurv for 

each simulated dataset under the True-Surv scenario to compare with the True-SPM 

scenario. Table 4 presents the summary statistics of ΔDICSurv and ΔWAICSurv for the True-

Surv and True-SPM scenarios. Under the True-Surv scenario, the median values of 

ΔDICSurv and ΔWAICSurv are −4.771 and −4.669, respectively, while under True-SPM 

scenario, the median values of ΔDICSurv and ΔWAICSurv are 3793.524 and 3811.183, 

respectively.

The boxplots of ΔDICSurv and ΔWAICSurv are shown in Figures 3 and 4, respectively, for the 

True-Surv and the True-SPM. Figures 3 and 4 show that when there exists no association 

between the longitudinal and survival data, the gain in fit due to the inclusion of longitudinal 

data in the survival sub-model is not substantial. In the True-Surv scenario, the inter quartile 

ranges (IQRs) of ΔDICSurv and ΔWAICSurv in Table 4 include the value of −4. This indicates 

that DICSurv (4.3) and WAICSurv (4.6) penalize more due to the inclusion of four association 

parameters (α1, α2) compared to DICSurv,0 (4.4) and WAICSurv,0 (4.7). However, the 

boxplots of ΔDICSurv and ΔWAICSurv in Figures 3 and 4, respectively, under the True-SPM 

scenario show a substantial gain in fit. These figures clearly illustrate that our proposed joint 
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model performs better than the survival data only model when there exists an association 

between the longitudinal and survival data.

6 Analysis of SELECT data

We carry out an analysis of the SELECT data. The response variable is the time to diagnosis 

of PC due to low-grade or high-grade. In this analysis, we consider seven covariates, 

including patients age (in years), BMI in kg/m2, Hispanic status (‘Yes’ = 1, ‘No’ = 0), Race 

(‘African American’ = 1, ‘Others’ = 0), Family history of cancer (‘Yes’ = 1, ‘No’ = 0), 

current smoking status (‘Yes’ = 1, ‘No’ = 0) and former smoking status (‘Yes’ = 1, ‘No’ = 

0). Table 5 shows the summary statistics of the continuous variables. These summary 

statistics show that the average age of high-grade patients is higher compared to the other 

groups. The average BMI of high-grade patients is also found to be higher. Table 6 shows 

the frequency distribution of the patients with respect to the censoring status. Among the 

patients who developed cancer, missing-grade patients show a higher percentage of Hispanic 

group compared to the others. From the percentage distribution, we observe that there is no 

indication of a positive association between smoking status and cancer status. For all three 

groups of PC, the percentage of family history of cancer was found to be higher compared to 

the censored group. A similar trend is observed among the African American group 

indicating a positive association between race and cancer status.

The main goal of this study is to assess the association between the longitudinal PSA and the 

time-to-PC due to low-grade or high-grade after adjusting for the covariates under 

consideration. For the longitudinal sub-model, we consider the natural logarithm of PSA as 

the response variable. For both the longitudinal and survival data, the same seven covariates 

are used. We consider the shared parameter joint model, in which the random effects are 

assumed for the longitudinal and survival data. We consider the piecewise constant forms for 

the baseline hazards functions due to two different causes. To construct the appropriate 

partitions {skl, l = 1,…, Gk, k = 1, 2}, we use DICSurv,0 defined in (4.4) to determine the best 

combination of (G1, G2). Table 7 shows the results of DICSurv,0 for different combinations of 

(G1, G2) suggesting the piecewise constant hazard function with (G1 = 70, G2 = 70) fits the 

SELECT data best. For the analysis, we used 5 000 burn-ins and 10 000 MCMC samples.

The posterior estimates of γ along with the 95% HPD intervals are presented in Figure 5. 

The figure suggests that except Hispanic status and race of the patients, all other covariates 

have significant effects on the longitudinal PSA. In particular, we see that BMI is negatively 

associated with the PSA, which is consistent with other studies (Hekal and Ibrahiem, 2010). 

