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Abstract

Genetic risk factors are occasionally shared between different neurodegenerative diseases. 

Previous studies have linked ANG, a gene encoding angiogenin, to both Parkinson’s disease (PD) 

and amyotrophic lateral sclerosis (ALS). Functional studies suggest ANG plays a neuroprotective 

role in both PD and ALS by reducing cell death. We further explored the genetic association 

between ANG and PD by analyzing genotype data from the International Parkinson’s Disease 

Genomics Consortium (IPDGC) (14,671 cases and 17,667 controls) and whole genome 

sequencing (WGS) data from the Accelerating Medicines Partnership - Parkinson’s disease 

initiative (AMP-PD, https://amp-pd.org/) (1,647 cases and 1,050 controls). Our analysis did not 

replicate the findings of previous studies and identified no significant association between ANG 
variants and PD risk.
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Introduction:

Parkinson’s disease (PD) is a neurodegenerative disease characterized by loss of 

dopaminergic neurons in the substantia nigra leading to symptoms of tremor, rigidity and 

slowed movement, and is the second most common neurodegenerative disease in the world. 

Both sporadic and familial forms of PD exist, and much work has been done to identify the 

environmental and genetic risk factors behind this disease. Over 20 genes have been 

associated with PD or parkinsonism in recent years, and the largest genome wide association 

studies for PD risk have identified 92 PD risk variants across 80 loci, explaining 16–36% of 

the heritable risk of PD (Blauwendraat, Nalls, and Singleton 2020; Nalls et al. 2019; Foo et 

al. 2020).

It is not uncommon to find genetic variations associated with multiple neurodegenerative 

disorders, suggesting shared pathways between diseases (Tan et al. 2019). For example, 

common variations in MAPT have been associated with PD (Zabetian et al. 2007), 

amyotrophic lateral sclerosis (ALS) (Karch et al. 2018) and Alzheimer’s disease (AD) 

(Ferrari et al. 2017), and variations in GBA have been associated with PD (Sidransky et al. 

2009) and Gaucher disease (Riboldi and Di Fonzo 2019). Therefore, the interrogation of 

genes common to multiple neurodegenerative disorders is a logical next step in the 

identification of novel PD risk variants.

One such candidate is ANG, a relatively small protein coding gene on chromosome 14 with 

a 444 base pair coding region on two exons. This gene is thought to confer a large risk for 

both ALS and PD (Rayaprolu et al. 2012; van Es et al. 2011). However, studies in Asian 

populations have suggested there is no link between ANG variants and PD (Chen et al. 

2014; Liu et al. 2013). ANG encodes angiogenin, a small protein that plays a role in the 

angiogenesis pathway, which forms new blood vessels. Angiogenin and its related pathway 

are thought to play a role in cancer and placental development (Amankwah, Sellers, and 

Park 2012; Pavlov et al. 2014). An in vitro study has shown that angiogenin has a 

neuroprotective effect on motor neurons (Subramanian, Crabtree, and Acharya 2008). ALS 

associated ANG variants are suggested to potentiate neuronal death through inhibition of the 

PI3K-Akt pathway (Kieran et al. 2008). A PD mouse model has also shown this gene has a 

neuroprotective effect on dopaminergic neurons (Steidinger, Standaert, and Yacoubian 

2011). This neuroprotective effect is suggested to be lost when ANG is mutated, decreasing 

the viability of motor neurons (Wu et al. 2007). These findings are of relevance because PD 

is characterized by the loss of dopaminergic neurons and ALS is characterized by the loss of 

motor neurons. Angiogenin may play a larger role in areas such as the basal ganglia, a brain 

structure often associated with PD. This is supported by a study that identified elevated 

blood serum angiogenin levels in ALS patients, but not in PD patients (van Es et al. 2014). 

Structural work has shown ten ANG coding variants are associated with a decrease in 

angiogenin activity, and one coding variant, p.Arg145Cys, is associated with an increase in 

activity (Bradshaw et al. 2017).

Case control studies focusing on ANG have reported associations between ANG variants 

and PD. A study including 6,471 ALS cases, 3,146 PD cases and 7,668 controls from 

American and European populations has reported associations between ANG variants and 
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both PD and ALS (van Es et al. 2011). A separate study including 630 PD cases and 676 

controls from American populations has also reported association between ANG variants 

and PD (Rayaprolu et al. 2012). However, to date ANG variants have not been associated 

with either ALS or PD through genome wide association studies (GWAS) (Nicolas et al. 

2018; Nalls et al. 2019). Here we scrutinize ANG variants in two large PD datasets to assess 

whether ANG variants contribute to PD risk in individuals of European ancestry.

