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Abstract

As non-“self” macromolecules, biotherapeutics can trigger an immune response that can reduce 

drug efficacy, require patients to be taken off therapy, or even cause life-threatening reactions. To 

enable flexible and facile design of protein biotherapeutics while reducing the prevalence of T cell 

epitopes that drive immune recognition, we have integrated into the Rosetta protein design suite a 

new scoring term that allows design protocols to account for predicted or experimentally-identified 

epitopes in the optimized objective function. This flexible scoring term can be used in any Rosetta 

design trajectory, can be targeted to specific regions of a protein, and can be readily extended to 

work with a variety of epitope predictors. By performing extensive design runs with varied design 

parameter choices for three case study proteins as well as a larger diverse benchmark, we show 

that the incorporation of this scoring term enables effective exploration of an alternative, 

deimmunized sequence space to discover diverse proteins that are potentially highly deimmunized 

while retaining physical and chemical qualities similar to those yielded by equivalent non-

deimmunizing sequence design protocols.

INTRODUCTION

In recent years, there has been a large growth in the use of therapeutic proteins to treat a 

wide range of diseases,1,2 including cancer,3–6 autoimmune disorders and rheumatoid 

arthritis,7–11 hematological disorders,12,13 and others. While this growth has demonstrated 
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the utility and versatility of biotherapeutics when compared to conventional small molecule 

therapeutics, it has also highlighted a major drawback in using macromolecules as 

pharmaceutical agents: the recognition of macromolecules by the immune system can 

frequently lead to an anti-drug response that can neutralize the therapeutic molecule or even 

lead to life-threatening allergic reactions.14 In order to overcome this limitation, a critical 

area of research has been the development of methods to deimmunize potential therapeutics 

early in the drug development process by identifying and eliminating the immunogenic 

epitopes that drive detrimental immune responses.15–25 In addition to the development of 

animal models of the human immune system17,23,26 and sensitive ex vivo immunoassays to 

assess immunogenicity across a diverse panel of human donors,16,18,23,27 computational 

methods that can both identify15,28,29 and remove15,18,30,31 immunogenic epitopes have 

become important tools in the therapeutic design process.

The immune response against an exogenous protein such as a biotherapeutic begins when it 

is taken up by professional antigen presenting cells (APCs), which express class II major 

histocompatibility complex (MHC-II) proteins. In the APCs, the exogenous protein is 

proteolyzed into short peptides of about 13–25 residues.32,33 Those peptides that are bound 

by MHC-II, with a 9-residue “core” peptide engaging MHC-II’s peptide binding cleft, are 

transported to the cell’s surface for inspection by T cells. If a cognate T cell receptor 

recognizes the presented peptide-MHC complex, the T cell can be activated against the non-

“self” protein and can give help to B cells that are also primed against the protein, thereby 

enabling the maturation of high-affinity class-switched anti-biotherapeutic antibodies.34 A 

rational approach to protein deimmunization is thus to identify peptides in the therapeutic 

that have a high propensity for binding MHC-II and to introduce mutations therein that 

reduce this binding. MHC-II is genetically encoded, and the peptide-binding propensities 

manifested across human allelic diversity are highly degenerate, with a relatively small 

number of alleles sufficient to represent recognition patterns across most of the human 

population.35–37 This highly predictable upstream bottleneck thus provides a readily 

engineerable target by which to achieve deimmunization.

To realize this rational deimmunization approach, it is necessary to predict which peptides 

are likely to be recognized by MHC-II and which mutations may reduce this binding while 

maintaining protein stability and therapeutic activity. The last twenty years have seen 

improvements in the number and sophistication of epitope prediction tools,15,28,29 including 

those leveraging immunopeptidomics data,38,39 as well as the curation of an increasingly 

large number of epitope data supporting better training of these tools.40 At the same time, 

general protein design strategies have matured, and synthetic biology approaches have 

greatly decreased in cost and accessibility, making rational protein design campaigns a 

reality.41–43 These advances have reinforced the need to seamlessly integrate 

computationally-driven deimmunization in the design, development, and engineering of all 

manner of protein therapeutics. Computational protein design methods that selectively 

explore the non-immunogenic sequence space compatible with a desired therapeutic 

function could preemptively mitigate the future risk of adverse immune responses, while 

side-stepping the need for time-consuming and labor-intensive experimentally-driven efforts. 

Computational protein design methodologies have been previously developed30,31 and 

successfully applied18,23 to a number of therapeutics; however, these platforms are focused 
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specifically on mutagenic deimmunization, while a fully featured computational design 

platform would support a highly diverse set of design tasks in which accounting for 

immunogenicity is one of many goals to be achieved.

Here, we present a state-of-the-art method for computationally-driven deimmunization 

implemented by the integration of epitope prediction methods into the premiere protein 

design suite, Rosetta.41 Rosetta performs sequence design and side-chain rotamer 

optimization using a Monte Carlo-based module called the “packer” to find a set of amino 

acid types and side-chain conformations minimizing an objective function (typically the 

Rosetta energy function). Because the Rosetta energy function is a weighted sum of scoring 

terms that can be calculated independently, this function can be augmented with additional 

non-energetic scoring terms to guide design towards some additional objective (multi-

objective optimization). We have integrated deimmunization as an additional objective 

during design by implementing a new scoring term, mhc_epitope, within Rosetta. While 

epitope prediction methods have previously been used in Rosetta,15,44 these methods either 

were never integrated into the publicly available Rosetta suite44, or they relied on specialized 

protocols preventing multi-objective sequence optimization and limiting their general 

applicability.15 Since the inclusion of mhc_epitope allows deimmunization to be performed 

using the packer, it can be easily incorporated into any existing protein design pipeline. In 

addition, the modular organization of our code allows mhc_epitope to work with multiple 

epitope predictors and promises easy integration of newly developed predictors in the future. 