Some studies (Algotar et al., 2011) found there is a positive association between smoking 

status and PSA. However, the sample size for that study was very small (140 subjects). In 

our analysis of the SELECT data, we find that smoking status is negatively associated with 

the PSA. The estimates and the 95% HPD intervals of the association parameters {αk, k = 1, 

2} are presented in Table 8. The results show that both intercept and slope parameters of the 

longitudinal PSA in the shared parameter joint model have significant effects on both the 

low-grade cancer and the high-grade cancer. The positive values of the association 

parameters indicate that there is a positive association between the PSA and the risk of 

developing low-grade or high-grade cancer. Comparing the risks of the low-grade and high-
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grade patients, both the intercept parameter and the slope parameter for high-grade are 

higher compared to those low-grade patients. This indicates that with the increase in the 

PSA, the risk of developing high-grade cancer is slightly higher compared to the risk of low-

grade cancer.

The survival sub-model parameter estimates under the joint model and the survival data only 

model are presented in Table 9. The results show that age is positively associated with the 

risk of high-grade cancer and not significantly associated with low-grade cancer, which is 

found to be consistent under both the joint model and the survival data only model. Both 

joint model and he survival data only model show that BMI is not associated with the risk of 

low-grade cancer. Although BMI is significantly positively associated with high-grade 

cancer under the survival data only model, BMI is not significantly associated with the risk 

of high-grade cancer under the joint model. Hispanic patients were found to have a lower 

risk of developing low-grade cancer compared to non-Hispanic patients and Hispanic status 

is found to be not associated with the risk of developing high-grade cancer. Although race of 

the patients is a significant factor for the cancer development under the survival data only 

model, race is not a significant factor associated with the risk of developing low-grade and 

high-grade cancer under the joint model. We also present the estimates and the 95% HPD 

intervals of α21 – α11 and α22 – α12 in Table 8. The results in Table 8 indicate that the risk 

of developing PC due to low grade is higher than high grade at the baseline. The difference 

in the slope parameters indicates that the risk of developing high grade cancer increases at a 

faster rate compared to low grade cancer due to increase in PSA.

The family history of cancer has been an important risk factor associated with the 

development of low-grade and high-grade cancer. The patients who have family history of 

cancer tend to have a higher risk of developing low-grade and high-grade cancer compared 

to the patients who do not have any family history of cancer. This association is observed 

under both the joint model and the survival data only model. The patients who currently 

smoke have a lower risk of developing both low-grade and high-grade cancer under the joint 

model, although under the survival data only model, currently smoking status is not 

associated with low-grade cancer. The patients who used to smoke before have a lower risk 

of developing low-grade cancer, however, they do not have a higher risk of high-grade 

cancer. Finally, we present the Bayesian DIC and WAIC criteria to assess the fit of the 

models. DIC and WAIC under the survival data only model are DICsurv,0 = 19082.667 and 

WAICSurv,0 = 19118.526. The DICSurv = 14915.091 and WAICSurv = 15207.596 under the 

joint model, which are much lower than the DICSurv,0 and WAICSurv,0 under the survival 

data only model. To quantify the gain in fit with the inclusion of longitudinal data in the 

survival sub-model, we also defined ΔDICSurv in (4.5). We found ΔDICSurv = 4167.5768, 

which indicates that we have about 21% gain in fit through the inclusion of the longitudinal 

PSA in the survival sub-model. In addition to ΔDICSurv, we also present the results of 

ΔWAICSurv in Table 9. The ΔWAICSurv = 3910.930 indicates that through the shared 

parameter joint model analysis, we get approximately 20% gain in fit due to the inclusion of 

longitudinal data compared to the survival data only model. The convergence of the model 

parameters is checked via the trace plots of MCMC samples of the model parameters. These 

figures are given in the Supplementary Materials (http://www.statmod.org/smij/

archive.html).
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7 Discussion

In this article, a joint model for the longitudinal and competing risks survival data is 

proposed with an applications to SELECT data. Our proposed model is flexible to account 

for the uncensored subjects with missing causes of failure. We develop a novel 

reparameterization to facilitate an efficient and convenient implementation of the MCMC 

sampling algorithm to sample from the posterior distribution. The proposed model is applied 

to SELECT data and to assess the model fit, we introduce four model assessment criteria, 

DICSurv, ΔDICSurv, WAICSurv and ΔWAICSurv. The Bayesian criteria ΔDICSurv and 

ΔWAICSurv measure the gain in fit of the survival sub-model due to the inclusion of 

longitudinal data. A simulation study is conducted to examine the change in ΔDICSurv and 

