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Diversity-oriented synthesis of nanographenes
enabled by dearomative annulative π-extension
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Nanographenes and polycyclic aromatic hydrocarbons (PAHs) are among the most important

classes of compounds, with potential applications in nearly all areas of science and tech-

nology. While the theoretically possible number of nanographene structures is extraordinary,

most of these molecules remain synthetically out of reach due to a lack of programmable and

diversity-oriented synthetic methods, and their potentially huge structure-property diversity

has not been fully exploited. Herein we report a diversity-oriented, growth-from-template

synthesis of nanographenes enabled by iterative annulative π-extension (APEX) reactions

from small PAH starting materials. The developed dearomative annulative π-extension
(DAPEX) reaction enables π-elongation at the less-reactive M-regions of PAHs, and is suc-

cessfully combined with complementary APEX reactions that occur at K- and bay-regions to

access a variety of previously untapped nanographenes.
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Nanographenes and polycyclic aromatic hydrocarbons
(PAHs) are among the most important classes of com-
pounds, with potential applications in nearly all areas of

materials science, and particular promise in organic electronics,
biology, and space science1–4. Nanographenes and PAHs are
structurally simple assemblies of benzene-based hexagons and
one can imaginarily build up a range of structures with ease5.
While seemingly simple, the structural diversity of nano-
graphenes and PAHs is extraordinary (Fig. 1a), and the enu-
meration of these molecules (also known as Kekuléan fusenes)
using graph theory has been of central interest in mathematical
chemistry6. The number of possible structures of nanographenes
and PAHs (N) from n hexagons rapidly becomes extremely high
even in relatively small systems (N= 52 when n= 6; N= 195
when n= 7; N= 16,025 when n= 10) and increases roughly
fivefold for every additional hexagon (N > 1015 when n= 25).
Since the key characteristics of nanographenes and PAHs—such
as their photophysical, electronic, magnetic, and self-assembling

properties—are determined by their structures1–4, a comprehen-
sive evaluation of nanographenes is required to fully understand
the relationship between their molecular structures and proper-
ties. However, to the best of our knowledge, most of the theo-
retically possible structures remain unsynthesized and unexplored
in experimental science in reality (Fig. 1a). Moreover, while
nature provides a tremendous variety of PAHs as components of
fuel, coal, and tar, as well as side-products in combustion,
interstellar dust, and meteorites4,7, only an extremely limited
number of pure PAHs can be reliably accessed from these natural
sources due to challenges in isolation.

The only logical way to access and utilize a greater diversity of
structurally pure PAHs and nanographenes is to draw inspiration
from organic synthesis, where a target molecular entity is built up
from a template (seed) molecule with structural precision. While
decades of research into the synthetic chemistry of PAHs has
uncovered a number of exciting properties and
applications1–4,7–13, thereby contributing significantly to the
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Fig. 1 Synthetic strategy toward structurally diverse nanographenes. a Structural diversity of PAHs and nanographenes. b Diversity-oriented synthesis of
nanographenes by APEX-based growth-from-template method. Red, blue, and green hexagons represent newly constructed hexagons created by K-APEX,
M-APEX, and bay-APEX reactions, respectively. c DAPEX strategy toward achieving the formalM-region-selective APEX reaction. Gray hexagons represent
newly constructed hexagons created by the presentM-APEX reaction. n number of hexagons contained in a nanographene or a PAH structure, N number of
possible structures of nanographenes and PAHs.
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emergence of nanographene science, the synthetic bottleneck
remains considerable. Owing to the lack of predictable and
diversity-oriented synthetic methods for their synthesis14, the
huge structure-property diversity of nanographenes has not been
fully exploited. One intuitive, programmable, and potentially
diversity-oriented synthetic strategy would be the “growth-from-
template” approach, in which nanographenes are built up from
small PAH templates by regioselective, template-elongating
annulative π-extension (APEX) reactions (Fig. 1b)15. The regio-
selective and direct construction of fused aromatic rings on a
peripheral region of an unfunctionalized aromatic template
would result in the formation of another, larger aromatic tem-
plate, and repeating this protocol would grant access to diverse
nanographene structures. This APEX methodology is very dif-
ferent from typical nanographene syntheses, which consist of
multiple synthetic steps including prefunctionalization of aro-
matics, component assembly into polyarylene precursors, and
dehydrocyclization8–13. While challenges exist in obtaining APEX
regioselectivity among the structurally and electronically similar
C–H bonds and PAH regions found in unfunctionalized aromatic
templates, this diversity-oriented strategy enables access to a
range of previously untapped nanographene structures in an
intuitive fashion, thereby revolutionizing nanographene synthesis.

