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Abstract

The lateral habenula (LHb) is a phylogenetically primitive brain structure that plays a key role in learning to in-
hibit distinct responses to specific stimuli. This structure is activated by primary aversive stimuli, cues predict-
ing an imminent aversive event, unexpected reward omissions, and cues associated with the omission of an
expected reward. The most widely described physiological effect of LHb activation is acutely suppressing mid-
brain dopaminergic signaling. However, recent studies have identified multiple means by which the LHb pro-
motes this effect as well as other mechanisms of action. These findings reveal the complex nature of LHb
circuitry. The present paper reviews the role of this structure in learning from reward omission. We approach
this topic from the perspective of computational models of behavioral change that account for inhibitory learn-
ing to frame key findings. Such findings are drawn from recent behavioral neuroscience studies that use novel
brain imaging, stimulation, ablation, and reversible inactivation techniques. Further research and conceptual
work are needed to clarify the nature of the mechanisms related to updating motivated behavior in which the
LHb is involved. As yet, there is little understanding of whether such mechanisms are parallel or complemen-
tary to the well-known modulatory function of the more recently evolved prefrontal cortex.
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(s

The lateral habenula (LHb) is a brain structure that has received a great deal of attention and has been a hot
topic in the past decades. Consequently, this research field has been extensively reviewed. We review in de-
tail some key recent findings that are pivotal in framing the role of the LHb in well-described associative
learning phenomenon, conditioned inhibition. This specific topic has not been considered deeply enough in
previous review articles. We also outline the possible mechanisms by which the LHb updates behavior by
means of two identified pathway categories (inhibitory and excitatory). This provides a comprehensive ac-
count potentially embracing more issues than previously thought, refines our understanding of multiple re-
\ward—related mechanisms, and raises novel research questions. /

\

ignificance Statement

stimuli or reward omission (Baker et al., 2016). However, lat-
est research suggests that the LHb is not as crucial for

Introduction
The lateral habenula (LHb) is a phylogenetically preserved

brain structure located in the dorsomedial surface of the
thalamus that participates in learning from aversive (i.e., un-
desired) experiences. These include primary aversive stimu-
li, reward omission, and cues associated with either aversive
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learning from primary aversive experiences (see Li et al,,
2019) as it is for learning from reward omission.

The LHb has been characterized as a part of a “brake”
mechanism to suppress firing in midbrain dopaminergic
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neurons (Barrot et al., 2012; Vento and Jhou, 2020). Such
effect is mainly achieved by exciting GABAergic neurons
in the rostromedial tegmental nucleus (RMTg) reaching
the ventral tegmental area (VTA) and the substantia nigra
pars compacta (SNc; Jhou et al., 2009). However, direct
glutamatergic excitation of GABAergic interneurons that
synapse with dopamine neurons in the VTA also takes
place (Omelchenko and Sesack, 2009). In both cases, the
net effect is to suppress dopamine release in the nucleus
accumbens (NAc; by VTA endings) and the dorsal stria-
tum (by SNc endings). This would disrupt reward-related
motor activity, and reward-related plastic changes asso-
ciated with midbrain dopamine release (Tsutsui-Kimura et
al., 2020). A third, recently discovered, pathway (Lammel
et al., 2012) involves LHb glutamatergic projections
reaching dopamine neurons in the VTA that, in turn,
target the medial prefrontal cortex (MPFC; see Fig. 1).
mPFC activity has been associated with aversive
learning (Huang et al., 2019) and the capacity to be-
have congruently with hierarchically arranged stimuli
sets (Roughley and Killcross, 2019).

Numerous reviews about the physiology of the LHb
have already been published; most of them cover the par-
ticipation of the LHb in primary aversive learning, stress-
ing on the its putative implications for psychiatric
conditions (Hu et al., 2020). Other settings that involve the
LHb in non-primary aversive situations, such as tasks that
require behavior flexibility, have also been reviewed
(Baker et al., 2016). In this review, we discuss the experi-
mental findings on a third ground, the role of the LHb in
reward-omission learning, which is known to imply nega-
tive reward prediction errors. Particularly, we explore how
such findings could be framed in terms of some models of
behavioral change. This might be informative for a re-
search agenda aiming to unveil the functional basis of
adaptive mechanisms in which the LHb participates. In
addition, this may aid in understanding maladaptive be-
haviors that arise from the disruption of brain regions in
the extended network in which the LHb is embedded. We
conceive learning from reward omission as being poten-
tially integrated with more widely studied phenomena in-
volving LHb function (i.e., primary aversive conditioning
and behavioral flexibility). On one hand, reward-omission
experiences imbue preceding cues with properties that
are functionally equivalent to those cues associated with
primary aversive stimuli. On the other hand, learning in
tasks requiring behavioral flexibility involves committing
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errors (Baker et al., 2017) and this often entails the omis-
sion of otherwise expected rewards. Therefore, we hope
that understanding one of these artificially delineated
fields would potentially help to elucidate some of the
mechanisms involved in the others.

Modeling the Dynamics of Acquisition
and Extinction of Responding in Reward
Learning

Learning could be roughly regarded as a process in
which behavior is updated when an organism faces envi-
ronmental regularities. Although learning is a continuous
process (Sutton and Barto, 2018), it is sometimes meth-
odologically and analytically useful to discretize it in trials
(Harris, 2019). Trials are fractions of time in which explicit
experiences are assumed to promote specific changes in
future behavior. Rescorla and Wagner (1972) proposed a
model accounting for the associative strength of a target
stimulus given its pairings with an affectively significant
event on a ftrial-by-trial basis. Such an associative
strength or value could represent a theoretical estimation
of either the vigour or the probability of responding to the
target stimulus in the next trial. While “responding” was
originally intended to reflect a change in overt outcome-
anticipating actions, it may also represent a neural-level
state change such as firing of dopamine neurons (see
Roesch et al., 2012). This model states that a target stimu-
lus gains or loses associative strength according to a
learning rule. The change for this value in a given trial de-
pends on the discrepancy of the current value of the tar-
get stimulus and that of the outcome that follows (e.g.,
presentation or absence of a reward). Formally:

AVX = a(/\*ZVN), (1)

where AVy represents the change in the associative
strength (V) of the target stimulus (or action; X) in a given
trial, A represents the magnitude of reward (zero if the re-
ward is omitted), XV represents the sum of the values of
all cues that are present during a conditioning trial (usu-
ally, accounted for with a few of those cues), and «, which
is bound between 0 and 1, represents a learning rate pa-
rameter. To show how the model operates, let us first
consider the simplest possible example. This requires as-
suming that, during conditioning trials, the only relevant
input besides the reward is a single cue (thus being Vy =
XVp). If A (> 0) and « are held constant, Vy will increase
approaching A throughout conditioning trials (e.g.,
pairings of the stimulus with reward) in a decelerated
fashion, as the discrepancy between these parameters
(i.e., A — XVj) progressively declines (see Fig. 2, left
panel). Thence, the absolute value of the parenthetical
term in Equation 1 determines the amount of behavioral
change on the next trial of the same type. The discrep-
ancy between expected and experienced outcomes has
been termed prediction error and could be regarded as a
theoretical teaching signal that alters some aspect of the
system to update behavior. Prediction errors can be clas-
sified as appetitive (reward-related) or aversive, and as
positive or negative (lordanova et al., 2021). In addition,
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Figure 1. Projections of the midbrain dopamine regions and their neurochemical interaction with the LHb. A, Sagittal view of the rat
brain, depicting efferent pathways of midbrain dopamine regions and their input from the LHb. B, Synaptic relationships between
neurons in the VTA and inputs (direct and through the RMTg) from the LHb. DA, dopamine (orange); GABA, green; Glu, glutamate
(blue); dSTR, dorsal striatum. The image of the rat was adapted from https://smart.servier.com/smart_image/rat, under the terms of
the CC-BY 3.0 Unported license (https://creativecommons.org/licenses/by/3.0/). Rat brain adapted from Juarez et al. (2013).

prediction errors seem to dictate both Pavlovian (i.e., A the physiological level, canonical midbrain dopamine
stimulus-outcome) and instrumental (i.e., action-outcome)  neurons fire above their baseline activity upon the pre-
learning through a homologous correction mechanism  sentation of unexpected rewards (i.e., positive reward
(Bouton et al., 2020; see also Eder et al., 2015). prediction error; A > XV,). Such dopamine bursts
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Figure 2. Dynamics of associative strength according to the Rescorla-Wagner model in 100 consecutive trials of acquisition (A = 1)
followed by 100 extinction trials (A = 0). Colors represent different learning rates (@), assuming that extinction rates are 3/4 of acqui-
sition rates. Note that the decrease in responding (right panel) is a dynamic process that progresses with each trial, unlike the slow
and continuous decay that would be expected if we simply allow time to pass.

increase the probability of occurrence of the actions
that took place priorly, whenever the organism is pre-
sented to a similar situation in the future (i.e., positive
reinforcement). In addition, dopamine bursts backpro-
pagate to reliable signals of reward, making them ac-
quire signaling (i.e., discrimination learning) and
rewarding (i.e., conditioned reinforcement) properties in
themselves (Sutton and Barto, 2018). Dopamine phasic
activity (as in Vx > 0) is triggered by inputs received by
midbrain neurons from multiple nodes in a brain-wide
network subsequent to sensory processing (Tian et al.,
2016). Deceleration in the increase of associative
strength with repeated experiences involving paired
presentations of the stimulus and the reward would re-
quire an antagonistic mechanism. Inhibitory NAc-VTA
projections have been hypothesized to play some role
in said mechanism (see Mollick et al., 2020).

Once a cue or action has acquired some associative
strength, the repeated omission of reward after its presen-
tation allows for the restitution of behavior to the initial
non-responsive state. Reward omissions following the
presentation of an already conditioned stimulus (or when-
ever A is smaller than £V); i.e., negative reward prediction
error) trigger a phasic decrease (or dip) in dopamine activ-
ity (Schultz et al., 1997; Matsumoto and Hikosaka, 2007).
If repeated consistently, these dopamine dips are known
to decrease dopamine firing to the target stimulus in sub-
sequent trials. This translates into a decrease in both con-
ditioned responses and reinforcing effects associated to
the target stimulus until reaching a minimum value (see
Fig. 2, right panel). Here, the procedure, process, and out-
come are each referred to by the term “extinction’.”
Suppression of midbrain dopamine neurons induced by
LHb activity plays a key role in this (context dependent;

"Note that the minimal response to the target stimulus observed after
extinction procedures is quite labile and responding is often susceptible to
bounce back after a slight contextual change (Bouton et al., 2021), this is not
accounted by the Rescorla-Wagner model.
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see Footnote 1) restauration mechanism. For example, a
recent study by Donaire et al. (2019) found that LHb le-
sions impair extinction of an appetitive response in rats.
Similarly, Zapata et al. (2017) found that pharmacological
inhibition of the LHb impaired extinction of responses that
were previously rewarded in the presence of a stimulus.
However, this effect was selective for cocaine reward and
did not impair extinction of responding previously re-
warded with a sucrose solution. This finding was inter-
preted as an indicative of the greater difficulty in
withholding responses rewarded with cocaine compared
with those rewarded with sucrose. Both findings reveal
the participation of the LHb in decreasing previously ac-
quired behavior when a stimulus or action is no longer fol-
lowed by a reward (i.e., extinction).

Inducing, Testing, and Modeling Net
Inhibitory Effects

When conceptualizing conditioning trials as if a single
cue is relevant for reward learning (such that Vy = V) ob-
taining a negative value for Vyx with Equation 1 is logically
impossible. As Vx would range from zero to A, it can only
vary in its degree of “rewardingness” (for lack of a better
term). That is, one could conceive of a stimulus as more
or less rewarding than the other, but hardly as more
aversive in a general sense. However, a distinctive-
ness of the Rescorla-Wagner model allows to ac-
count for both net negative associative strength
values and acquisition of opposed affective effects.
Such feature is important because it captures aspects
of key conditioning phenomena.

A neutral stimulus that is consistently paired with the
omission of an expected affectively significant event often
acquires the opposite affective valence. In this case, a
stimulus paired with the omission of an expected reward
would acquire aversive properties (Wasserman et al.,
1974). This means that the organism will be inclined to
avoid it (either actively or passively) or escape from it. On
the other hand, the negative summation effect occurs

eNeuro.org
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Figure 3. Possible values of associative strength for stimulus X (Vx; color scale) after being presented in compound with an excita-
tory conditioned stimulus, A, and followed by the omission of reward (A = 0). According to the Rescorla-Wagner model, the out-
come depends on the associative strength of the companion stimulus A (horizontal axis) that of X (vertical axis) before the reward

omission episode, and on learning rate (o = 0.12 is assumed).

when a stimulus associated with the omission of reward is
presented simultaneously with one that reliably predicts
the reward. The usual result is that responding to the
compound stimulus is reduced compared with that con-
trolled by the reward-predicting stimulus alone (Acebes et
al., 2012; Harris et al., 2014). The model of Rescorla and
Wagner (1972) allows for partitioning of the elements that
constitute a compound stimulus; concretely, it provides a
rule to determine how associative strength values of dif-
ferent stimuli presented simultaneously interact trial by
trial. Recall that AV represents the change in the associa-
tive strength of a single element, X, of the assemblage of
current stimuli, N. Whenever XV) exceeds the value of A
(as in trials involving reward omission), Vx could take neg-
ative values under appropriate conditions. In order for X
to end up with a net negative associative strength follow-
ing reward omission requires that (1) its current associa-
tive strength to be sufficiently low and (2) the remaining of
the coextensive stimuli have some associative value (see
Fig. 3).