At the time of writing, mhc_epitope enables straightforward deimmunization using the 

ProPred predictor,28 and also provides a means to integrate with state-of-the-art command-

line and web based predictors, such as NetMHCII,29 using pre-computed databases of 

immunogenic peptide predictions. Experimental data from the Immune Epitope Database40 

can likewise be incorporated to guide designs away from experimentally validated epitopes. 

Finally, Rosetta’s existing SVM-based predictor,15 “nmer,” has been integrated into 

mhc_epitope, allowing it to also be used with the Rosetta packer in any design context.

The mhc_epitope scoring term will greatly simplify computational deimmunization 

campaigns by combining Rosetta’s ability to design stable, functional protein variants with a 

variety of epitope predictors in a single step. We have benchmarked mhc_epitope in order to 

identify some recommended settings for typical protein deimmunization projects, 

highlighting the goal of achieving deimmunized, native-like designs with similar quality 

metrics to equivalent Rosetta designs without deimmunization. While we have focused on 

MHC-II for the common context of extracellular biotherapeutics, the framework can be 

readily adapted to support MHC-I for intracellular proteins (e.g., in gene therapy).45,46 We 

also expect that de novo protein design projects undertaken using Rosetta will be able to use 

mhc_epitope to avoid immunogenic designs in the first place.

METHODS

Implementation of MHCEpitopeEnergy.

Physics-based and nonphysical guidance scoring terms within Rosetta are computed 

internally by modules called “energy methods.” We have developed a new energy method in 

Rosetta called “MHCEpitopeEnergy” that allows a user to incorporate epitope prediction in 
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any Rosetta design strategy through a scoring term called “mhc_epitope.” As illustrated in 

Figure 1A, the process considers all constituent peptides within a protein, evaluating each 

separately for its propensity to bind and/or be displayed by MHC. Since it remains difficult 

to predict how peptides will be proteolytically processed before loading onto MHC,39 we 

follow the approach of most epitope predictors by considering every fixed-length peptide 

fragment, typically either 9 residues (the core unit binding MHC) or 15 residues (allowing 

for N- and C-terminal “overhangs”) in length using a “sliding window” approach (Figure 

1A). Each peptide is passed to one or more epitope predictors (subclasses of class 

MHCEpitopePredictor), which score the epitope’s propensity to bind and/or be presented. 

The sum of scores for all predictors over all peptides then represents the penalty added to the 

Rosetta energy for a particular protein sequence.

Because this evaluation is not pairwise-decomposable, we take advantage of the new 

“design-centric guidance scoring term” framework47–49 in Rosetta to evaluate the 

immunogenicity penalty as a function of the entire protein sequence during sequence design 

using the packer. When the mhc_epitope scoring term is set to a non-zero weight, this 

activates the MHCEpitopeEnergy energy method, which in turn evaluates a scoring penalty 

based on the MHCEpitopePredictor class selected by the user.

During a Rosetta design simulation (i.e., during a packing trajectory), when the packer 

considers an amino acid substitution at a particular position, only those peptides whose 

sequences change as a result of the substitution are considered for evaluating the change in 

the immunogenicity score. Note that this approach depends only on the amino acid 

sequence, and thus changes in rotamer packing that preserve amino acid identity do not 

affect the score. To implement efficient re-scoring, a cache of scores is maintained, one for 

each peptide for each predictor. Peptides affected by the proposed substitution are re-scored 

and the cache is updated (Figure 1B). The total mhc_epitope score is updated by the 

difference between the former and current scores for the affected peptides, allowing scoring 

to proceed with only a modest slowdown in computation time compared to a normal Rosetta 

rotamer packing run (roughly 10–20% with mid-sized proteins and the ProPred Predictor). 

As mhc_epitope scores can only change with a sequence change, the energy method is 

disabled during gradient-based Rosetta energy minimization, which affects conformation 

only.

Since MHCEpitopeEnergy is evaluated using a packer-compatible scoring term, it can in 

principle be integrated into any design calculation available in the Rosetta design suite by 

using a custom scoring function. The scoring term is compatible with symmetric structures 

that are used to model homo-oligomeric proteins and with structures that contain non-

protein residues, such as DNA, RNA, and small molecule ligands. Proteins containing non-

canonical amino acids are also supported, but since epitope predictors typically are not 

designed to score peptides containing these amino acids, they do not to contribute the 

mhc_epitope score.

The different methods for identifying epitope sequences are implemented as separate 

subclasses of the MHCEpitopePredictor class to allow straightforward extension of this 

method. Any algorithm that takes a fixed length peptide sequence and returns a score can be 
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readily implemented as an MHCEpitopePredictor, with the only other requirement being to 

create a user-facing configuration interface in the MHCEpitopeEnergySetup class.