To this end, we have established several palladium-catalyzed
APEX reactions that occur at the K-region (convex armchair
edge) of PAHs (Fig. 1b, K-APEX), realizing the synthesis of
various nanographenes16,17. Clar, Scott, and others have achieved
Diels–Alder-type APEX reactions at the bay-region (concave
armchair edge) of PAHs (Fig. 1b, bay-APEX)18–21. To realize a
diversity-oriented nanographene synthesis, APEX reactions that
occur at other peripheral regions such as the terminal acene-like
M-region are essential (Fig. 1b). M-region-selective APEX (M-
APEX) is particularly challenging because the M-region is much
less reactive compared to the “olefinic” K-region and “diene-like”
bay-region—indeed, M-region (C2 and C3)-selective functiona-
lizations of phenanthrene have been scarcely reported22,23.

We have previously developed several dearomative functionaliza-
tions by exploiting the ability of 4-methyl-1,2,4-triazoline-3,5-dione
(MTAD) as an arenophile, which can participate in photo-induced
[4+ 2] cycloaddition with aromatic compounds24–26. During the
study, we have discovered that the [4+ 2] cycloaddition of poly-
arenes with MTAD preferentially occurs on a terminal acene-like
structure, likely to minimize steric repulsion, and the reaction fur-
nishes an activated olefin moiety on the M-region of the PAH
starting materials (Fig. 1c). Here, we report the long-sought-after,
broadly applicableM-APEX reaction with a concept of “dearomative
APEX” (DAPEX), involving the MTAD-mediated dearomative
activation of an aromatic ring, annulation, and finally rear-
omatization (Fig. 1c). The diversity-oriented synthesis of nano-
graphenes by combining K-, M- and bay-APEX reactions is also
demonstrated.

Results
We began our investigations by establishing conditions for the
annulation of cycloadduct 2a, which is readily prepared by the
photo-induced [4+ 2] cycloaddition of 1-phenylnaphthalene (1a)
with MTAD24–27, to form a precursor of the desired M-APEX
products (Fig. 2a). Through extensive screening of various cata-
lysts, π-extending agents, and additives, we found that the
treatment of 2a with bis-Grignard reagent 3a (3.0 equiv) in the
presence of Fe(acac)3 (10 mol%), 1,2-bis(diphenylphosphino)
benzene (dppbz, 10 mol%), ZnCl2 (6.0 equiv), and 1,2-dichlor-
oisobutane (1.5 equiv) in THF at room temperature afforded the
exo-cycloadduct 4aa in 88% yield28. The relative configuration of
4aa was determined by X-ray crystallographic analysis (see

Supplementary Fig. 2). To our delight, the diarylated cycloadduct
4aa was successfully converted into the corresponding M-APEX
product 5aa in 96% yield simply by treating with p-chloranil (3.0
equiv) in 1,1,2,2-tetrachloroethane at 150 °C for 36 h, likely via
dehydrogenation followed by retro-[4+ 2] cycloaddition27,29.

