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Abstract Partial least squares regression (PLSR) modeling

was performed to predict the moisture content in steamed,

dried purple sweet potato based on spectral data obtained

from hyperspectral imaging analysis. The PLSR model

with a combination of multiplicative scatter correction,

Savitzky–Golay, and first derivative exhibited the highest

accuracy (RP
2 = 0.9754). The wavelengths found that

strongly affected the PLSR model were 961.12, 1065.50,

1083.93, 1173.23, and 1233.89 nm. These wavelengths

were associated with the O–H second overtone and the

second overtone of C–H, C–H2, and C–H3. When PLSR

modeling was performed using these selected wavelengths,

the prediction accuracy of the PLSR model exhibited high

accuracy (RP
2 = 0.9521). Therefore, the moisture content

could be predicted with high accuracy using only five

wavelengths rather than the full spectrum.

Keywords Hyperspectral imaging analysis � Partial least

squares regression modeling � Selected wavelengths �
Moisture content � Purple sweet potato

Abbreviations

AC Anthocyanin contents

MC Moisture content

MSC Multiplicative scatter correction

PLS Partial least squares

PLSR Partial least squares regression

RMSE Root mean square error

RMSECV RMSE cross-validation

ROI Region of interest

SNV Standard normal variate

TPC Total phenolic compounds

TSS Total soluble solids

Introduction

Sweet potato (Ipomoea batatas L.) is a perennial herb, and

it is known to have originated between the Yucatan

Peninsula region of Central America and the Orinoco River

estuary in South America (Kim et al., 2017). Danzami

(Ipomoea batatas (L.) Lam.) was bred by crossing purple

sweet potato (Yeonzami) and pumpkin sweet potato

(Yeonhwangmi) in 2015 to improve the sweetness and

taste. Although the total anthocyanin content of Danzami is

lower than that of the previous purple sweet potato

(Shinzami), their total polyphenol content and antioxidant

activities are the same. Danzami possesses high sweetness

and excellent flavor, making it a favorable candidate for

steamed, dried sweet potatoes.

Sweet potato is consumed primarily in food, brewing,

and starch production. Sweet potatoes contain a lot of
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moisture, are weak against cold, and generate a lot of

carbon dioxide gas. Therefore, there are difficulties

involved in storage and transportation; the main issue is

that they must be consumed within a short period following

production. Sweet potatoes are processed in fried or dried

form to increase industrial availability. Among the pro-

cessed products, steamed, dried sweet potatoes are a dry

product; and their quality is significantly affected by their

MC. The excessive decrease in MC induced by drying

causes the texture to becomes harder and less palat-

able (Shin and Lee, 2011). Furthermore, due to this rapid

loss of water, the quality deteriorates, and it is subject to

shrinking (Hong and Lee, 2004). Conversely, if the MC is

too high, it becomes a product that easily breaks during

storage and is difficult to store. Therefore, determining the

optimal MC for steamed, dried sweet potatoes is an

important step in the drying process. Moreover, measuring

the MC during drying involves an atmospheric-pressure

drying method, which is both destructive and time-con-

suming. In addition, the potential for error with this

approach is vast as only a few representative samples are

measured, as this method does not involve checking the

MC for all of the samples. Therefore, overcoming this

problem requires a new method to measure MC nonde-

structively; one such method is hyperspectral imaging

analysis.

Hyperspectral image analysis is based on near-infrared

(NIR) spectroscopy combined with imaging technology

(Costa et al., 2011; Sun, 2004). Hyperspectral imaging

analysis is similar in principle to NIR spectroscopy (Ye

et al., 2014), where the spectrum generated by the

absorption of infrared energy in response to the oscillation

of covalent bonds (O–H, C–H, N–H, and S–H) is analyzed.

Hyperspectral image analysis differs from NIR spec-

troscopy in that spectral information is obtained from an

entire or partial image of the sample used to collect three-

dimensional spectral data, and it can extract the spectral

data corresponding to minute spaces in the sample sepa-

rately. Therefore, the hyperspectral image analysis is suit-

able for monitoring a large amount of material as a scan.