We have currently implemented three main Predictors. Here, we present results using the 

ProPred28 Predictor and using NetMHCII29 by way of the database-based External/

PreLoaded Predictors. The former is an older, but very rapid, matrix-based means of 

evaluating peptide immunogenicity. The latter uses a pre-computed database of individual 

peptide scores, which can be calculated using advanced epitope prediction methods, 

including NetMHCII29 as presented here. Predictors like NetMHCII are too slow to be used 

to evaluate peptide scores during a packing trajectory, thus necessitating pre-computed 

databases. Likewise, any command-line or web-based predictor could be used to generate a 

database of scores to use during design. Additionally, External/PreLoaded Predictors allow 

the scoring and thereby deletion of experimentally-validated epitopes from the Immune 

Epitope Database (IEDB, https://www.iedb.org/),40 and we provide tools to manage the 

importing of such data. In addition to these Predictors, we have also implemented a support 

vector machine-based Predictor that utilizes the “nmer” scoring term; this epitope prediction 

method was already implemented in Rosetta,15 but was not packer-compatible and thus 

could not be used during a standard design calculation prior to its integration with 

MHCEpitopeEnergy.

Usage and Configuration.

We have provided detailed documentation for the use and configuration of mhc_epitope on 

the Rosetta Commons documentation site (https://www.rosettacommons.org/docs/latest/

rosetta_basics/scoring/MHCEpitopeEnergy). In brief, there are two requirements to enable 

deimmunization in a design trajectory: (1) the mhc_epitope scoring term must be set to a 

non-zero weight in the Rosetta scoring function used during design, and (2) a “.mhc” 

configuration file must be provided. This file is used to indicate which Predictor should be 

used, and to set various options for the Predictor. We have ensured that the mhc_epitope 

scoring term is fully configurable in both the RosettaScripts50 XML and the PyRosetta51 

Python user interfaces for Rosetta. In RosettaScripts,50 the weight and configuration file can 

be set directly in the <SCOREFXNS> block. In PyRosetta,51 the settings can either be set by 

passing the configuration command line flags to the init() function, or by using the 

EnergyMethodOptions.set_mhc_epitope_setup_files() function. For other Rosetta 

applications, the specific program’s documentation should be consulted for scoring function 

customization.

In order to accommodate cases in which a user only wants to deimmunize part of a structure 

(e.g. a binding protein being designed in complex with its target, where deimmunization of 

only the binding protein is desired), or in which a user would like to deimmunize with 

multiple Predictors/configurations simultaneously, we have implemented a Rosetta “mover” 

(a type of Rosetta module that modifies a structure) that adds MHCEpitopeEnergy 

constraints to a structure (AddMHCEpitopeConstraintMover, documented at https://

www.rosettacommons.org/docs/latest/scripting_documentation/RosettaScripts/Movers/

movers_pages/AddMHCEpitopeConstraintMover). The additional Predictors/configurations 

added by this mover work alongside the “global” configuration provided to the scoring 
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function, if any. If the constraint is added using a residue selector, only the selected portion 

of the structure will be deimmunized with that configuration. Note that a scoring function 

with a non-zero mhc_epitope weight must be used during design for the constraint to have 

an effect on a design trajectory. The scoring term’s weight is combined multiplicatively with 

a weight that is set in the constraint mover.

We created a base deimmunization protocol, implemented as a Rosetta Scripts50 XML 

script, which can be can be found at rosetta_scripts_scripts/scripts/public/protein_design/

deimmunization/mhc_epitope_design.xml in the RosettaCommons rosetta_scripts_scripts 

GitHub repository (initial commit: 931b264). The repository can be found in public releases 

of Rosetta at Rosetta/main/rosetta_scripts_scripts. This protocol performs three cycles of all-

residue fixed-backbone design followed by minimization, and can be varied by modifying 

the scoring function and its settings, as well as by applying a “resfile” (a packer 

configuration file) to alter design space sampled by Rosetta. All design trajectories apply a 

“FavorNative” penalty to avoid spurious mutations: each residue that is mutated from its 

native identity will result in a penalty of 1.5 Rosetta energy units. At the end of the protocol, 

a number of metrics are evaluated to be used as indicators of design quality.

Applications and Benchmarking.

We applied our protocol to three sets of targets: (1) three “case study” proteins that we use to 

establish reasonable parameters for protein deimmunization, (2) a benchmark set of 54 

diverse, soluble proteins that was previously used in a similar study,44 and (3) a set of three 

targets that have been previously deimmunized and experimentally validated. Prior to 

deimmunizing the target proteins, solvent molecules were removed from the structure which 

was then idealized in Rosetta using the FastRelax protocol, the REF2015 scoring function,52 

and backbone coordinate constraints. We then applied our base deimmunization protocol, as 

described above. The various settings that we evaluated throughout the study are 

summarized in Table S1. In addition to running the protocol as described, we also ran the 

equivalent protocol with the mhc_epitope weight set to 0 in order to allow for a direct 

comparison of design quality. For each of the protocol settings that were tested, 1000, 240, 

and 500 decoys were generated for the case study, benchmark, and experimentally validated 

protein targets, respectively.

Following deimmunization, all designs were re-scored using ProPred28 (Southwood allele 

set35) and NetMHCII29 (Paul allele set37) using the mhc_score.py companion script 

available in the Rosetta tools repository (located in Rosetta/main/tools by default) in the 

mhc_energy_tools subdirectory.

In order to restrict the design space sampled by Rosetta based on evolutionary constraints, 

we generated a position-specific scoring matrix (PSSM) for the sequences of all target 

proteins using three iterations of PSI-BLAST.53 From these PSSMs, we generated resfiles 

that restricted design space to permit only the native residue plus any residue that has a base 

2 log-odds scores in the PSSM above a threshold value; we tested thresholds of 1, 2, or 3. 