With the optimal reaction conditions in hand, we investigated
the substrate scope of PAHs and naphthalene derivatives in the
DAPEX protocol (Fig. 2b). In all cases, annulative diarylations
were conducted without isolating the cycloadduct intermediates
formed in the dearomatization step. The reactions with naph-
thalene derivatives such as 1-phenylnaphthalene (1a), 1,1′-
binaphthyl (1b), 1-bromonaphthalene (1c), 1-iodonaphthalene
(1d), 1-acetoxynaphthalene (1e) and 2-pivaloxy naphthalene (1f),
as well as naphthalene itself (1g) gave the intermediates of 5aa–
5ga in 32–71% yield (Step 1). Rearomatization of these inter-
mediates successfully afforded the desired M-region APEX pro-
ducts 5aa–5ga in 59–96% yield (Step 2). In addition to
naphthalene derivatives, simple PAHs were found to be amenable
to the described DAPEX protocol. For example, phenanthrene
(1h), 1-phenylphenanthrene (1i), [4]helicene (1j), and chrysene
(1k), which all feature both K- andM-regions, could be selectively
transformed to the desiredM-APEX products (5ha–5ka) as single
constitutional isomers. In addition, previously reported π-
extending agents for K-APEX16,17 including 2-iodo-1-(2-iodo-
phenyl)naphthalene (1l), 1-iodo-2-(2-iodophenyl)naphthalene
(1m) and 11,11-dimethyl-11H-benzo[b]naphtho[2,1-d]silole
(1n), can be successfully π-extended on the M-regions of their
naphthalene moieties to give the corresponding products 5la,
5ma and 5na, respectively. Quinoxaline (1o) could also partici-
pate in the reaction sequence to afford phenanthro[9,10-g]qui-
noxaline (5oa), albeit in a low yield. For the reaction of 1,1′-
binaphthyl (1b), twoM-regions (C6–C7 and C6′–C7′) could be π-
extended in the same reaction step by employing an excessive
amount of arenophile (Fig. 2c). Treatment of 1b with 2.2 equiv of
4-tert-butyl-1,2,4-triazoline-3,5-dione (tBuTAD) under photo-
irradiation gave the corresponding bis-cycloadduct, and treat-
ment of this reaction mixture with bis-Grignard reagent 3a under
the standard conditions successfully afforded the precursor 6ba.
Rearomatization of 6ba gave the corresponding M-region π-
extended product 7ba.

As demonstrated in Fig. 2b, the DAPEX protocol preferentially
occurs at M-region of PAH templates over other peripheral
regions such as K-region and bay-region. However, when a PAH
template has two or more distinguishable M-regions, the protocol
could potentially give M-APEX products as a mixture of regioi-
somers. To obtain insights into the regioselectivity of DAPEX
protocol, dearomatization, and subsequent annulative diarylation
of benzo[g]chrysene (1p) and benzo[f,s]picene (1q) were con-
ducted (Fig. 3). As expected, the dearomatization and annulative
diarylation of 1p under standard reaction conditions afforded the
corresponding diarylated products as a mixture of three regioi-
somers in 48% yield (Fig. 3a, T= 0). Further analysis of the
products revealed that 4pa was generated as a major regioisomer
with 67% selectivity (see Supplementary Figs. 1 and 3 for details).
To our delight, the regioselectivity could be further improved to
88% by conducting dearomatization at 25 °C (Fig. 3a, T= 25).
Similarly, the dearomatization and annulative diarylation of 1q
under standard reaction conditions afforded 4qa as a major
product with 83% regioselectivity (Fig. 3b, T= 0), and the
regioselectivity could be improved to 92% when dearomatization
was conducted at 25 °C (Fig. 3b, T= 25). To unveil the origin of
these high regioselectivities, we have evaluated the thermal sta-
bility of cycloadducts 2p, 2p′, and 2p″, which are intermediates
corresponding to 4pa and its regioisomers, using DFT calculation
at M06-2X/6-311++G(d,p)//M06-2X/6-31+G(d) level (Fig. 3c,
see Supplementary Fig. 10 for details). 2p was found to be more
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stable than starting materials (1p and MTAD), whereas 2p′ and
2p″ were thermodynamically unstable (ΔG= 1.55 and 2.08 kcal/
mol, respectively). Furthermore, activation barriers for the ther-
mal retro-Diels–Alder reaction27,29 of 2p were estimated to be
28.9 kcal/mol, which is about 2.5 kcal/mol larger than that of 2p′
(ΔG‡

rDA= 26.2 kcal/mol) and 2p″ (ΔG‡
rDA= 26.3 kcal/mol).