In the Rescorla-Wagner model, the vigour of responses
evoked by XV) is assumed to be a sort of algebraic sum
of the values of current stimuli (obviating biological limits).
Crucially, this model assumes that the context (cues that
are continually present) could acquire associative
strength and is thus capable of meaningfully impacting
learning. For example, presenting X without the reward
and the reward without X with time intervals in between
would imbue that stimulus with net inhibitory properties
(i.e., Vx < 0). This protocol is known as the explicitly

May/June 2021, 8(3) ENEURO.0016-21.2021

unpaired procedure. In such a condition, the context, C,
acquires a positive associative strength (V¢ > 0), by being
present whenever the reward is delivered. Importantly,
the context is also present during the trials involving the X
stimulus plus the omission of reward, being XV, equal to
Ve + Vx (Wagner and Rescorla, 1972). Then, AV will be
negative for every such trial, accruing a negative value
progressively over Vy. This would manifest as aversion-re-
lated behaviors toward X (see Wasserman et al., 1974)
and as a subtraction of the response vigour evoked by a
reward-predicting stimulus whenever X is presented (i.e.,
X € XV <X ¢ XVy). Such outcomes are justified by two
assumptions. First, a negative Vy implies a subtraction of
the response-evoking potential of concurrent excitatory
stimuli (Wagner and Rescorla, 1972). Second, negative
associative values imply that a stimulus has an affective
valence that opposes that of the outcome with which it
was trained (Daly and Daly, 1982).

A convenient way to conceptually and empirically in-
stantiate these attributes of the Rescorla-Wagner model
is the feature-negative discrimination protocol*. This tech-
nique consists in presenting two types of conditioning tri-
als, usually in a random fashion. One type of trial consists

2This paradigm is more broadly known as Pavlovian conditioned inhibition;
however, “conditioned inhibition” is also used to designate the process that
the target stimulus undergoes (here termed “inhibitory learning”), as well as the
empiric demonstration that such a process has taken place (Savastano et al.
1999); therefore, here we use the term “feature-negative discrimination” for the
procedure and “inhibitory learning” for the process to avoid ambiguity.
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Figure 4. Associative strength, according to the Rescorla—
Wagner model, of stimuli involved in a feature-negative discrim-
ination protocol in 80 trials of each type. Trials of the stimulus A
plus reward and not rewarded A-with-X trials were assumed to
alternate non-randomly. Values of a were set at 0.1 and 0.075
for rewarded (A = 1) and not rewarded (A = 0) trials, respec-
tively. The associative strength of the stimulus A and the com-
pound stimulus AX could be observed in actual performance. In
contrast, the associative strength of X alone (i.e., the condi-
tioned inhibitor) is theoretically inferred from the model and
could be revealed by special tests (see text).

of presenting a single stimulus, A, followed by an affective
outcome (e.g., reward). The remaining type of trial con-
sists of the same stimulus accompanied by another stim-
ulus, X, followed by the omission of that outcome. Such a
manipulation, according to the Rescorla-\WWagner model,
leads stimulus A to acquire a positive associative strength
and stimulus X to acquire a deep negative associative
strength (see Fig. 4). This hypothetical attribute is known
as conditioned inhibition, and Rescorla (1969) stated that
it should be empirically demonstrated using two special
tests. One of these tests is the above-described negative
summation effect and the other is the retardation in the
acquisition of a conditioned response by the target stimu-
lus. Also, as stated above, conditioned inhibitors trained
with an outcome of a particular affective valence have
been documented to acquire an opposed valence (i.e.,
appetitive to aversive and vice versa).

Dopamine Dips Propagate from Reward
Omission to Events That Predict It

The omission of an expected reward seems to promote
a similar backpropagation process to the one that takes
place when a cue predicts reward. Interestingly, the LHb
is likely to play a crucial role in this process (see also
Mollick et al., 2020). As mentioned above, reward omis-
sion triggers a phasic depression in dopamine release. In
turn, this promotes a decrease in dopamine release (and
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its behavioral outcomes) toward cues that predict reward
omissions. This implies that dopamine dips would pro-
mote a plastic change in the behaving agent which is op-
posite to that involved in reward. The clearest illustrations
of this claim are brought by two complementary experi-
ments to be described below.

First, Tobler et al. (2003) exposed macaque monkeys to
a feature-negative discrimination protocol (see section
above). In this study, the presentation of a cue alone pre-
dicted reward delivery. The presentation of the same cue
accompanied by another stimulus, the conditioned inhibi-
tor, predicted reward omission. Through training, the con-
ditioned inhibitor acquired the capacity of counteracting
the effects of the companion cue in reward omission trials
(see Fig. 4, gray circles). This tendency was also observed
when the conditioned inhibitor was presented along with
a different reward-predicting cue in a novel compound (.
e., negative summation). Notably, those effects were re-
ported at both behavioral (licking response) and neural
(dopamine neuron activity) levels of observation. Most im-
portantly, the presentation of the conditioned inhibitor
alone, while behaviorally silent, was capable of decreas-
ing baseline dopamine firing levels. This revealed that re-
ward omission promotes a physiological transfer of
function from the situation in which the reward is actually
omitted to the cue that consistently predicts it.

The second experiment was conducted recently by
Chang et al. (2018), using rats as subjects. In this study,
brief dopamine dips were artificially induced in midbrain
neurons following the simultaneous presentation of a re-
ward-predicting cue and a novel cue. After training, the
novel cue acquired the properties of a conditioned inhibi-
tor, as per the conventional tests of negative summation
and retardation of acquisition. Crucially, in the training tri-
als in which this novel cue was involved the reward was
not omitted. Thus, the inhibitory effects in the target cue
must have arisen from the artificial dips in dopamine firing,
complementing the findings of Tobler et al. (2003). On one
hand, Tobler et al. (2003) demonstrated that dopamine
dips could propagate from the omission of reward to the
presentation of an arbitrary event; on the other hand,
Chang et al. (2018) demonstrated that the dopamine dips
themselves are sufficient for this to occur.

As we mentioned above, one of the most robust physio-
logical effects of LHb activation is producing phasic dips
in dopamine firing. Therefore, both Tobler et al. (2003)’s
and Chang et al. (2018)’s findings are relevant to elucidate
the function of LHb physiology in learning from experien-
ces involving reward omission. In another recent study,
Mollick et al. (2021) intended to test this notion with
humans in an fMRI study. The aim of this study was to
replicate Tobler et al. (2003)’s behavioral protocol but in-
cluding the measurement of the activity in different re-
gions across the whole brain (not only in midbrain
dopamine cells). Mollick et al. (2021) indeed captured
greater LHb activity during the presentation of a condi-
tioned inhibitor compared with control stimuli; however,
this difference did not survive correction for multiple com-
parisons. Therefore, the authors recommend further repli-
cation before any inference can be made. While an earlier

eNeuro.org



eMeuro

human fMRI study (Salas et al., 2010) already docu-
mented that the habenula is activated when an expected
reward is omitted (i.e., negative reward prediction error),
evidence for the backpropagation of this effect remains
elusive. A possible explanation for the null result reported
by Mollick et al. (2021) is that the human LHb is quite
small and cannot be differentiated from the medial habe-
nula with standard fMRI resolutions (cf. Salas et al., 2010).
Similarly, the study by Mollick et al. (2021) failed to cap-
ture decreased activity in midbrain dopamine regions dur-
ing reward omissions. The authors argued that their fMRI
spatial resolution may have also precluded the distinction
between these regions and the adjacent GABAergic
RTMg (which was presumably active as well during re-
ward omissions).