ΔWAICSurv for different values of the association parameters. Our simulation study shows 

that when there exists an association between the longitudinal and survival data, our 

proposed joint model fits the data better compared to the survival data only model. The 

analysis of the SELECT data shows that there is a significant positive association with PSA 

and the risk of developing low-grade and high-grade cancer. The performance of the joint 

model is assessed by ΔDICSurv and ΔWICSurv that show about the 21% and 20% gain in fit 

compared to the model with survival data only, respectively. Computer code was written for 

the FORTRAN 95 compiler, and we used IMSL subroutines with double precision accuracy. 

The FORTRAN code is available from the authors upon request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Percentage distribution of PSA repeated measurements for different censoring status
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Figure 2: 
PSA trajectories and survival times for eight random patients
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Figure 3: 
Boxplots of DIC under True-SPM and True-Surv model
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Figure 4: 
Boxplots of WAIC under True-SPM and True-Surv model
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Figure 5. 
95% HPD interval of the γ
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Table 1:

Distribution of cancer status by cancer grade

PC Frequency (%)

No 21 194 (92.99)

Yes 1 598 (7.01)

  Low-grade 755 (47.25)

  High-grade 418 (26.16)

  Missing-grade 425 (26.6)
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Table 2:

Posterior estimates under the joint model for True-SPM in Section 5.1

Parameter True Est. Bias SE SD Coverage

γ1 0.15 0.150 −0.000 0.011 0.010 0.970

γ2 0.30 0.302 −0.002 0.011 0.012 0.930

σ2 0.50 0.500 0.000 0.002 0.002 0.910

b11 1.00 1.000 0.000 0.009 0.009 0.970

b21 0.50 0.500 0.000 0.012 0.012 0.925

b22 0.80 0.799 0.001 0.008 0.008 0.950

θ1 0.50 0.496 0.004 0.013 0.014 0.905

θ2 1.00 0.990 0.010 0.012 0.013 0.875

α11
∗

0.20 0.202 −0.002 0.023 0.022 0.950

α12
∗

0.80 0.800 0.000 0.023 0.022 0.950

α21
∗

0.50 0.494 0.006 0.027 0.029 0.925

α22
∗

1.00 0.997 0.003 0.026 0.023 0.975

β11 0.50 0.498 0.002 0.021 0.021 0.940

β12 0.60 0.587 0.013 0.023 0.024 0.890

β21 0.20 0.204 −0.004 0.023 0.022 0.960

β22 −0.50 −0.484 −0.016 0.025 0.022 0.950

λ1 0.10 0.099 0.001 0.002 0.002 0.940

λ2 0.08 0.080 −0.000 0.002 0.002 0.955
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Table 3:

Posterior estimates under the survival data only model for True-SPM in Section 5.1

Parameter True Est. Bias SE SD Coverage

β11 0.50 0.468 0.032 0.021 0.026 0.650

β12 0.60 0.594 0.006 0.022 0.029 0.845

β21 0.20 0.172 0.028 0.023 0.028 0.705

β22 −0.50 −0.436 −0.064 0.024 0.029 0.310

λ1 0.10 0.079 0.021 0.002 0.002 0.000

λ2 0.08 0.067 0.013 0.002 0.002 0.000
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Table 4

Summary of ΔDICSurv and ΔWAICSurv for True-SPM and True-Surv

True-Surv True-SPM

Criterion Median IQR=(Q1, Q3) Median IQR=(Q1, Q3)

ΔDICSurv −4.771 (−6.004, −2.460) 3 793.524 (3 702.444, 3 855.218)

ΔWAICSurv −4.699 (−5.923, −2.432) 3 811.183 (3 716.918, 3 870.227)
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Table 5:

Summary statistics of continuous covariates at baseline by PC

Mean (SD)

Censored Low-grade High-grade Missing-grade

Age 62.94 (6.72) 62.95 (6.03) 64.58 (6.24) 62.59 (7.39)

Height 176.64 (7.44) 176.84 (7.29) 176.83 (7.17) 177.09 (7.39)

Weight 89.19 (15.57) 88.11 (14.85) 90.92 (16.23) 89.41 (14.45)