These results indicate that 2p is both thermodynamically and
kinetically more stable than 2p′ and 2p″. Although regioselec-
tivity in the photochemical Diels–Alder reaction cannot be
experimentally or theoretically evaluated due to the transient
nature of cycloadducts and multiple possible reaction pathways27,
the regioselective formation of 4pa shown in Fig. 3a can be

rationalized as follows. At the dearomatization step, thermal
retro-Diels–Alder reaction of cycloadducts took place along with
the photochemical Diels–Alder reaction. Because the less stable
isomers, 2p′ and 2p″ were preferentially decomposed to regen-
erate 1p and MTAD, the most stable isomer 2p would be accu-
mulated in the reaction mixture, affording 4pa as the major
product of the iron-catalyzed annulative diarylation. When the
dearomatization was conducted at 25 °C (T= 25), the retro-
Diels–Alder reaction was accelerated and hence the regioselec-
tivity was improved. Previously, Breton and Newton investigated
the correlation between regioselectivity in Diels–Alder reactions
of MTAD with substituted naphthalenes and experimentally
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determined rate constants for the retro-Diels–Alder reaction29.
They observed that an initially formed photochemical mixture of
constitutional isomers could equilibrate to a single product if this
cycloadduct was sufficiently more stable toward retro-
Diels–Alder reaction.

We further investigated alternative arylation agents and reac-
tion conditions to expand the scope of π-extending agents. To our
delight, we found 2-biphenyl-1-yl magnesium bromide (3a′) also
worked in the presence of Fe(acac)3 (10 mol%), dppbz (10 mol%),
and 1,2-dichloroisobutane (2.0 equiv) to afford the precursor of
5ga in 65% yield (Fig. 4, Step 1)30. It was also found that di(1,1′-
biphenyl-2-yl) magnesium (3a″), which can be readily prepared
from corresponding biarylyl bromide and iPrMgCl·LiCl31, can be
used as a π-extending agent (51% yield). As for other Grignard
reagents, a series of 4′-substituted-1,1′-biphenyl-2-yl magnesium
species (3b″, 3c′, and 3d′) afforded the corresponding annulation
products, and these intermediates could also be rearomatized to
give the M-region APEX products 5gb–5gd. The reaction with 2-
(1-naphthyl)-phenyl Grignard reagent 3e′ gave the π-extended
PAH 5ge, while the reactions with heteroarene-derived Grignard
reagents 3f″ and 3g′ successfully generated polycyclic hetero-
aromatics 5gf and 5gg.