The resfiles were generated using the mhc_gen_db.py companion script available in the 

Rosetta tools repository under mhc_energy_tools.
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In order to evaluate the performance of MHCEpitopeEnergy using NetMHCII as a Predictor, 

we enumerated all 15mer peptides allowable for our three case study proteins, when 

restricting allowed amino acids to those with base-2 log-odds scores of 3 or greater in the 

PSSM. We generated a pre-computed database by scoring these peptides with NetMHCII29 

(Paul37 allele set).

RESULTS & DISCUSSION

Having implemented a scoring term enabling prediction and deletion of epitopes as part of 

Rosetta-based protein design, we wanted to investigate the impact of deimmunization 

parameters on the resulting designs and ultimately establish a “best practices” protocol for 

protein deimmunization using MHCEpitopeEnergy. In particular, we sought to establish 

design parameters in which the predicted immunogenicity of the target is reduced while 

minimally perturbing other metrics of design quality, as compared to equivalent design 

trajectories performed without deimmunization.

In the following results, we first thoroughly assess the effects of design parameters on 

deimmunization of three case study proteins, evaluating if and how the settings affect 

resulting design quality. We then apply inferred “best practices” settings to deimmunize a 

larger benchmark set of 54 targets, investigating the general trends of deimmunization and 

design quality over these diverse proteins. We next assess the impact of the epitope predictor 

choice, in particular evaluating the extent to which deimmunizing for one predictor achieves 

deimmunization for another. Finally, in order to explore the diversity of “deimmunized 

sequence space” around a target, we compare deimmunized designs emerging from this 

protocol with some deimmunized variants that have previously been experimentally 

evaluated.

MHCEpitopeEnergy Case Studies.

Mirroring the approach used in a previous study,44 we investigated various strategies for 

deimmunizing proteins with three representative proteins: human erythropoietin (PDB ID 

1EER, 166 amino acids),54 staphylokinase (PDB ID 2SAK, 121 amino acids),55 and a 

designed hemagglutinin binding protein (PDB ID 3R2X, 93 amino acids).56 To evaluate 

design quality, in addition to Rosetta’s REF2015 score and packing quality (“PackStat”)57 

score, we also assess changes in the number of buried unsatisfied hydrogen bonds and in the 

number of charged residues (since a preference for negatively charged residues over 

hydrophobic residues has frequently been observed with various epitope predictors).15,29,44 

We also monitor sequence recovery, since deimmunizing a protein with a minimal number 

of mutations should result in more functional and stable designs.

Since the Rosetta energy function is a sum of independent terms combined linearly, each 

weighted by a constant coefficient, we first explored the effect of varying the weighting 

coefficient for the mhc_epitope scoring term. Since introducing charged residues is an 

effective means to reduce MHC-II binding, we then evaluated our ability to avoid over-

charging the protein by separately restricting the number of positively- and negatively-

charged residues. Finally, to utilize more conservative mutations in deimmunization design 
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(which can indirectly constrain charged residues), we investigated reducing design space 

with an evolutionary-derived position-specific scoring matrix (PSSM).

mhc_epitope weight.—First, we considered an ideal weight for the mhc_epitope scoring 

term itself (Table S1, protocol 1) and monitored its effect on the key metrics described above 

(Figure 2, Figure S1, and Figure S2). As expected for a multi-objective optimization 

problem, higher mhc_epitope weights sacrificed some predicted thermodynamic stability, as 

measured by the REF2015 score (A panels), in order to achieve decreased epitope scores (B 

panels), reflecting that the designs were deimmunized according to the ProPred predictor. 

Almost all designs (with or without a nonzero mhc_epitope weight) still yielded better 

REF2015 scores than relaxation of the wild-type (with no design), and the differences 

among the designs’ scores were generally relatively modest compared to the differences 

from the wild-type score. We noted that using an mhc_epitope weight of less than 0.5 was 

largely ineffective at reducing the unweighted ProPred score. Conversely, weights greater 

than 1.5 yielded diminishing returns with respect to the ProPred score while negatively 

impacting the REF2015 score. While the PackStat score (C panels), the number of buried 

unsatisfied hydrogen bonds (D panels), and the number of positive charges (E panels) 

remained largely unchanged, we did note a considerable increase in the number of negative 

charges (F panels) as the mhc_epitope weight increased. We concluded that for most 

applications using the ProPred predictor, an mhc_weight of between 0.5–1.5 would be 

appropriate and decided to use a weight of 1.0 for subsequent analyses. Deimmunization 

problems that require more aggressive deimmunization at the expense of stability may 

warrant a higher weight, whereas problems in which minimally impacting the protein’s 

stability is critical may consider a smaller weight. It should also be noted that the raw 

mhc_epitope score can scale with the number of alleles, so a Predictor that uses many alleles 

may require a smaller mhc_epitope weight, and vice versa.

Restricting Changes in Protein Charge.—For several common MHC alleles, bound 

peptides tend to have few negatively charged residues, and thus many epitope predictors, 

including ProPred, tend to predict peptides that include negatively charged residues to be 

non-immunogenic. Consequently, unrestricted deimmunization has previously been seen to 

introduce many negatively charged residues and increase the number of charged residues 

over non-polar residues,15,29,44 an effect we observed here as well (Figure 2, Figure S1, and 

Figure S2, F panels). Rosetta has another design guidance scoring term, called 

aa_composition,47 that allows the amino acid composition to be restricted, so we 

investigated the impact of using this term alongside mhc_epitope on the number of charges.