Concurrent Reward Cues Contribute to
Dopamine Dips and Their Propagation

The above section concluded that dopamine dips
may function as “teaching” signals for gradually imbu-
ing a stimulus with negative associative strength. The
Rescorla-Wagner model states that the negative asso-
ciative strength accrued by a stimulus that is paired
with reward omission depends on concurrent reward
cues (see Fig. 3). Therefore, if we assume that dopa-
mine dips depend on LHb activation, the latter would
rely on current information about an impending re-
ward. That is, if a stimulus is followed by the omission
of reward, its associative strength would not change
unless it is coextensive with reward-related cues.
Therefore, LHb activation might not be induced by the
sheer non-occurrence of reward. Rather, the LHb may
become active when this non-occurrence coincides
with signals from other brain regions indicating proba-
ble reward. Furthermore, the greater the signal for re-
ward the larger the downshift in associative strength of
(and the aversion imbued to) the stimulus paired with
reward omission (see Fig. 3). Accordingly, dopamine
dips induced by reward omission would be proportion-
al to the probability (or magnitude) of the reward asso-
ciated with a conditioned stimulus. Tian and Uchida
(2015) found evidence supporting this assumption
using mice as subjects and three different probabilities
of reward associated with different target stimuli.
Crucially, this pattern of results was hindered in ani-
mals with bilateral lesions in the whole habenular
complex.

A relevant consideration is the origin of the signals re-
quired for invigorating the LHb activity on signals of an im-
pending reward. The entopeduncular nucleus (EPN;
border region of the globus pallidus internal segment in
primates; Hong and Hikosaka, 2008) and lateral hypo-
thalamus (LH; Stamatakis et al., 2016) provide excita-
tory inputs to the LHb. However, up to this point, it
remains unclear how impending reward signals mediate
the invigoration of the LHb. An elegant study with mac-
aques by Hong and Hikosaka (2013) found that electric
stimulation of the ventral pallidum (VP) consistently in-
hibited the activity of the LHb. These authors conjec-
tured that an interaction between inputs from the EPN
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and the VP in the LHb was responsible for the activa-
tion of the LHb. Recent evidence indicates that
GABAergic neurons in the VP are activated by surpris-
ing rewards and reward-predicting cues and inhibited
by aversive stimuli and reward omission (Wheeler
and Carelli, 2006; Stephenson-Jones et al., 2020).
Crucially, inhibition of LHb projecting VP GABAergic neu-
rons on reward omission depends on current reward cues.
In short, these VP neurons showed a biphasic ascen-
ding—descending pattern of activation to the reward-
cue—reward-omission sequence. Therefore, this structure
is a strong candidate for providing signals to invigorate the
activation of the LHb in reward omission episodes via
disinhibition.

The strength with which the EPN triggers LHb activation
may depend on the prior tone of VP inhibitory inputs. In
fact, Stephenson-Jones et al. (2020) reported that a num-
ber of GABAergic VP neurons synapsing with the LHb
exhibited a sustained pattern of activation during reward-
predicting cues. Then, sudden inhibition of these neurons
upon reward omission may combine with activation
of EPN signals for strongly disinhibiting the LHb.
Stephenson-Jones et al. (2020) also observed that a
small subpopulation of LHb-projecting glutamatergic
VP neurons showed the opposite pattern of activation
to that of GABAergic ones. Activation of these neurons
may add up to complement the potent disinhibition-ex-
citation process in the LHb during omission of an ex-
pected reward.

Knowing the source of excitatory and inhibitory inputs
to the LHb is an essential matter. However, this leads to
the task of identifying the upstream inputs of these sour-
ces (Bromberg-Martin et al., 2010) and so on. Hong and
Hikosaka (2013) speculated that the EPN may activate the
LHb through disinhibitory inputs from striosomal regions
of the dorsal striatum. This conjecture has recently been
supported by a study conducted by Hong et al. (2019), in
which the activation of striatal neurons inside or nearby
striosomes correlated with activation of the LHb. Hong et
al. (2019) further advanced the hypothesis that striosomes
may convey both excitatory and inhibitory inputs to the
LHb. Regarding the VP, Stephenson-Jones et al. (2020)
reported that neurons in this structure targeting the LHb
became active in a state-dependent fashion; specifically,
these neurons fire according to the motivational status of
the subjects, which is probably mediated by hypothalamic
signals. It seems reasonable that activation of the LHb
would be dependent on the energetic supply status or
sexual drive at a particular moment. In short, the omission
of reward should not cause substantial disturbance to a
sated individual. This could be another possibility for ex-
plaining the failure of Mollick et al. (2021) to replicate
Tobler et al. (2003)’s findings. Both studies used fruit juice
as reward. However, in the latter study macaques were
liquid deprived, while in the former participants were re-
cruited based on self-reported preference for the type of
juice employed. The motivational state of participants in
Mollick et al. (2021)’s study was probably insufficient to
induce strong physiological responses in the target
regions.
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The LHb Promotes Stimulus-Specific and
Response-Specific Inhibitory Effects

Although feature-negative discrimination is a prototypic
procedure for inducing conditioned inhibition effects in
appetitive settings (which here we are proposing as a be-
havioral phenotypic model of LHb function), other proto-
cols are also capable of doing so (see Savastano et al.,
1999). Likewise, other behavioral manifestations, besides
negative summation and retardation of acquisition tests,
could be used to certify conditioned inhibition (Wasserman et
al., 1974). For example, in a pivotal study, Laurent et al.
(2017) exposed rats to a backward conditioning preparation
to induce conditioned inhibition. Then, conditioned inhibitory
properties of stimuli were tested through a Pavlovian-to-in-
strumental transfer (PIT) test. This backward conditioning
procedure consisted in presenting one of two different audi-
tory target stimuli following, rather than preceding, as typically
done, the presentation of two different rewards; each target
stimuli was consistently associated with its corresponding re-
ward in a backward fashion (reward—stimulus). Next, rats
pressed two levers to obtain rewards and each of the rewards
used in the previous phase was associated with a different
lever. In the PIT test, the levers were present but pressing
was no longer followed by reward. In that condition, the target
stimuli that were used in the first phase were presented ran-
domly and lever pressing was recorded. Conditioned inhibi-
tion was revealed inasmuch each target stimulus biased
lever-pressing toward the opposite lever than that associated
with its corresponding reward. Importantly, Laurent et al.
(2017) found that this outcome was impaired by bilateral le-
sions of the LHb.