The power of this DAPEX strategy becomes most apparent
when strategically combining the present M-APEX with pre-
viously reported K- and bay-APEX reactions (Fig. 5). Iterative
APEX reactions starting from phenanthrene are shown in Fig. 5a.
M-APEX reaction of phenanthrene (1h) gave 5ha through rear-
omatization of the intermediate 4ha, as described in Fig. 2b.
Conversely, palladium-catalyzed K-APEX reaction17 of phenan-
threne 8 with diiodobiaryl 1l successfully gave the corresponding
π-extended PAH 9. Further APEX reactions at the remaining
peripheral regions of 5ha and 9 are possible. For example,
nanographene 10 was obtained by the K-APEX reaction of 5ha
with diiodobiphenyl 20, while M-APEX of 9 gave nanographene
11 (see Supplementary Fig. 5 for X-ray crystal structure).
Nanographene 11 can also be obtained directly from phenan-
threne 8 by employing the pre-π-extended diiodobiaryl 5la as the
π-extending agent for K-APEX. In addition to newly formed
PAHs, APEX intermediates such as 4ha can also be employed as
templates for further π-extension. Indeed, dearomatization and
annulative diarylation of 4ha gave the corresponding tetra-
arylated product 6ha (see section 1.9 of Supplementary Infor-
mation and Supplementary Fig. 6). Rearomatization with p-
chloranil proceeded to remove both of the urazole moieties and
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Fig. 5 Diversity-oriented nanographene synthesis by growth-from-template method utilizing region-selective APEX reactions. a Nanographene
synthesis from phenanthrene. b Nanographene synthesis from chrysene. c Nanographene synthesis from naphthalene. d Nanographene synthesis from
perylene. Reaction conditions. (i) Pd(MeCN)4(BF4)2, 1l, AgOPiv, TfOH, 1,2-dichloroethane; (ii) Pd(MeCN)4(BF4)2, 20, AgBF4, PivOH, 1,2-dichloroethane;
(iii) Step 1: MTAD, AcOMe, white LED, then 3a, Fe(acac)3, dppbz, ZnCl2, 1,2-dichloroisobutane, THF; Step 2: p-chloranil, 1,1,2,2-tetrachloroethane. (iv) Pd
(MeCN)4(BF4)2, 5la, AgOPiv, TfOH, 1,2-dichloroethane; (v) Step 1: MTAD, AcOMe, white LED, then 3a, Fe(acac)3, dppbz, ZnCl2, 1,2-dichloroisobutane,
THF; Step 2: p-chloranil, 1,1,2,2-tetrachloroethane; (vi) Pd(MeCN)4(BF4)2, 21, AgBF4; (vii) Pd(MeCN)4(BF4)2, 21, AgOPiv, TfOH, 1,2-dichloroethane; (viii)
Step 1: MTAD, acetone, white LED; Step 2: 3e′, Fe(acac)3, dppbz, 1,2-dichloroisobutane, THF; Step 3: p-chloranil, 1,1,2,2-tetrachloroethane; (ix) Pd
(MeCN)4(BF4)2, 21, AgOPiv, TfOH, 1,2-dichloroethane; (x) 22, CsF, THF/MeCN; (xi) Pd(MeCN)4(BF4)2, 21, AgOPiv, TfOH, 1,2-dichloroethane. Piv,
pivaloyl; Tf, trifluoromethanesulfonyl. Gray hexagons represent newly constructed hexagons created by APEX reactions.
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afford the double M-APEX product 12. APEX reaction at the
remaining K-region of 12 also proceeded to give nanographene
13 (see Supplementary Fig. 7 for X-ray crystal structure). It
should be noted that for the APEX reactions of less-soluble
compounds such as 12, a mechanochemical reaction setup with
ball-milling32 is advantageous (see section 1.12 of Supplementary
Information).

We further verified the utility of DAPEX strategy in the
diversity-oriented synthesis of nanographenes. We previously
clarified that the K-APEX reaction of chrysene (1k) with 2,2′-
diiodobiphenyl (20) gives the highly fused nanographene 14 in
one step17, while the presentM-APEX reaction of 1k with 3a gave
the elongated product 5ka (Fig. 5b). The π-extended chrysene 5ka
also worked as a new template for late-stage K-APEX, successfully
affording nanographene 15 in 42% yield (see Supplementary
Fig. 8 for X-ray crystal structure). Another nanographene 16
could be synthesized starting from naphthalene (1g) through the
sequence of M-APEX and K-APEX (Fig. 5c). The M-APEX of 1g
with 2-(1-naphthyl)-phenyl magnesium bromide (3e′) gave the π-
extended PAH 5ge, bearing a newly-formed K-region. K-APEX
reaction on this K-region also proceeded successfully to afford the
nanographene 16 (see Supplementary Fig. 9 for X-ray crystal
structure). As another related example for growth-from-template
synthesis, we conducted the bay-APEX reaction of perylene with
π-extending agent 22 to form naphthoperylele 1821, which was
then subjected to K-APEX to access nanographene 19 (Fig. 5d).

In conclusion, we have established a concept of DAPEX that
involves the dearomative activation of polyaromatic templates,
annulative diarylation, and rearomatization, and realized a formal
APEX reaction at the less-reactive M-region of aromatic tem-
plates. In addition, an intuitive, diversity-oriented synthesis of
nanographenes has been achieved by combining the developed
DAPEX and previous APEX reactions of PAHs. As many prop-
erties of nanographenes are not easily predicted, this powerful
strategy capable of generating vast structural diversity in a pro-
grammable fashion will allow for an increased understanding of
nanographene structure-property relationships. This will in turn
aid in the discovery of hitherto unknown functional molecules
and new guiding principles for the future rational property-driven
design of nanographenes. The present study speaks well for the
potential of regiodivergent PAH functionalization in the creation
of nanographene libraries to confront the most significant chal-
lenges in materials science.