To avoid simply introducing balanced charge-changing mutations, we chose to restrain the 

total number of positively and negatively charged residues individually, rather than the net 

charge (Table S1, protocol 2). We configured the aa_composition guidance scoring term so 

that, if the number of charged residues of a particular type increased or decreased by three 

residues or fewer, the unweighted penalty was equal to the change in the number of charges 

(i.e., an increase of two negatively charged residues would result in a penalty of 2). If the 

change was four or more, the penalty increased quadratically (Figure 3, Figure S3, and 

Figure S4). In this case, there was a slight deterioration in the REF2015 and ProPred scores, 
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though these were largely within the spread of scores seen in the absence of any composition 

constraints (i.e., weight 0). As expected, with weight 0.5 or 1.0, the number of charges of 

each type were maintained at levels much closer to wild-type, while PackStat and the 

number of buried unsatisfied hydrogen bonds were largely unchanged. These results suggest 

that protein sequence space is large enough to accommodate epitope deletion while 

maintaining the overall charge composition of the native protein.

Evolutionary Conservation Constraint using a PSSM.—One strategy to minimally 

disrupt a protein’s function and stability during design is to restrict design space by allowing 

only substitutions that are observed in the sequence record.58 This strategy fortuitously also 

greatly reduces computation time. We restricted design space to include only the native 

residue plus any residue that has a base 2 log-odds scores in the PSSM above a threshold, 

and we explored thresholds of 1, 2, or 3 (Figure 4, Figure S5, and Figure S6, Table S1, 

protocol 3). Note that residue types that are not included in the allowed design space are not 

sampled by Rosetta at all, as opposed to being given a penalty during scoring. As expected, 

restricting design space using the PSSM leads to a smaller improvement in the REF2015 

score than unrestricted design. In the case of benchmark protein 2SAK, the most stringent 

PSSM settings (thresholds of 2 or 3) combined with turning on ProPred deimmunization 

resulted in a moderate deterioration in REF2015 compared to wild-type, though a more 

moderate threshold of 1 resulted in scores that were comparable to the native score and 

similar to the scores obtained without deimmunization. Likewise, the mhc_epitope scores 

were slightly worse when PSSM-based design restrictions were used, though in all cases 

substantially better than the wild-type. The other metrics (PackStat score, buried unsatisfied 

hydrogen bonds, and number of charge residues) appeared to show only slight variation 

when applying PSSM restrictions that were not consistent from protein to protein. These 

also did not generally show large differences when comparing designs with and without 

deimmunization turned on. These results suggest that while the improvement in REF2015 

over wild-type scores is somewhat diminished as compared to design without PSSM 

restrictions, orthogonal metrics that we are not specifically optimizing behave comparably. 

Since using evolutionary information to guide design is generally seen to improve the 

likelihood of obtaining stable, functional designs,59 the slightly worse REF2015 and 

mhc_epitope scores are likely an acceptable trade-off for many applications.

Combining charge constraints and PSSM-based design restrictions.—To 

further investigate the effects of the PSSM-based design restrictions, we combined the 

charge constraints with the PSSM restrictions (Figure 5, Figure S7, and Figure S8, Table S1, 

protocol 4). Interestingly, the only metric that showed substantial difference was the smaller 

variation in the number of positive and negative charges (panels E and F). The energy, 

deimmunization, packing quality, and number of buried unsatisfied hydrogen bonds (panels 

A-D) tended to show very similar trends regardless of the use of the charge constraints. It is 

also worth noting that the effect of the charge constraints was itself more muted than in the 

absence of PSSM-based restrictions, suggesting that a degree of charge constraint is 

embedded in the PSSM restrictions. As evolution is likely to show a tendency to maintain 

charged positions in a protein, it is somewhat unsurprising that the PSSM restrictions and 

charge constraints have similar effects on charge composition.
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When examining the sequence recovery for these designs, we noted that the use of the 

mhc_epitope scoring term resulted in only a small decrease in sequence recovery as 

compared to the use of identical design parameters except mhc_epitope (Figure S9). It 

should also be noted that these sequence recovery values were quite high. We can thus 

conclude that while deimmunization using ProPred does increase the number of mutations, 

the difference is small when compared to the equivalent, non-deimmunizing design 

trajectories.

MHCEpitopeEnergy Benchmark and Scientific Test.

It is clear that the specific configuration to be used for protein deimmunization needs to be 

tailored to the specific goals of the design problem. Having said that, the case studies 

suggest settings that are an appropriate starting point for a “naïve” deimmunization problem: 

a moderate mhc_epitope weight of 1.0, restraining the number of positive and negative 

charges to near wild-type values, and the use of moderate, evolutionary-based sequence 

constraints. To evaluate the general utility of these settings, we used this protocol (Table S1, 

protocol 6) to deimmunize a set of 54 diverse, soluble proteins of a range of sizes, in which 

the crystal structures were solved at less than 2 Å resolution and did not contain ligands, 

non-canonical amino acids, or discontinuous chains. This benchmark set was previously 

used in a similar deimmmunizaton study.44 The results were analyzed to determine the 

extent to which the metrics we monitored in our three case study proteins behaved similarly 

in the diverse benchmark set.

Examination of the Pareto front of REF2015 vs. mhc_epitope scores for this benchmark set, 

along with the case study proteins from the previous section, demonstrated the expected 

trade-off between these two metrics (Figure 6). When examining the six metrics over a range 

of protein sizes, we saw no clear trends (Figure S10), suggesting that mhc_epitope 

deimmunization produces similar results on a range of proteins, irrespective of protein size.