The disruption of conditioned inhibition was first ob-
served by performing an electrolytic lesion in the entire
LHb. This result was replicated when the authors induced
a selective ablation of neurons in the LHb that projected
to the RMTg via a viral technique. Therefore, the authors
concluded that this LHb-RMTg pathway is crucial for
learning these specific negative predictions about re-
wards. Remarkably, electrolytic lesions in the LHb did not
disrupt PIT performance for rats trained with traditional
forward-conditioning (stimulus—reward) procedure. This
suggests that the disruptive effect was confined to inhibi-
tory learning (see also Zapata et al., 2017). Laurent et al.
(2017)’s findings provide important insights for under-
standing the role of LHb-RMTg pathway in the develop-
ment of conditioned inhibition in appetitive settings.
Beyond generally impairing responding when reward is
negatively predicted, the LHb seems to promote learning
to perform specific action patterns to specific cues.
Apparently, this structure participates in enabling alterna-
tive behaviors for exploiting alternative resources in the
environment when the omission of a particular reward is
imminent.

Notably, the findings reported by Laurent et al. (2017)
challenge the Rescorla-Wagner model. According to this
model, a stimulus that is explicitly unpaired with a reward
can acquire a negative associative strength (i.e., become
a conditioned inhibitor). This would be mediated by the rela-
tively high associative strength in the context that coextends
with the target stimulus preceding reward omission. The
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Rescorla-\WWagner model predicts that backward conditioning
would lead as well to conditioned inhibition by this rationale
(see Wagner and Rescorla, 1972). In backward conditioning,
the target stimulus also co-occurs with the presumably exci-
tatory context. However, Laurent et al. (2017) observed spe-
cific inhibitory effects for each of the target stimuli in their
study. It is worth stressing that those target stimuli were
trained at the same time range and in the same context.
Thus, the target stimuli presumably acquired conditioned in-
hibitory properties by being (negatively) associated with each
reward. In contrast, the Rescorla-Wagner model predicts
that both target stimuli would acquire general inhibitory prop-
erties. This follows from the rationale that each target stimulus
was paired with the absence of either reward in a context as-
sociated with both.

At the behavioral level, Laurent et al. (2017)’s findings
can be readily accounted for by the sometimes-oppo-
nent-process (SOP) model (see Vogel et al., 2019). This
associative learning model invokes stimuli after-effects
that are capable of shaping behavior if they are appropri-
ately paired with other events. According to the SOP
model, there is an inhibitory (opponent) decaying trace of
its own kind following the delivery of each particular re-
ward. In the study of Laurent et al. (2017), each reward’s
unique trace would have been paired with each of the tar-
get stimuli. As a consequence, each target stimulus ac-
quired reward-specific conditioned inhibitory properties.
As LHb lesions completely abolished the behavioral effect
resulting from this protocol, this structure appears to play
a crucial role in this phenomenon. However, the putative
physiological means by which LHb mediates learning in
conditions such as those in Laurent et al. (2017)’s study
remain to be determined.

The LHb Participates in Inhibitory
Learning Even without Temporally
Specific Reward Omission

The findings reported by Laurent et al. (2017) merit fur-
ther examination. Based on this study, we can assume
that the LHb could exert its effects without acute epi-
sodes involving the omission of an expected reward.
Such a process is also instantiated in explicitly unpaired
procedures, in which a target stimulus acquires inhibitory
properties solely by alternating with reward. A recent
study by Choi et al. (2020) sought to test the hypothesis
that the LHb is involved in learning the association of a
cue with the absence of reward. These authors exposed
rats to an explicitly unpaired conditioning procedure that
used a light as a negative predictor of food delivery. Choi
et al. (2020) found increased c-Fos expression in the LHb
of rats exposed to an explicitly unpaired conditioning pro-
cedure compared to controls. This result supports the
idea that the LHb is engaged in the learning process that
takes place when a stimulus signals the absence of re-
ward. In a separate experiment, these authors did not find
any disruption in performance on this protocol when they
induced excitotoxic LHb lesions. However, this should
not be taken as negative evidence of the involvement of
the LHb in inhibitory learning. This finding may be ex-
plained on the basis of the need for special tests (e.g.,
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summation, retardation, PIT; see Rescorla, 1969) to certify
that an inhibitory stimulus is capable to counteract re-
ward-related behaviors. Unfortunately, Choi et al. (2020)
did not conduct any of the available tests for assessing
conditioned inhibition.

Both in backward conditioning and in explicitly un-
paired conditioning preparations, the reward would not
be expected to occur in any particular moment; specifi-
cally, a reward delivery is scheduled to occur at random
intervals without discrete cues anticipating it, unlike in ex-
tinction and in feature-negative discrimination proce-
dures. The ability of the LHb to modulate reward seeking,
even in paradigms not involving explicit reward omis-
sions, raise the question of what the mechanisms in-
volved are. A recent study by Wang et al. (2017) may shed
light in this issue. These authors described a rebound ex-
citation in the LHb following the inhibition typically pro-
duced by reward delivery. Given appropriate timing, the
traces of such a rebound excitation could have been
paired with the target stimuli for the control, but not for
the lesioned, subjects in Laurent et al. (2017)’s study.
Such pairings would facilitate the propagation of LHb ex-
citation, presumably promoting dopamine suppression,
eventually on the target stimuli alone. However, this
mechanism cannot account readily for inhibitory learning
in explicitly unpaired conditioning procedures. In these
protocols, the target stimulus does not consistently follow
the reward, but these events are rather separated by inter-
trial intervals of varying durations. Therefore, decreases in
dopamine mediated by rebound activity of the LHb could
hardly explain the inhibitory properties acquired by a tar-
get stimulus in explicitly unpaired procedures.

The LHb is known to modulate other monoamines be-
sides dopamine, such as serotonin (Amat et al., 2001).
Tonic serotoninergic activity depends on accumulated ex-
perience with rewards (Cohen et al., 2015). In turn, seroto-
nergic tone determines the effects of phasic activity in
serotonergic neurons, most of which is known to occur
during aversive experiences (Cools et al., 2011). Thus, the
LHb may participate in accumulating information about
reward probability in a given environment. This would
tune serotonin levels during inter-reward intervals on ex-
plicitly unpaired procedures, which might determine the
affectiveness of salient cues throughout those intervals. A
similar effect may also be prompted by the LHb via modu-
lation of tonic dopamine levels (see Lecourtier et al.,
2008), which would not contradict with the serotonergic
hypothesis. However, it is yet to be determined with cer-
tainty whether the LHb participates in inhibitory learning
from explicitly unpaired protocols. This will require using
either in vivo real-time recording or special tests for condi-
tioned inhibition in lesion/inactivation studies. In addition,
it is not clear how the LHb would be more active in explic-
itly unpaired conditions than in control conditions involv-
ing equivalent reward density, which was the main result
reported by Choi et al. (2020). A possibility is that the LHb
is relatively inactive when a reward is fully predicted by a
cue. Conversely, it may be tonically active in ambiguous
conditions; for example, when the reward or the cue
occur at any given time without notice (i.e., are explicitly
unpaired).
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The Habenulo-Meso-Cortical Excitatory
Pathway May Play a Role in Negative
Reward Prediction Error