Methods:

Whole-Genome Sequencing and Genotype Data:

We mined whole-genome sequencing (WGS) data from the Accelerating Medicines 

Partnership - Parkinson’s disease initiative (AMP-PD, https://amp-pd.org/) which included 

1,647 cases and 1,050 healthy controls from cohorts of European ancestry. The cohorts 

included were the Fox Investigation for New Discovery of Biomarkers (BioFIND), the 

Parkinson’s Progression Markers Initiative (PPMI), the Harvard Biomarker Study (HBS), 

and the Parkinson’s Disease Biomarkers Program (PDBP). We also looked at ANG variants 

in genotype data from the International Parkinson’s Disease Genomics Consortium (IPDGC) 

which included 14,671 cases and 17,667 healthy controls. IPDGC variants were converted 

from hg19 to hg38 positions to match AMP-PD variant hg38 positions. Variants from both 

datasets were annotated using ANNOVAR (Wang, Li, and Hakonarson 2010). Variant 

frequencies in non-Finnish European populations were obtained from the hg38 gnomAD 

v3.0 dataset (Karczewski et al. 2020).

Variants identified by amino acid change from previous studies including Van Es et al. and 

Rayaprolu et al. did not initially match any variants identified in AMP-PD data due to 

differences in amino acid numbering. To resolve this we mapped each variant amino acid 

change to the angiogenin protein sequence. This sequence was obtained from Ensembl using 

the ANG-201 ENST00000336811.10 hg38 transcript (Yates et al. 2020). We learned that the 

reported amino acid changes from Van Es et al. and Rayaprolu et al. were offset by 25 or 24 

amino acids due to numbering differences used for the signal peptide sequence that is 

cleaved from the mature angiogenin protein. This was accounted for in our analysis.

Statistical Analyses:

PLINK 1.9 was used to perform Fisher’s exact test to identify significant variants (Purcell et 

al. 2007). Rare variant burden tests and single variant score tests were performed using 

RVTESTS (Zhan et al. 2016). We further analyzed existing summary statistics including the 

latest GWAS meta-analyses for PD risk and age of onset (Blauwendraat et al. 2019; Nalls et 

al. 2019) and additionally assessed public summary statistics from the most recent ALS 

GWAS (Nicolas et al. 2018).

We used the Genetic Association Study Power Calculator to calculate the statistical power of 

our study (Johnson and Abecasis, n.d.).

Principal component analysis was performed on AMP-PD samples to check for population 

stratification. Data from the International HapMap Project was merged with AMP-PD data 
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for comparison (Supplementary Figure 3) (Consortium, the International Hapmap and The 

International HapMap Consortium 2003).

Code:

The code we used for analysis is available on the IPDGC github (https://github.com/ipdgc/

IPDGC-Trainees/blob/master/ANG.md).

Expression Quantitative Trait Loci:

We obtained expression quantitative trait loci (eQTL) data for ANG variants found in AMP-

PD and IPDGC datasets. Both cis and trans eQTLs were obtained from the eQTLGen 

Consortium (Võsa 2018). The Genotype-Tissue Expression portal was accessed on 

November 18, 2020 to obtain additional eQTL data.

Results:

We identified a total of 168 ANG variants in the AMP-PD WGS data, with nine of these 

identified as coding. We compared the nine identified ANG coding variants to variants from 

two other studies (van Es et al. 2011; Rayaprolu et al. 2012) (Supplementary Table 2). Of the 

coding variants, two were synonymous and the other seven were nonsynonymous. All 

nonsynonymous variants were rare (MAF<0.01), and allele frequencies did not differ 

significantly from gnomAD non-Finnish European allele frequencies although most variants 

were too rare to reliably test individually. The top variant after performing Fisher’s exact test 

(p=0.017) and single variant score test (p=0.016) was not significant after Bonferroni 

correction for multiple tests (p=0.05/168=2.97E-4) (Supplementary Table 1). Burden tests 

with a minor allele frequency less than 0.03 reported no significant results when using all 

variants (N variants=72; CMC p=0.493, Fp p=0.509, MB p=0.880, Skat p=0.454, SkatO 

p=0.523, Zeggini p=0.395). Likewise, there were no significant results when performing the 

same test on only coding variants (N variants=9; CMC p=0.866, Fp p=0.510, MB p=0.820, 

Skat p=0.436, SkatO p=0.556, Zeggini p=0.868).

After excluding the only two synonymous variants, rs11701 (p.G110=) and rs2228653 

(p.T121=), from these nine, we observed an average frequency of 0.39% in PD cases and 

0.48% in controls. Van Es et al. also removed two common variants, rs121909536 (K41I) 

and rs121909541 (p.I70V), from their analysis. After removing these same two variants 

from our data the average frequencies were 0.15% in PD cases and 0.19% in controls. This 

is in contrast with the 0.45% average frequency in PD cases and 0.05% in controls 

previously reported (van Es et al. 2011).