BMI 28.56 (4.55) 28.12 (4.06) 29.08 (4.91) 28.48 (4.15)
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Table 6:

Summary statistics of categorical covariates by PC

Frequency (%)

Censored Low grade High grade Missing grade

Hispanic

  No 20 124 (94.95) 738 (97.75) 405 (96.89) 400 (94.12)

  Yes 1 070 (5.05) 17 (2.25) 13 (3.11) 25 (5.88)

Smoking

  Current 1 681 (7.93) 51 (6.75) 19 (4.55) 23 (5.41)

  Former 10 499 (49.54) 344 (45.56) 193 (46.17) 203 (47.76)

  Never 9 014 (42.53) 360 (47.68) 206 (49.28) 199 (46.82)

Family history

  No 17 805 (84.01) 533 (70.60) 304 (72.73) 316 (74.35)

  Yes 3 389 (15.99) 222 (29.40) 114 (27.27) 109 (25.65)

Race

  African American 2 887 (13.62) 108 (14.30) 61 (14.59) 76 (17.88)

  Others 18 307 (86.38) 647 (85.70) 357 (85.41) 349 (82.12)
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Table 7

DICSurv,0 and dimension penalty for different combinations of G1 and G2

G1 G2 DICSurv,0 PD[Surv,0]

60 60 19 137.72 136.06

60 70 19 112.95 146.68

60 80 19 123.86 157.33

60 90 19 137.66 167.99

70 60 19 099.99 146.37

70 70 19 082.67 156.77

70 80 19 094.20 167.72

70 90 19 107.96 178.36

80 60 19 110.30 156.70

80 70 19 093.18 167.19

80 80 19 104.48 178.05

80 90 19 118.93 189.04
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Table 8

Posterior estimates and 95% HPD intervals of α1 and α2 under the joint model with G1=70 and G2 = 70

Est. SD 95% HPD interval

α11 1.467 0.057 (1.454, 1.460)

α12 4.333 0.295 (4.291, 4.326)

α21 1.387 0.075 (1.371, 1.380)

α22 6.169 0.349 (6.153, 6.192)

α21 – α11 −0.080 0.096 (−0.108, −0.097)

α22 – α12 1.836 0.457 (1.845, 1.900)
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Table 9

Posterior estimates, 95% HPD intervals, DICSurv, DICSurv,0, and ΔDICSurv under the joint model and the 

survival data only model with G1=70 and G2 = 70

Variable

Joint model Survival data only model

Est. SD 95% HPD int. Est. SD 95% HPD int.

Age
0.028 0.039 (−0.05, 0.103) 0.003 0.034 (−0.063, 0.071)

0.254 0.05 (0.162, 0.359) 0.234 0.044 (0.15, 0.321)

BMI
−0.153 0.039 (−0.228, −0.075) −0.096 0.035 (−0.162, −0.025)

0.044 0.049 (−0.054, 0.138) 0.117 0.043 (0.03, 0.2)

Hispanic
−0.119 0.049 (−0.22, −0.028) −0.085 0.045 (−0.173, 0)

−0.073 0.061 (−0.194, 0.041) −0.048 0.057 (−0.162, 0.058)

African −0.043 0.039 (−0.12, 0.033) 0.07 0.034 (0.005, 0.138)

American 0.011 0.051 (−0.09, 0.11) 0.139 0.045 (0.052, 0.229)

Family 0.274 0.032 (0.211, 0.335) 0.259 0.027 (0.204, 0.312)

History 0.244 0.044 (0.157, 0.328) 0.231 0.038 (0.156, 0.306)

Currently −0.086 0.042 (−0.165, −0.003) −0.066 0.037 (−0.138, 0.008)

Smoker −0.173 0.066 (−0.304, −0.049) −0.16 0.063 (−0.286, −0.04)

Former −0.081 0.039 (−0.155, −0.003) −0.068 0.035 (−0.138, −0.002)

Smoker −0.102 0.052 (−0.201, 0) −0.103 0.047 (−0.196, −0.013)

DICSurv 14 915.091

DICSurv,0 19 082.668

ΔDICSurv 4 167.577

WAICSurv 15 207.596

WAICSurv,0 19 118.526

ΔWAICSurv 3 910.930
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