The glutamatergic LHb-VTA-mPFC pathway (see Fig. 1)
is less well-known than the LHb-RMTg pathway but may
also play an important role in inhibitory learning from re-
ward omission. As we described earlier, unlike other LHb
efferents this pathway promotes, rather than inhibiting,
dopaminergic transmission. Perhaps, the most crucial
evidence supporting this idea stems from a study con-
ducted by Lammel et al. (2012). These authors reported
that blocking dopaminergic transmission in the mPFC
abolishes the capacity of the LHb to generate aversion to
spatial stimuli. Therefore, this pathway may be crucial in
complementing dips in meso-striatal dopaminergic re-
lease for learning from negative reward prediction errors.
Two putative, not mutually exclusive, mechanisms for
such an effect could be (1) directly opposing midbrain do-
pamine activity (see Jo et al.,, 2013) and (2) selecting
which stimuli should be filtered to control behavior (see
Vander Weele et al., 2018). The connectivity relationship
between the mPFC and the LHb is reciprocal (see Mathis
et al., 2017) and their afferences also converge in certain
brain locations (Varga et al., 2003). The mPFC has long
been considered a key brain region for restraining inap-
propriate actions and adjusting behavior when errors
occur (Ragozzino et al., 1999) but only recently this has
been considered from an associative learning perspec-
tive. Although research on LHb-mPFC interaction is still
scant, we outline some ideas on how these regions may
jointly contribute to learning from negative reward predic-
tion errors.

We should consider first that the mPFC is divided in
functionally dissociable anatomic subregions, at least for
some eutherian mammals (see Ongur and Price, 2000). A
subregion that might play a role in the LHb’s network is
the prelimbic cortex of rodents, which presumably corre-
sponds to the pregenual anterior cingulate in primates
(see Laubach et al., 2018). Several studies have linked
this subregion with the ability of mammals to restrain a
dominant (previously rewarded) response (Laubach et al.,
2015). An outstanding example of this is a study con-
ducted by Meyer and Bucci (2014) using rats as subjects.
These authors found that prelimbic, but not in the adja-
cent infralimbic, mPFC lesions impaired inhibitory learning
process in an appetitive feature-negative discrimination
paradigm in rats (i.e., differentiation in responding to A
and AX in Fig. 4). As we described above, this paradigm
consists in presenting a target stimulus that signals re-
ward omission. However, importantly, this target stimulus
occurs in the presence of a cue that otherwise consis-
tently predicts reward delivery. To effectively learn how to
stop reward-related responses in such situation, subjects
must solve the conflict between reward and reward-omis-
sion cues that are presented simultaneously.

It has been suggested that the opposing effects of the
prelimbic division of the mPFC upon the reward systems
is exerted via an aversion mechanism. This rationale is
supported by evidence that this region is involved in fear
learning (Burgos-Robles et al., 2009; Piantadosi et al.,
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2020) and exhibits robust excitatory connections with the
basal amygdala (Sotres-Bayon et al., 2012). Conversely,
the infralimbic portion of the mPFC, has been related to
both the expression of habitual reward-related responses
(Haddon and Killcross, 2011) and fear suppression
(Santini et al., 2008; but see Capuzzo and Floresco,
2020). The involvement of the infralimbic cortex in the lat-
ter of these processes could be accounted for in terms of
mediation of a subjective relief state. Such a state would
be functionally equivalent to reward and, therefore, op-
posed to aversive states in a hierarchical fashion under
appropriate circumstances.

However, some findings (e.g., Sharpe and Killcross,
2015) seem to contradict this prelimbic-aversive and in-
fralimbic—-appetitive notion, which prompts deviations
from this theoretical scheme. Instead of the aversive-ap-
petitive dichotomy, Sharpe and Killcross (2018) sustain
that the infralimbic cortex promotes attention to stimuli
that reliably predict affectively significant events, regard-
less of their valence (i.e., reflective control). In contrast,
the prelimbic cortex would promote attention to higher
order cues setting hierarchical (as in conditional probabil-
ities) relationships between stimuli and relevant outcomes
(i.e., proactive control), again, regardless of their affective
valence. A similar point has been raised by Hardung et al.
(2017), who found evidence for a functional gradient in the
mPFC spanning from the prelimbic to the lateral-orbital
cortex (passing through the infralimbic, medial-orbital and
ventral-orbital regions). These authors reported that re-
gions near to the prelimbic cortex tend to participate
more in proactive control, while regions near the lateral-
orbital cortex participate more in reflective control.
However, this study was conducted in an appetitive set-
ting, so hierarchical control (reactive vs proactive) and op-
ponent affective control (appetitive vs aversive)
hypotheses cannot be disambiguated. While cortical in-
puts to the LHb are generally modest, the prelimbic cortex
makes the largest contribution among the regions of the
cortex innervating this structure (Yetnikoff et al., 2015).
This may indicate that this pathway serves as an either
positive or negative feedback mechanism, depending on
whether these connections are excitatory or inhibitory.
Being the LHb a major aversive center, the former possi-
bility would be at odds with the approach of Sharpe and
Killcross (2018).

Furthermore, a recent finding has tilted the scale in
favor of the aversive—appetitive modularity of the mPFC.
Yan et al. (2019) reported that spiking in a subpopulation
of neurons in rats dorsomedial PFC (dmPFC; including
prelimbic and dorsal cingulate cortex) was (1) increased
upon the presentation of a cue signaling an imminent
electric shock, and (2) increased, but considerably less,
and then decayed below baseline on the presentation of a
cue that signals the omission of the shock. In addition,
Yan et al. (2019) showed that the cue signaling shock
omission passed the tests of summation and retardation
for conditioned inhibition, both at neural and behavioral
levels. Interestingly, this pattern of results mirrors those in
the study by Tobler et al. (2003) in an appetitive setting
with macaques. In brief, suppressing fear responses
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involves inhibition of dmPFC neurons, suggesting that
this region serves primarily to facilitate aversive learning
rather than having a general hierarchical control function.
This is in line with the idea that LHb input to the prelimbic
cortex may counteract the effects of reward cues via an
opponent affective process. Such a mechanism has been
regarded as one of the necessary conditions for the oc-
currence of inhibitory learning and performance (see
Konorski, 1948; Pearce and Hall, 1980). However, this
mechanism may be complemented with others, such as
threshold increase and attention to informative cues
(Laubach et al., 2015).