Numerous examples of hyperspectral imaging analysis

have been reported, including the determination of banana

quality and maturation stage (Rajkumar et al., 2012),

organic residues (Feng and Sun, 2012), and the physical,

chemical, and biological contamination of foods. Further-

more, it is also utilized prediction of corn hardness (Wil-

liams et al., 2009), beef color, pH, and shear force (Masry

et al., 2012). Hyperspectral image analysis has previously

been used to predict MC and exhibits high prediction

accuracy (Huanga et al., 2014; Pu and Sun, 2016; Wu et al.,

2012).

To our knowledge, hyperspectral image analysis in the

NIR range (900–1700 nm) has not yet been used to predict

the MC of steamed dried sweet potatoes. This study applies

hyperspectral image analysis to the quality analysis of

processed, steamed, dried sweet potatoes to quickly mon-

itor the quality changes during processing rather than the

raw materials, in order to filter out defective products. We

also developed a PLSR model that predicts the most

important MC to ensure quality in steamed, dried sweet

potatoes.

Materials and methods

Sample preparation

The sweet potatoes used in this experiment were purple

sweet potatoes (Danzami) produced in 2018 in Haenam-

gun, Jeollanam-do, Korea. The sample weights were

157 ± 40 g. The sweet potatoes were washed by only

water until they were clean, cooked for 25 min at 100 �C,

cooled, and cut into a cylindrical shape (diameter 2.7 cm,

thickness 1 cm). Each sample was dried at 55 �C for 0, 2,

4, 6, 8, or 10 h using a dryer (BL950903, Gumbok Stoke

Co., Ltd., Seoul, Korea). Seventy samples per group were

prepared, a total of 420 samples and the degree of drying

was determined through PLS discriminant analysis (PLS-

DA). Two hundred and seventy of these samples were used

to develop a MC prediction model with PLSR.

Hyperspectral image acquisition and extraction

Hyperspectral images of the steamed, dried purple sweet

potatoes were obtained in the Vis–NIR region

900–1700 nm using an ImSpector N17E (Specim, Spectral

Imaging Ltd., Oulu, Finland). The N17E has a spectral

range of 900–1700 nm, a variance of 110 nm/mm, and a

spectral resolution of 5 nm, resulting in the spectral data

being divided into 256 bands in the same spectral range.

The light source consisted of two halogen lamps (1400 nm

long-pass filter) fixed to the frame with a camera to illu-

minate the sample. The fixed camera could only obtain

images directly under the lens, thus, requiring that the

sample be moved in one direction to obtain a continuous

hyperspectral image. The sample-conveying component

was configured under the frame. Data were extracted using

the ROI function of the ENVI software (version 5.4, Exelis

Visual Information Solutions, Boulder, Colorado, USA) to

obtain data only for the ROI from the acquired hyper-

spectral images.
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Quality characteristics analysis

The moisture content (MC)

MC of the samples was measured using the atmospheric

pressure drying method. Each sample was dried at 103 �C
for 42 h using a drying oven (KMC-1202D3, Vision Sci-

entific Co., Ltd., Daejeon, Korea). The MC was calculated

using the weight differences found before and after drying.

Total soluble solids (TSS) and reducing sugar content.

TSS content and the reducing sugar content were mea-

sured via the following method, 45 mL of distilled water

was added to 5 g of each sample, followed by grinding with

a hand blender (HR1604, Royal Philips Electronics N.V.,

Amsterdam, Netherlands) for 1 min. Following ultrasonic

extraction for 2 h, centrifugation was performed at

10,0009g for 10 min. The supernatant of the centrifuged

sample was filtered with a 0.45 lm filter, and the filtrate

was used as a sample. The TSS was measured using a

refractometer (N-1a, ATAGO Co., Ltd., Tokyo, Japan),

and the results were expressed in � Brix. Reducing sugar

was added to 1 mL of the DNS reagent in the sample

dilution and allowed to stand at 60 �C For 10 min, then the

absorbance was measured at 540 nm using a UV–visible

spectrophotometer (Evolution 201, Thermo Fisher Scien-

tific Inc., Madison, WI, USA). Glucose was used as a

standard.