In order to maintain an up-to-date record of MHCEpitopeEnergy’s performance as Rosetta 

continues to be developed, we have implemented a reduced form of this benchmark as a 

Rosetta “scientific test”60 called scientific.mhc_epitope_energy. This test runs regularly on 

the Rosetta Benchmark server (https://benchmark.graylab.jhu.edu/), testing the most recent 

version of Rosetta. The scripts and data used to run the benchmark are bundled with Rosetta 

and can be found in Rosetta/main/tests/scientific/tests/mhc_epitope_energy/.

Comparison of ProPred- and NetMHCII-based Deimmunization.

While NetMHCII is considered to be one of the leading epitope predictors currently 

available, it is considerably slower than ProPred, precluding its direct use as a packer-

compatible predictor that can be evaluated at each step in a design trajectory. Our 

implementation of a pre-computed database Predictor as a means of using NetMHCII during 

design overcomes this problem, but due to the combinatorial explosion in the number of 

possible peptides that must be pre-scored according to the number of mutations considered, 

requires either a highly targeted approach or a very restrictive PSSM. We thus sought to 

evaluate whether NetMHCII-based deimmunization provided a significant improvement 

over the less restricted ProPred-based deimmunization evaluated prior to this point. First, to 
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evaluate the relative effectiveness of the ProPred and NetMHCII Predictors at reducing each 

other’s scores, we deimmunized our case study proteins with either ProPred or a pre-

computed NetMHCII database, with amino acid constraints and PSSM-based restrictions 

applied, and then scored designs using the Rosetta REF2015 energy function, ProPred, and 

NetMHCII (Figure S11–Figure S13, Table S1, protocol 5). As one would expect, 

deimmunization using ProPred decreases the final ProPred score more than the final 

NetMHCII score, and deimmunization using NetMHCII decreases the final NetMHCII score 

more than the final ProPred score. Nevertheless, both scores are reduced to some degree 

from their wild-type values during deimmunization, regardless of which Predictor is used 

during the design trajectory.

Since post hoc scoring with NetMHCII is computationally feasible, but NetMHCII-based 

deimmunization design trajectories require precomputed databases with limited sequence 

coverage for computational tractability, we further explored the extent to which ProPred-

based deimmunization design could be used to produce designs with reduced NetMHCII 

scores. Figure 7 shows the correlation between ProPred and NetMHCII scores of the 

ProPred-deimmunized designs, with scores reported as a fraction of the scores of the native 

protein.

When used with more stringent PSSM thresholds, we see some correlation between the two 

scores (Pearson correlation of 0.23 without PSSM restrictions, and correlations of 0.28, 

0.34, and 0.62 for PSSM thresholds of 1, 2, and 3, respectively). To more directly answer the 

question of whether the drop in ProPred score can be used to predict a low NetMHCII score, 

we defined designs with NetMHCII scores below a specified threshold as “sufficiently 

deimmunized.” The analysis was repeated twice, with that threshold set to either 33% or 

50% of wild-type values. Using ROC and precision-recall analyses calculated using the 

pROC61 and PRROC62 R packages, respectively, we then examined whether the drop in 

ProPred score could be used to discriminate between “sufficiently” and “insufficiently” 

deimmunized designs (Figure 8, Figure S14–Figure S17). The precision-recall analysis 

demonstrates that the best ProPred designs are typically also the best NetMHCII designs, 

though it should be noted that particularly when using high PSSM thresholds, the 

“sufficiently deimmunized” designs are a very small fraction of total designs. The ROC 

analysis shows that using a lower NetMHCII threshold to define a “hit” or using a more 

stringent PSSM threshold results in the ProPred score being a better predictor of the 

NetMHCII scores. In this case, the analysis may be skewed by the very large imbalance 

between the small number of NetMHCII “hits” and the large number of “misses.”

From a user’s perspective, these results show that deimmunizing using MHCEpitopeEnergy 

with ProPred as the Predictor is a reasonable strategy to obtain designs that score well in 

terms of NetMHCII, particularly if designs are to be subsequently downselected upon re-

scoring with NetMHCII. In cases where a very stringent deimmunization strategy is needed, 

doing an initial round of design using ProPred followed by design using NetMHCII that 

targets the remaining hotspots would be an efficient strategy to reduce NetMHCII scores, 

depending on the specifics of the design target. When considering the best ProPred-

deimmunized designs for each benchmark target, as assessed based on the REF2015 and 

NetMHCII scores, the number of hotspot regions decreased in 29 of 55 targets in the 
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benchmark set, frequently down to 0 hotspots (Figure S18A). Figure S18B shows a 

comparison of wild-type and variant NetMHCII scores after ProPred-based deimmunization 

of P99 β-lactamase (PDB ID 1XX2), highlighting that ProPred-based design eliminated 

some NetMHCII hotspots while leaving others unchanged. These results demonstrate the 

utility of following ProPred-based deimmunization with targeted NetMHCII 

deimmunization for certain design problems.

Recapitulation of Experimentally-Validated Deimmunized Proteins.

Finally, we compared deimmunized designs emerging from this approach with those 

obtained from previous deimmunization efforts. It is unrealistic to expect that our protocol 

would capture the same mutations as performed in the original experiments, since design 

space is very vast, and there is almost inevitably a number of deimmunized, stable, and 

functional sequences within that space. We would, however, expect that changes should be 

made in the same epitopes that have previously been found to reduce immunogenicity. 