Relevance of the LHb for Mental Health

There is an emerging literature suggesting that many
psychiatric disorders can be characterized as alterations
of the ability to predict rewards and aversive outcomes
(Byrom and Murphy, 2018). Therefore, human wellbeing
could be understood, at least in part, in terms of the dy-
namics of associative learning and outcome prediction
(Papalini et al., 2020). Thus, disrupting the neural under-
pinnings of outcome predictions, either in an upward or
downward direction, could lead to maladaptive behaviors
that threaten people’s subjective wellbeing.
Disappointment, frustration, and discomfort stemming
from worse than expected outcomes are useful for direct-
ing behavior to adaptive ways of interaction with our sur-
roundings (see Fig. 5, light purple arrows). However, if
these subjective sensations are lacking or excessive, it is
likely that problematic behaviors will arise (see Fig. 5, dark
colored arrows).

Some authors have proposed that a pervasive reward
learning process (Chow et al., 2017; Sosa and dos
Santos, 2019a) can explain maladaptive decision-making
in impulsive and risk-taking behaviors. This may arise in
part from a deficit in learning from negative reward predic-
tion errors (Laude et al., 2014; Sosa and dos Santos,
2019b; see Fig. 5, dark aqua arrow). Impulsive-like behav-
ior is often studied in choice protocols with animal mod-
els. A study by Stopper and Floresco (2014) showed that
LHb inactivation led to indifference when rats choose be-
tween ambiguous alternatives. Specifically, subjects were
biased away from the most profitable of two alternative
rewards when a delay was imposed between the select-
ing action and that reward; however, this bias was abol-
ished by LHb inactivation. This suggests that delay
aversion might stem from a negative reward prediction
error mechanism, rendering the puzzle even more com-
plex. On the other hand, studies involving humans and ro-
dent models of helplessness (Gold and Kadriu, 2019;
Jakobs et al., 2019) have suggested that an over-reactiv-
ity of the LHb can induce symptoms associated with de-
pression (see Fig. 5, dark purple arrows). Such symptoms
include reluctance to explore new environments and un-
willingness to initiate challenging actions, which could be
interpreted as a constant state of disappointment or
sense of doom (Proulx et al., 2014). In that case, atypically
high reward expectations could lead to a pervasive and
maladaptive enhanced inhibitory learning. Another possi-
bility is that some individuals may have a proclivity to
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Figure 5. Simplified diagram representing the participation of the LHb in plastic brain processes for adaptively updating behavior
and hypothesized consequences of excessive activity (dark purple) or inactivity (dark aqua) of this brain structure.

overgeneralize learning from negative reward prediction
errors, which would cause a decreased activity overall (a
major symptom of depression). These putative mecha-
nisms are, of course, not mutually exclusive.

Synthetizing behavioral and neurophysiological studies
could serve to address the etiology and phenomenology
of these psychiatric conditions. Such an enterprise would
require integrating details regarding behavioral changes
in response to environmental constraints and the under-
lying neurobiological mechanisms involved. This is pre-
cisely what we have attempted in the present article. If
ongoing research continues to make advances, then
this perspective could serve to guide clinical practice.
An example would be determining whether psychother-
apy would be enough to tackle a particular case or
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whether combining it with pharmacotherapy would be
pertinent. Knowledge about neural and behavioral
dynamics might serve to design combined intensive in-
terventions to avoid long-term side effects of medica-
tions and dependency (Hengartner et al., 2019).
Additionally, understanding morphogenesis and wiring
of the LHb during embryological development could
be relevant to inquire whether disturbances in these
processes underlie problematic behavioral traits (Schmidt
and Pasterkamp, 2017).

Some recent studies have furthered our understanding
of behavioral-physiological interactions involving the LHb
from basic science to application. For example, Zhu et al.
(2019) found an association between subclinical depres-
sion and atypical connections in the dorsal posterior
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thalamus and the LHb. This peculiar connectivity of the
LHb might predispose people to depression or, alterna-
tively, some life events could promote behavioral patterns
leading to that phenotype. Experiences of reward loss
could vary regarding the time frame and magnitude of the
involved rewards (Papini et al., 2006). A person could lose
money during a gambling night with friends, which could
be a relatively innocuous experience, or lose a lifetime
partner, being a devastating event. Significant life experi-
ences can cause detectable changes in brain networks
(Matthews et al., 2016) and tracking these changes can
lead to finding ways to understand the underpinnings of
behavioral phenotypes associated with psychiatric condi-
tions. An intriguing example is that attenuating LHb activ-
ity has been shown to ameliorate depressive-like
symptoms induced by maternal separation in mice
(Tchenio et al., 2017).

Directions for Moving the Field Forward
Computational modeling of associative phenomena is
just one possible approach to account for the relationship
between LHb physiology and inhibitory learning. There
are other alternatives for improving our understanding of
this topic, even in a more detailed manner, such as neural
network models. These are powerful tools for envisaging
plausible mechanisms implemented by biological agents
to interact adaptively with their environment. A clear ad-
vantage of these models is that they make physiological
hypotheses more tenable (Frank, 2005). To our knowl-
edge, only few recently proposed neural-network models
(see Vitay and Hamker, 2014; Mollick et al., 2020) have in-
corporated nodes regarding the physiology of the LHb.
Even so, those models do not account for the multifac-
eted circuitry (e.g., including the LHb-VTA-mPFC path-
way) of this structure which, we argue, is highly relevant
for an utter understanding of its role in inhibitory learning.
Lack of inclusion of the LHb into neural network modeling
(Collins and Frank, 2014; Burgos and Garcia-Leal, 2015;
Sutton and Barto, 2018; O’Reilly et al.,, 2019) may be
partly because of an overemphasis in performance over
learning of inhibitory control. Cortical-thalamic-striatal cir-
cuits are often invoked to account for inhibitory perform-
ance, often without formally specifying how outcomes
shape future actions (Verbruggen et al., 2014; van Wijk et
al.,, 2020). An integration of learning and performance
models should be pursued to increase our understanding
of the broad network in which the LHb participates.
Another matter for future consideration is whether the
role of the LHb in learning from reward omission is exclu-
sive for edible rewards or it extends to other types of re-
ward, such as sexual stimuli for receptive individuals. In
addition, our understanding of the behavioral neuro-
science regarding the LHb come from select model
species. It has been hypothesized that the habenular
complex evolved in an ancestor of vertebrates to enable
circadian-determined movement modulation (Hikosaka,
2010). In this sense, the LHb may have later evolved its
role for suppressing specific actions in response to more
dynamic environmental information. Such exaptation hy-
pothesis implies that the habenula of basal lineages did
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not play the same role it does in extant vertebrates. That,
in turn, implies that either basal vertebrate lineages could
not learn from reward omission or that they did so by re-
cruiting other mechanisms.