Total phenolic compounds (TPC) and anthocyanin contents

(AC)

TPC and AC were analyzed using the following method for

extraction, 45 mL of 80% methanol was added to 5 g of the

sliced sample, and extracted at 30 �C and 120 rpm in a

shaking incubator (JSSI-300C, JS Research Inc., Gongju-

city, Korea) for 12 h. The extract was then filtered with

Whatman No. 2 and used as a sample. TPC was analyzed

by applying the Folin-Denis method (Kim et al., 2016).

Briefly, Folin-Denis reagent (JUNSEI Chemical Co. Ltd.,

Tokyo, Japan) was added to the diluted sample extract.

This mixture was allowed to stand in the dark for 10 min,

then 2 mL of a 10% Na2CO3 solution was added. Fol-

lowing 1 h in the dark, the absorbance was measured at

750 nm using a UV–visible spectrophotometer (Evolution

201, Thermo Fisher Scientific Inc., Madison, WI, USA) to

calculate the gallic acid (mg / L) for use as a standard.

Measurement of the AC involved the following, sample

extracts were added to 0.025 M potassium chloride buffer

(pH 1.0) and 0.4 M sodium acetate buffer (pH 4.5),

respectively, and then allowed to stand for 15 min.

Absorbance was measured at 515 nm and 700 nm using a

UV–visible spectrophotometer (Evolution 201, Thermo

Fisher Scientific Inc., Madison, WI, USA), and the antho-

cyanin content was calculated via the following equation:

Anthocyanincontents mg=Lð Þ ¼ A�MW � DF � 1000

e� 1

A ¼ A515nm � A700nmð ÞpH1:0 � A515nm � A700nmð ÞpH4:5

A515nm = absorbance at 515 nm, A700nm = ab-

sorbance at 700 nm, MW = molecular weight of cyanid-

ing-3-glucoside or 449.2, DF = dilution factor, e = molar

extinction coefficient of 26.900.

Color value (CIE L*a*b*) and browning index (BI)

Colors of the samples were represented by the L* (light-

ness), a* (redness), b* (yellowness) values, and a col-

orimeter (CR-400, Minolta Co., Osaka, Japan) calibrated

with a standard white plate (L* = 97.79, a* = - 0.38, and

b* = 2.05). The average value was measured 15 times for

each group. Using the measured (L*, a*, b*) values, the BI

was calculated using the following equation. It was cal-

culated as Xn = 91.97, Yn = 93.8, and Zn = 107.98 used in

the following equation (Ruiz et al., 2012).

X ¼ Xnð
a�

500
þ L� þ 16ð Þ

116
Þ

3

Y ¼ Ynð
L� þ 16ð Þ

116
Þ

3

Z ¼ Znð
�b�

200
þ L� þ 16ð Þ

116
Þ

3

X ¼ X

ðX þ Y þ ZÞ

Duncan’s multiple range test and Pearson’s correlation

analysis were performed using SPSS version 14.0 (SPSS,

Inc., Chicago, IL, USA) to identify significant differences

between the results (p\ 0.05).

Partial least squares analysis

Partial least squares discriminant analysis (PLS-DA)

A regression model was used for PLS-DA that identifies

the groups to be discriminated by setting them as virtual

variables. In this study, the PLS-DA model was used to

determine the dryness of purple sweet potatoes. PLS-DA

model was performed using the Unscrambler (version 10.5,

CAMO, Trondheim, Norway) program. As noted earlier,

the dryness of the sweet potatoes was classified into six

levels, and these six levels were confirmed by PLS-DA. A

total of 294 dried sweet potatoes were used for developing

the calibration model, and 126 were applied to the devel-

oped model to confirm the discrimination accuracy. The b
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coefficient of the PLS-DA model could be used for

meaningful wavelength selection (Cheng and Sun, 2015).

The meaningful wavelength region greatly influenced the

determination of the drying degree for the dried sweet

potatoes and assisted with confirmation of the quality

properties related to this region.