Furthermore, the Rosetta trajectories can provide further insights into the diversity in the 

deimmunized sequence space available “near” wild-type. To that end, we used our 

“standard” protocol (Table S1, protocol 7) on three notable, experimentally deimmunized 

proteins: Pseudomonas exotoxin A,63,64 P99 β-lactamase from Enterobacter cloacae,18 and 

superfolder green fluorescent protein (sfGFP).65 We also ran identical design trajectories 

with deimmunization turned off to differentiate mutations introduced solely to optimize the 

REF2015 energy (present in both design trajectories) from those introduced to decrease 

immunogenicity (different variants in the deimmunization and non-deimmunization 

trajectories).

In the absence of evolutionary PSSM-based restrictions and with mhc_epitope turned on, 

Rosetta preferentially introduced mutations in all of the peptides previously targeted by 

experimentally validated mutations as compared to standard fixed backbone design (Figure 

9, Figure S19–Figure S21). Imposing the evolutionary-based restrictions did cause Rosetta 

to “miss” some of the epitopes, though this occurred in a minority of cases except when the 

most stringent restrictions were applied. These results demonstrate that our methodology is 

able to target epitopes that were specifically found in experiments to yield less immunogenic 

variants. These results also suggest that running simulations with and without 

deimmunization and at various PSSM thresholds may be effective at prioritizing variants for 

experimental validation, both for evaluating individual variants or for limiting combinatorial 

expansion during library-based screening.

More generally, examination of mutation patterns observed in experimentally-identified 

epitope regions demonstrate that performing deimmunization using our mhc_epitope 

approach leads to an increase in the number and diversity of variants, as compared to the 

same design strategy without mhc_epitope. This suggests that mhc_epitope is likely 

overcoming the memory of native residue identities imposed by the “FavorNative” 

constraint, as well as evolutionary and charge constraints, in highly immunogenic regions, 

with only minor effects on other metrics as compared to equivalent non-deimmunizing 

designs (Figure S22–Figure S24).
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MHCEpitopeEnergy Is Readily Customizable.

Our approach in this study has been largely focused on establishing a “basic” protocol from 

which users can initiate deimmunized protein design campaigns. Our integration with the 

RosettaScripts framework and modular implementation of MHCEpitopePredictors, however, 

allows for straightforward customization towards more sophisticated design approaches. Of 

note, the MHCEpitopeConstraint framework allows the use of multiple Predictors 

simultaneously (e.g. ProPred28 deimmunization alongside deletion or avoidance of 

immunogenic peptides from the IEDB database40). Residue selectors allow selective 

application of these constraints to specific residues. For example, known or predicted 

hotspot epitopes could be targeted for deimmunization, or the propensity of MHC-II ligands 

to be more accessible for proteolysis in processing66–68 could be utilized to selectively target 

the highest risk regions. Alternatively, the “xform” option allows the mhc_epitope score to 

be linked to the wild-type sequence or a fixed, “acceptable” baseline per-residue score, thus 

avoiding spurious mutations to sequences with low, but non-zero, immunogenicity scores.

New sequence-based epitope prediction methods can also be readily added to the 

MHCEpitopeEnergy framework as they are developed. In cases where epitope prediction 

can be easily stored in a peptide sequence/score database, this can be implemented as an 

additional External/Preloaded Predictor database. Alternatively, prediction algorithms can 

easily be incorporated by implementing a new MHCEpitopePredictor class in Rosetta’s C++ 

codebase. For example, a prototype Tensorflow69 based Predictor has already been 

developed.

CONCLUSION

Protein deimmunization is becoming increasingly important as the biologics sector grows 

and seeks to utilize the myriad of functions that proteins can perform in therapeutic contexts. 

The challenges in developing stable, functional, and deimmunized proteins are considerable, 

especially when considering the high cost of screening proteins for immunogenicity. A 

number of specialized computational tools have been developed to address this need; 

however, a flexible package within a premiere protein design suite remained an unmet need.

MHCEpitopeEnergy attempts to fill this role by integrating leading epitope predictors with 

one of the most successful protein design packages, Rosetta. Unlike previously described 

deimmunization tools in Rosetta, MHCEpitopeEnergy can be integrated into any protocol 

that uses Rosetta’s standard Monte Carlo-based rotamer packing and sequence design 

algorithm. In addition, integration of new epitope predictors, as they are developed, is 

straightforward owing to its modular class organization.

We have also developed a benchmark protocol which acts as a starting point for users 

wishing to employ this tool. These results highlight that we can obtain similar quality 

designs with and without deimmunization based on sequence and structural metrics, and that 

these trends hold across a larger benchmark set. In addition, epitopes that have been 

validated experimentally in protein deimmunization campaigns are efficiently targeted using 

these protocols. Owing to the simple integration of epitope predictors with the core Rosetta 

design machinery, we expect that MHCEpitopeEnergy will greatly simplify workflows by 
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eliminating the need for iterative design/prediction cycles, and by allowing existing design 

protocols that have been employed for a design objective to be adapted for simultaneous 

deimmunization. In this way, we expect that this will ease the design of functional, stable, 

and deimmunized variants of important protein therapeutics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
MHCEpitopeEnergy scoring overview. (A) In initial scoring, a sliding window approach 

enumerates peptide sequences of a specified length and passes them to an 

MHCEpitopePredictor, which scores each peptide. The scores are cached and summed to get 

the total mhc_epitope score. (B) During packing, when an amino acid substitution is 

considered (red “E” in sequence), the peptides that include that residue (orange shading) are 

re-scored. Scores that change (red) are updated in the cache, as is the total mhc_epitope 

score.
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Figure 2. 
The effect of mhc_epitope weight on deimmunization of human erythropoietin (PDB ID 

1EER). Designs (n=1000) were generated with fixed backbone Rosetta design with varying 

mhc_epitope weights, and the effect on six metrics evaluated: (A) REF2015 score, (B) 

unweighted mhc_epitope score, (C) PackStat score, and the number of (D) buried unsatisfied 

hydrogen bonds, (E) positively charged residues, and (F) negatively charged residues. 