Twenty-six ANG variants were identified using the IPDGC imputed genotype data, all of 

which were non-coding (Supplementary Table 1). All variants were high quality imputed 

(r2>0.8) or were directly genotyped. No significant association between ANG variants and 

PD risk (Figure 1A) or onset (Supplementary Figure 1) was identified in data from the latest 

PD risk GWAS or in the PD age of onset GWAS (Nalls et al. 2019; Blauwendraat et al. 

2019). No variants had a minor allele frequency less than 0.03, so the threshold was 

increased to 0.05 for burden tests. Only two variants were included at this threshold, which 

also reported no significant results (N=2; CMC p=0.893, Fp p=0.960, MB p=0.948, Skat 
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p=0.980, SkatO p=1, Zeggini p=0.842). Additionally, no GWAS signal of interest is 

identified in the most recent ALS GWAS (Figure 1B) (Nicolas et al. 2018).

Discussion:

Rare coding variants in ANG have been reported to be associated with PD (van Es et al. 

2011). Our goal was to further explore the role of ANG in PD by analyzing additional 

datasets from IPDGC and AMP-PD. Our study shows no significant enrichment of ANG 
single variants in PD cases or controls in either of these datasets. Rare variant burden tests 

also reported no significant results for ANG. Our analysis provides no evidence to support 

the hypothesis that genetic variation of ANG plays a role in PD risk or age at onset.

The nine coding ANG variants we identified were from AMP-PD WGS data. This dataset 

included fewer samples (1,647 PD; 1,050 controls) than the Van Es et al. study (6,471 

ALS;3,146 PD;7,668 non-ALS controls;5,361 non-PD controls) which identified a total of 

29 unique ANG coding variants. However, the frequency of ANG coding variants detected 

in AMP-PD data is 0.15% in PD cases and 0.19% in controls which is different from the 

previously reported 0.45% in PD cases (14 variants in 3,146 PD cases) and 0.05% in 

controls (3 variants in 5,361 non-PD controls) (van Es et al. 2011).

We queried eQTL datasets from eQTLGen and GTEx for ANG eQTLs to identify variants 

that affect gene expression levels (Võsa 2018). Between both eQTLGen and GTEx data we 

identified a total of 725 unique ANG eQTLs (Supplementary Table 3). Twenty six of these 

725 were trans eQTLs and the other 699 were cis eQTLs. Out of the 170 genetic variants 

identified in AMP-PD and IPDGC data, 74 were eQTLs for ANG or the nearby gene, 

RNASE4, ten of these eQTLs were located in the 5’ untranslated region of ANG, one was 

exonic, and the other sixty-three were intronic. However, given that the genetic variants were 

not determined to be significant, it is likely that eQTLs also do not contribute to disease.

We used the Genetic Association Study Power Calculator to determine if our study was 

sufficiently powered to replicate the findings of previous studies (Johnson and Abecasis, 

n.d.). We used 1,647 cases and 1,050 controls as inputs, with a significance level of 0.05, 

and a disease prevalence of 0.01. We calculated the average allele frequency in AMP-PD 

data to be 0.0017 and included it along with a genotype relative risk of 6.7 which was taken 

from previous studies to allow for comparison with our study (van Es et al. 2011). We 

calculated a statistical power of 0.997, suggesting we are sufficiently powered to detect 

significant rare ANG variants in PD cases and controls (Supplementary Figure 2). 

Additionally, AMP-PD samples used in our study were age matched which is in line with 

previous studies (Supplementary Table 4). However, the cumulative frequency of ANG 
variants identified in AMP-PD data was not significantly different as previously reported. A 

larger sample size may be needed to identify the missing coding variants so the role of ANG 
in PD can be assessed on an even larger scale. Overall, despite some potentially interesting 

functional experiments supporting the neuroprotective effect of angiogenin, we cannot 

replicate the genetic association between ANG coding variants and PD. Therefore, we 

cannot conclude that ANG variants play a role in PD in European populations, which is in 

line with previous studies done in Asian populations (Chen et al. 2014; Liu et al. 2013).
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Locus zoom plots for ANG and PD risk and ALS risk.
The −log10(p-value) of variants on or near ANG are shown on the y-axis, and base-pair 

position of each variant is on the x-axis. P-values are taken from the PD risk GWAS (Figure 

1A) and the ALS risk GWAS (Figure 1B). Variants are colored by their R2 linkage 

disequilibrium value which is relative to the variant with the lowest p-value on these plots 

(colored purple). The genome-wide significance cutoff line for multiple test correction is 

included in black. Recombination rates are included in blue (Pruim et al. 2010).
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