PLSR MC prediction model

The PLSR technique generalizes and combines the func-

tions of principal component analysis and multiple

regression analysis and aims to predict or analyze the

dependent variables in a series of independent or predictor

variables (Abdi, 2003). During spectrum acquisition, the

spectral data of the sample were collected together with

noise. Noise sources were generally from the scattering of

light on the sample surface, the surrounding environment,

or changes caused by the condition of the equipment. In

order to obtain accurate spectral data, these noises must be

removed prior to data analysis. Various pre-processing of

the spectral data could improve the scattering effects,

facilitate noise reduction, and provide more accurate

spectra (Bae et al., 2016). In the present study, various

pretreatments were used individually, and in combination

including smoothing, normalization, SNV, MSC, Sav-

itzky–Golay first derivative (SG D1), and Savitzky–Golay

second derivative (SG D2). Smoothing replaced a certain

range of values to be pre-processed with the mean value, in

order to represent a spectrum with noise as a smooth curve.

SNV and MSC pre-processing removed the influence of

light scattering due to their irregular shape and size (Vidal

and Amigo, 2012). The SG first-order (SG D1) and SG

second-order (SG D2) differentiation methods eliminated

the movement from the baseline of the spectrum and

emphasized the spectral characteristics of the minute

components (Rinnan et al., 2009). Since the spectral data

were pre-processed using the most accurate pre-processing

methods, the accuracy and efficiency of the PLSR predic-

tion model of the full-wavelength and five selected wave-

lengths were compared. In this experiment, the calibration

model was created using 192 samples based on the Ken-

nard–Stone sampling algorithm, and 78 of these samples

were used to estimate the MC using the calibration model.

Therefore, a total of 270 sweet potatoes were used in the

PLSR MC prediction model, and each of the samples was

measured for MC. In order to evaluate the model accuracy,

the following factors were considered the RMSE and R2

were used to evaluate the performance of the PLS model

for each pretreatment; RMSEC (calibration model),

RMSECV, RMSEP (RMSE prediction), RC
2 (R2 calibra-

tion model), RCV
2 (R2 cross-validation), and RP

2 (R2 pre-

diction) (Giovenzana et al., 2018).

PLSR prediction using a selected key wavelength

A prediction model calculation using the full wavelength is

relatively time-consuming. In addition, the data is so vast

that it may be inconvenient to process the data. Therefore,

in order to speed up the development of the predictive

model and to facilitate the calculation, the MC prediction

model was calculated with a spectrum of several key

wavelengths rather than the full-wavelength. Thus, by

checking the regression coefficients, several wavelength

regions with high absolute values were selected. The PLSR

prediction model was developed using the MC and spec-

trum of the selected wavelengths. The accuracy and effi-

ciency of the full-wavelength prediction model and the key

selected wavelength prediction model were then compared.

Results and discussion

Quality characteristics

Various quality characteristics of the steamed, dried sweet

potato samples according to drying time are shown in

Table 1. The MC decreased significantly as the drying time

was increased to 8 h (p\ 0.05); however, at drying times

longer than 8 h, the MC showed no significant differences.

When sweet potatoes are heated, most of the starch is

hydrolyzed to produce maltose (Suh et al., 1998). The

sugar produced at this time affects the texture and prefer-

ence of the sweet potatoes. TSS and reducing sugar

increased significantly as the drying time increased. This

was because the soluble solid content per unit weight had

increased due to decreases in water content. A study by

Shin and Lee (2011) showed similar results as they found

that the soluble solid content increased as the water content

of the agricultural products had decreased. Phenolic com-

pounds are mostly flavonoids, primarily composed of fla-

vones, flavanones, flavanols, anthocyanidins, and

cathechin. Therefore, TPC and AC exhibited the same

tendency as the drying time increased. Yang et al. (2010)

reported the formation of phenolic compounds and

increased antioxidant activity when steamed dried, which

was similar to the results of this study. L* and a* had

gradually decreased with drying time; however, no sig-

nificant changes were found following 6 h of drying time.

However, the b* and BI values increased as the drying time

increased. Moreover, during the drying process, the dried

sweet potato was darkened by the heat, producing brown-

ing substances via the polymerization of the sugar and

amino acids. This result likely occurred because the

anthocyanin content of the purple sweet potato had

increased.
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PLS-DA

The accuracy of the calibration, cross-validation, and pre-

diction discrimination of the PLS-DA modeling utilized

raw data that was not pre-processed, as shown in Fig. 1(A).

The discrimination accuracy of calibration, cross-valida-

tion, and the prediction was 82.99%, 80.61%, and 80.95%,

respectively, and the overall accuracy was more than 80%.