Weights of 3.0, 5.0, and 10.0 were also tested, but were similar to a weight of 2.0 and are 

thus omitted for clarity. The green dashed line indicates the wild-type value (relaxed, but 

with no design). See also Figure S1 and Figure S2 for corresponding plots for other protein 

targets.
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Figure 3. 
The effect of charged-based amino acid composition weight on deimmunization of human 

erythropoietin (PDB ID 1EER). Designs (n=1000) were generated with (red) and without 

(blue) an mhc_epitope weight of 1.0 turned on. The green dashed line indicates the wild-

type value (relaxed, but with no design). The effect on six metrics is evaluated: (A) 

REF2015 score, (B) unweighted mhc_epitope score, (C) PackStat score, and the number of 

(D) buried unsatisfied hydrogen bonds, (E) positively charged residues, and (F) negatively 

charged residues. See also Figure S3 and Figure S4 for corresponding plots for other protein 

targets.
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Figure 4. 
The effect of PSSM-based design restrictions on deimmunization of human erythropoietin 

(PDB ID 1EER). Designs (n=1000) were generated with (red) and without (blue) an 

mhc_epitope weight of 1.0 turned on after restricting designable residue identities to those 

with a base 2 log-odds score of 1, 2, or 3, or with no constraints (NC). The green dashed line 

indicates the wild-type value (relaxed, but with no design). The effect on six metrics is 

evaluated: (A) REF2015 score, (B) unweighted mhc_epitope score, (C) PackStat score, and 

the number of (D) buried unsatisfied hydrogen bonds, (E) positively charged residues, and 

(F) negatively charged residues. See also Figure S5 and Figure S6 for corresponding plots 

for other protein targets.
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Figure 5. 
The effect of combined charged-based amino acid constraints and PSSM restrictions on 

deimmunization of human erythropoietin (PDB ID 1EER). Designs (n=1000) were 

generated with an mhc_epitope weight of 1.0 (red) and 0.0 (blue), and with an amino acid 

composition constraint weight of 0.5, after restricting designable residue identities to those 

with a base 2 log-odds score of 1, 2, or 3, or with no constraints (NC). The green dashed line 

indicates the wild-type value (relaxed, but with no design). The effect on six metrics is 

evaluated: (A) REF2015 score, (B) unweighted mhc_epitope score, (C) PackStat score, and 

the number of (D) buried unsatisfied hydrogen bonds, (E) positively charged residues, and 

(F) negatively charged residues. See also Figure S7 and Figure S8 for corresponding plots 

for other protein targets.
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Figure 6. 
Pareto optimal set of deimmunized designs show the tradeoff between Rosetta score and 

ProPred score. (A) The Pareto optimal set of the three case study proteins is shown (n=1000/

target). (B) The Pareto optimal set of all benchmark proteins is shown, with each protein 

indicated as a different line (n=240/target). Lines are color-coded according to the protein 

size.
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Figure 7. 
Correlation between ProPred scores (Southwood35 allele set) and NetMHCII scores (Paul37 

allele set) in ProPred-deimmunized designs with varying PSSM restriction thresholds 

(n=240/target). In (A), no PSSM restrictions were applied. In the remaining plots, a base 2 

log odds threshold of (B) 1, (C) 2, and (D) 3 was applied to limit allowed amino acid types 

at each position during design. The dashed line indicates designs with identical percent wild-

type ProPred and NetMHCII scores. The Pearson correlation between the two scores for 

each threshold is given in the bottom right, and the line of best fit is shown in blue.
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Figure 8. 
ROC and PR analysis of the ProPred score’s utility to design variants with favorable 

NetMHCII scores. A NetMHCII score that is (A) 33% and (B) 50% of the wild-type score 

were considered to be “favorable” scores in this analysis. Designs with no PSSM restrictions 

and base 2 log odds constraints of 1, 2, and 3 were considered separately. See also Figure 

S14–Figure S17.
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Figure 9. 
Logoplots showing the relative frequency of mutations for experimentally validated 

immunogenic peptides in deimmunized and non-deimmunized designs of P99 β-lactamase 

(PDB ID 1XX2). Letters above the horizontal line are seen more frequently in deimmunized 

designs (n=500), whereas letters below the horizontal line are seen more frequently in the 

standard Rosetta designs (n=500). Grey lettering above the logoplot indicates the native 

sequence, with the orange, underlined residues indicating positions that have been mutated 

in experimentally validated deimmunization campaigns.18 Designs with no PSSM-based 

restrictions are shown in panels A-C, and designs with base 2 log-odds PSSM-based 

restrictions of 1 for the same epitopes are shown in panels D-F. See also Figure S19–Figure 

S21 for corresponding plots for other protein targets.
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