Methods
See Supplementary Information for detailed methods and characterization data.

The typical procedure for dearomatization of polyaromatics 1 followed by
annulative diarylation. To a glass tube containing a magnetic stirring bar were
added MTAD (0.10 mmol, 1.0 equiv) and polyaromatics 1 (0.20–1.0 mmol, 2.0–10
equiv). The tube was sealed with a septum, filled with N2 gas, and then methyl
acetate (20 mL) was added at ambient temperature. The contents were sonicated to
dissolve solids as much as possible and then cooled to 0 °C. The resulting pink
solution was stirred under irradiation with LED lights at 0 °C until the solution
became colorless or brown (approx. for 2 h). After turning off the lights, the
mixture was transferred to a 50 mL two-necked round-bottomed flask, and the
volatile was removed in vacuo at 0 °C. Then, the flask was filled with N2 gas, and
THF (2.5 mL) was added to dissolve the residue (solution A).

To another glass tube containing a magnetic stirring bar was added dppbz (0.01
mmol, 10 mol%). The tube was sealed with a septum and filled with N2 gas. Then
THF (1.0 mL), 1.9 M ZnCl2 solution in 2-methyltetrahydrofuran (0.30 mmol, 3.0
equiv) and THF solution of 3a (0.30 mmol, 3.0 equiv) were added in this order at
ambient temperature. Another portion of 1.9 M ZnCl2 solution in 2-
methyltetrahydrofuran (0.30 mmol, 3.0 equiv) was added and then white
precipitation was formed. This mixture was stirred at ambient temperature for 30
min and then cooled to 0 °C. At this temperature, 0.20M Fe(acac)3 solution in THF
(0.01 mmol, 10 mol%) was added, and the resulting mixture was stirred for 5 min.
Then, 1,2-dichloroisobutane (0.15 mmol, 1.5 equiv) and solution A were added to
this tube, and the mixture was stirred at ambient temperature for 2 h. The mixture
was quenched with 1M HCl aq. (approx. 10 mL) and extracted with

dichloromethane (3 × 30 mL). The combined organic layers were dried with
Na2SO4, filtered, and concentrated under reduced pressure. The crude product was
purified by PTLC to yield diarylated product 4.

The typical procedure for rearomatization of diarylated compound 4. To a
screw-capped tube containing a magnetic stirring bar were added diarylated
compound 4 (1.0 equiv) and p-chloranil (3.0 equiv). Then, 1,1,2,2-tetra-
chloroethane was added to this tube to prepare a 0.1 M solution of 4 under air. The
tube was sealed with a cap, and the resulting mixture was stirred at 150 °C for 36 h.
Then, the reaction mixture was cooled to ambient temperature and diluted with
chloroform (approx. 3 mL). To this mixture, hydrazine monohydrate (5.0 equiv)
was added and the resulting mixture was stirred at ambient temperature for 15 min
to quench the remaining p-chloranil. The mixture was washed with 1 M NaOH aq.
(approx. 10 mL) and extracted with chloroform (3 × 30 mL). The combined organic
layers were dried with Na2SO4, filtered, and concentrated under reduced pressure.
The crude product was purified by flash column chromatography on silica gel to
yield π-extended product 5.

Data availability
All the characterization data and experimental protocols are provided in this article and
its Supplementary Information. Cartesian coordinates for all calculated geometries are
provided in Supplementary Data 1. The X-ray crystallographic data for compounds 4aa,
4pa, 6ba, 6ha, 11, 13, 15, and 16 have been deposited at the Cambridge Crystallographic
Data Center (CCDC), under deposition numbers 2012769–2012775 and 2071523. These
data can be obtained free of charge from CCDC via www.ccdc.cam.ac.uk/data_request/cif.
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