Even invertebrates possess mechanisms for learning
from situations involving negative prediction errors (i.e.,
conditioned inhibition; Britton and Farley, 1999; Couvillon
et al.,, 2003; Acebes et al., 2012; Durrieu et al., 2020).
Although this fact is appealing, for now it is fairly limited to
the behavioral level of observation. However, an emerging
field of research is currently scrutinizing the neural
underpinnings of negative reward prediction errors in
Drosophila flies (Felsenberg et al., 2017). In these animals,
a bilateral structure known as the mushroom body sup-
ports associative learning using dopamine as a plasticity
factor, in a similar fashion as the vertebrate brain does
(Aso et al., 2014). The mushroom body possesses differ-
ent subdivisions, which selectively release dopamine dur-
ing reward or aversive stimuli. Intriguingly, Felsenberg et
al. (2017) reported that inactivating aversion-related do-
pamine neurons preclude the bias in behavior otherwise
produced by pairing a stimulus with reward omission. It
has been suggested that aversive dopamine neurons di-
rectly oppose to reward-related dopamine neurons in the
mushroom body (Perisse et al., 2016). This may indicate
that invertebrate nervous systems possess the hierarchi-
cal architecture necessary for inhibitory learning, such as
that found in vertebrates. Remarkably, these diverging
nervous systems also exhibit antagonistic dopaminergic
subsystems, similar to those that the LHb orchestrate in
the vertebrate brain. Future research in this field may un-
cover the evolutionary origins of negative reward predic-
tion errors and a more precise dating of the origins and
precursors of the LHb.

Summary and Concluding Remarks

Organisms benefit from possessing mechanisms to
track resources in their surroundings and adjust their ac-
tions to obtain maximum profit. This relies on a delicate
balance between responding and withholding specific re-
sponses whenever it is appropriate. Sensorimotor feed-
forward loops are mediated by long-term potentiation in
some locations of the striatum induced by midbrain dopa-
minergic inputs (Yagishita et al., 2014). Conversely, there
are several processes that prevent spurious sensorimotor
loops, which would potentially waste energy and put the or-
ganism at risk. A convenient paradigm to study one such
process is conditioned inhibition, a subclass of Pavlovian
learning phenomena. This paradigm could serve as a prin-
cipled and physiologically informed behavioral phenotype
model of negative error prediction. Negative feedback con-
trol mechanisms had been recently proposed to be of pri-
mary importance to understand adaptive behavior (Yin,
2020). Therefore, conditioned inhibition might be a particu-
larly relevant and timely conceptual and methodological
tool. Intriguingly, although inhibitory learning has been
thought to be multifaceted in nature (Sosa and Ramirez,
2019), several of its manifestations seem to implicate the
LHb.
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Omission of expected rewards at a precise time pro-
motes dopamine dips in canonical midbrain neurons with
a remarkable contribution of the LHb (see Mollick et al.,
2020). These dopamine dips back-propagate to stimuli
that consistently predict reward omission in a way that re-
sembles plastic changes associated with dopamine
release (Tobler et al., 2003). All things being equal, dopa-
mine dips can counteract phasic dopamine effects on be-
havior (Chang et al., 2018). This accounts for LHb’s
contribution to extinction of a previously acquired re-
sponse (Zapata et al., 2017), feature negative discrimina-
tion, negative summation, and retardation of acquisition
in appetitive settings (Tobler et al., 2003). However,
although the activity of the LHb is associated with dopa-
mine dips, it may also participate in learning processes
beyond general suppression of previously rewarded ac-
tions (Laurent et al., 2017). This selective effect is remark-
able given that other brain areas have been associated
with global response inhibition (see Wiecki and Frank,
2013).

Even if LHb’s suppressing effects on midbrain dopa-
mine neurons are robust, the excitatory LHb-VTA-mPFC
pathway may also play a role in inhibitory learning from re-
ward omission. Lesions of the prelimbic portion of the
mPFC impair inhibitory learning in appetitive settings
(Meyer and Bucci, 2014). This region receives indirect do-
paminergic input from the LHb and its activation has been
implicated in aversion learning (Lammel et al., 2012).
Some learning theories have proposed that conditioned
inhibition is partly determined by antagonizing the effect
of an affectively loaded conditioned stimulus (Konorski,
1948; Pearce and Hall, 1980). The activity of this pathway
leads to dopamine release in the mPFC, which may allow
channeling relevant sensory inputs to key plastic brain re-
gions (Vander Weele et al., 2018). Therefore, interactions
of the LHb with aversive centers via the prelimbic cortex
may facilitate imbuing cues with the capacity of counter-
acting reward-seeking tendencies. Disrupting either the
excitatory or inhibitory LHb pathways has been shown to
hamper inhibitory learning processes to some degree.
Whether and how those pathways may interact or com-
plement each other to promote inhibitory learning remains
a matter of further investigation.

Feature-negative discrimination and extinction proce-
dures promote a decrease (or even net negative values) in
associative strength, presumably through the omission of
a reward at a precise moment following a cue. However,
backward conditioning also induces conditioned inhibi-
tion and this effect is impaired by specific ablation of the
LHb-RMTg pathway (Laurent et al., 2017). In this para-
digm, the reward is not expected at a specific point in
time, so other mechanisms may be recruited by the LHb.
A potential candidate for this process is the rebound ac-
tivity of the LHb following inhibition by reward (Wang et
al., 2017). However, alternating a target stimulus with re-
ward delivery in an explicitly unpaired fashion also indu-
ces conditioned inhibition. There is ex-vivo evidence that
such conditions promote meaningful activity in LHb neu-
rons (Choi et al., 2020). In such case, learning could not
be clearly linked neither to phasic decreases in dopamine
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in response to unexpected reward omission nor to postre-
ward rebound activity of the LHb; therefore, other mecha-
nisms involving the LHb may take place.

Converging lines of evidence suggest that LHb partici-
pates in the induction and expression of inhibitory learn-
ing under different conditions involving reward. This
supports the intriguing idea that this structure is com-
posed of several parallel circuits operating in different
functionally equivalent situations (Stephenson-Jones et
al., 2020). Unfortunately, conditioned inhibition, the accu-
mulated outcome of inhibitory learning, is an elusive phe-
nomenon which often requires special tests to be
validated. Moreover, some authors have claimed that
each test requires up to several control conditions to be
deemed conclusive (Papini and Bitterman, 1993). This
complicates the matter further, as it multiplies the number
of subjects that are needed to evaluate the role of the LHb
in this phenomenon; aside from comparing the role of its
different subcircuits. However, this topic is still worth in-
vestigating, as it seems to participate in many situations
involving negative predictive relationships between
events. Perhaps, one situation in which such processes
take place is the adaptation to environments that require
behavior flexibility. If one takes “negative reward predic-
tion errors” in a broader sense, many tasks requiring shifts
in behavior following subtle cues could be considered in
this category. Accordingly, there is an increasing amount
of evidence that LHb plays a role in updating behavior on
those tasks (Baker et al., 2017). Conditioned inhibition
could be conceived as an accumulated outcome of the
mechanisms involved in shifting behavior in dynamic con-
ditions by error corrections. Models of associative learn-
ing would be useful to frame and test this and further
hypothetical propositions.
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