These results showed the potential of PLS-DA for use in

the accurate discrimination of the dryness degree of the

purple sweet potato. The influence of each wavelength

region on the discrimination found in this PLS-DA model

is depicted in Fig. 1(B). The 5 key wavelengths with

remarkably high regression coefficients were 937, 1034,

1141, 1197, and 1339 nm, and were the highest-ranked in

the order of 1339, 937, 1197, 1141, and 1034. The TSS

content represented the organic molecules, which con-

tained C–H, O–H, C–O, and C–C bonds (Liu et al., 2010).

Glucose has an informative region of 840–1062 nm, where

bands of glucose exist due to the first overtones of the C–H

stretching modes (Workman and Weyer, 2007). Moreover,

fructose exhibited informative regions of 816–1050 nm.

These regions corresponded to band regions generated by

C–H stretching combinations (Osborne et al., 1993). Sugar

absorption bands (900 * 1000 nm), generated from OH

stretching, and the third and fourth overtones of CH

stretching, occurred near the strong water absorption

regions (Amodio et al., 2017). While, absorption bands of

1100 * 1300 nm were related to the second overtone of

CH, CH2, CH3 (Zou et al., 2010). Table 1 shows that the

quality characteristics of the purple sweet potato are sig-

nificantly different depending on the drying time, particu-

larly the MC, soluble solids content, and reducing sugar

content. Therefore, it seems that the sugar content of the

purple sweet potatoes primarily influenced the discrimi-

nation of the samples in the PLS-DA model.

Table 2 shows the Pearson’s correlation between the

quality change values shown in Table 1. The MC of dried

purple sweet potatoes are closely related to the TSS and the

reducing sugar changes; thus, the correlation coefficients

were - 0.983 and 0.989, respectively, and the absolute

value was very high. TSS and reducing sugar showed the

highest correlation coefficient with 0.992. Although the

peaks related to moisture were not noticeable in the results

of the regression coefficients, it was confirmed that the MC

and the degree of drying could be predicted from the sugar

content of dried sweet potatoes when looking at the Pear-

son correlation coefficient.
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PLSR prediction

Moisture content prediction accuracy by pretreatment

The predicted accuracy of the water content by various

pretreatments is shown in Table 3. The prediction accuracy

of the raw data without pre-processing was RMSEP =

3.4026 and RP
2 = 0.9616. Among the various individual

pretreatment methods, the moisture prediction accuracy of

the PLSR model had increased, with the exception of the

smoothing and SG D2 method. Among the single pre-

treatment methods, the SNV treatment demonstrated the

highest moisture prediction accuracy (RMSEC = 2.6048,

RMSECV = 2.7374, RMSEP = 2.8787, RC
2 = 0.9776,

RCV
2 = 0.9753, RP

2 = 0.9729).

Combinations of the MSC, normalization, SNV, and SG

D1 methods were used to improve accuracy. When a pre-

treatment combination is used, the accuracy of each of the

two sequences differs. Therefore, the pretreatment combi-

nations shown in Table 2 are listed in order of higher

discrimination accuracy. The two combination pretreat-

ment methods exhibited a higher discrimination accuracy

than the raw data. Specifically, the SG D1 ? MSC

combination exhibited the highest accuracy (RMSEC =

2.2816, RMSECV = 2.4965, RMSEP = 2.6977, RC
2-

= 0.9828, RCV
2 = 0.9794, RP

2 = 0.9754). Figure 2 shows

the results of the PLSR moisture prediction model with SG

D1 and MSC pretreatment at full-wavelengths. In the cal-

ibration model and the cross-validation model, R2 was very

high at 0.9828 and 0.9794, respectively, and the predicted

model also showed high accuracy at Rp
2 of 0.9754.

Key wavelengths selection and prediction model

development

The influence on the PLSR model for each wavelength was

obtained using the combination of the SG D1 ? MSC

methods, as depicted in Fig. 3. The greater the absolute

value of the influence at zero, the greater the influence of

the wavelength on the PLSR model. The most influential

wavelengths were 561.12, 1065.50, 1083.93, 1173.23, and

1233.89 nm. Wavelengths from 960 to 990 nm were

known to be related to the second overtone of O–H bonds

in water molecules (Sivakumar et al., 2006; Williams and

Norris, 2001). Wavelengths from 1100 to 1300 nm were

associated with the second overtones of C–H, C–H2, and
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Fig. 1 Results for PLS-DA of

the steamed and dried purple

sweet potato using full-

wavelengths. (A) Accuracy of

classification; (B) Regression

coefficients
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Table 2 Pearson’s correlation between the physicochemical properties

Quality properties MC1 TSS Reducing

sugar content

TPC Monomeric

anthocyanin

content

L* a* b* BI

MC 1 - 0.983**2 - 0.989** - 0.984** - 0.970** 0.959** 0.994** - 0.994** - 0.952**

TSS – 1 0.992** 0.956** 0.934** - 0.914* - 0.965** 0.972** 0.951**

Reducing sugar

content

– – 1 0.954** 0.966** - 0.956** - 0.985** 0.986** 0.956**

TPC – – – 1 0.953** - 0.929** - 0.975** 0.984** 0.956**

Monomeric

Anthocyanin

content

– – – – 1 - 0.993** - 0.989** 0.986** 0.949**

L* – – – – – 1 0.984** - 0.973** - 0.918**

a* – – – – – – 1 - 0.996** - 0.949**

b* – – – – – – – 1 0.972**

BI – – – – – – – – 1

1MC, moisture content; TSS, total soluble solids; TPC, total phenolic compounds; L*, lightness; a*, redness; b*, yellowness; BI, browning index
2**The correlation is significant at the 0.01 level; *THE correlation is significant at the 0.05 level

Table 3 Moisture prediction of the PLSR models with different preprocessing methods

RMSEC2 (%) RMSECV (%) RMSEP (%) Rc
2 Rcv

2 RP
2

Preprocessing

Raw data 3.3034 3.4154 3.4026 0.9640 0.9615 0.9616

Smoothing 3.3147 3.4268 3.4153 0.9637 0.9612 0.9609

MSC1 2.6648 2.7952 2.9829 0.9765 0.9742 0.9707

Normalization 2.7425 2.8699 3.1181 0.9752 0.9728 0.9679

SNV 2.6048 2.7374 2.8787 0.9776 0.9753 0.9729

SG D1 2.6793 2.8973 2.9237 0.9763 0.9723 0.9715

SG D2 3.5474 4.4155 4.8889 0.9584 0.9657 0.9329

SG D1 ? MSC 2.2816 2.4965 2.6977 0.9828 0.9794 0.9754

MSC ? SNV 2.6048 2.7374 2.8787 0.9776 0.9752 0.9726

Normalization ? MSC 2.6644 2.7947 2.9821 0.9766 0.9742 0.9707

Normalization ? SNV 2.6048 2.7374 2.8787 0.9776 0.9753 0.9726

Normalization ? SG D1 2.6247 2.8833 2.9140 0.9772 0.9726 0.9715

SG D1 ? SNV 2.332 2.5505 2.7010 0.9820 0.9785 0.9753

1SNV, standard normal variate; MSC, multiple scatter correction; SG D1, Savitzky–Golay; SG D2, Savizky–Golay
2RMSEC, root mean square error of calibration; RMSECV, root mean square error of cross-validation
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C–H3 (Hourant et al., 2000; Zou et al., 2010). Selecting a

few of the critical wavelengths in the spectral data, rather

than all of them, for modeling is cost- and time-efficient

when used in industry. Therefore, we performed PLSR

modeling by selecting 5 influential wavelengths 961.12,

1065.50, 1083.93, 1173.23, and 1233.89 nm. The calibra-

tion, cross-validation, and prediction accuracy of the model

are depicted in Fig. 3. The prediction accuracy of the PLSR

model with the selected wavelength was RMSEC =

3.6750, RMSECV = 3.7941, and RMSEP = 4.1446. The

RMSE value was 1–2% higher than the PLSR model using

the data for the entire spectrum. R2, which is another

prediction accuracy indicator, was RC
2 = 0.9554, RCV

2-

= 0.9525, and RP
2 = 0.9521. Therefore, with this new

PLSR model, the MC was predictable with an accuracy of

R2 = 0.95 or better using only five wavelengths.
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