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The 2019 novel coronavirus (COVID-19) originating from China, has spread rapidly among people
living in other countries. According to the World Health Organization (WHO), by the end of January,
more than 104 million people have been affected by COVID-19, including more than 2 million deaths.
The number of COVID-19 test kits available in hospitals is reduced due to the increase in regular
cases. Therefore, an automatic detection system should be introduced as a fast, alternative diagnostic
to prevent COVID-19 from spreading among humans. For this purpose, three different BiT models:
DenseNet, InceptionV3, and Inception-ResNetV4 have been proposed in this analysis for the diagnosis
of patients infected with coronavirus pneumonia using X-ray radiographs in the chest. These three
models give and examine Receiver Operating Characteristic (ROC) analyses and uncertainty matrices,
using 5-fold cross-validation. We have performed the simulations which have visualized that the
pre-trained DenseNet model has the best classification efficiency with 92% among two other models
proposed (83.47% accuracy for inception V3 and 85.57% accuracy for Inception-ResNetV4).

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

In October of 2019, the novel coronavirus (COVID-19) pan-
emic emerged in Wuhan, China, and has become a major public
ealth issue worldwide [1]. The virus that caused the COVID-
9 pandemic disease was also called coronavirus 2 severe acute
espiratory syndromes, also known as SARS-CoV-2 [2]. Coron-
viruses (CoV) are a family of viruses that cause cold-related
llnesses like Middle East Respiratory Syndrome (MERS-CoV) and
evere Acute Respiratory Syndrome (SARS-CoV). Coronavirus dis-
ase (COVID-19) is a new species that was discovered in 2019
nd had not been identified in humans prior. Coronaviruses are
oonotic due to animal-to-human contamination [3]. Studies have
hown that the SARS-CoV virus is transmitted to humans from
usk animals, and the MERS-CoV virus is infected to humans

rom dromedary [4]. The COVID-19 virus is believed to be spread
o humans by bats [5]. The infection was widely spread due to
irborne transmission of the disease from person to person.
Although COVID-19 cases cause milder symptoms as per 82%

f total cases and these are considered as serious or critical [6].
he cumulative number of Coronavirus cases by the end of Jan-
ary is around 104 million, of which 2 million died and 75
illion recovered. Although the disease marginally survives 99%
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of the number of affected patients, 1% have a severe or vital
condition [7].

Infection signs include worsening of cough, fever and dyspnea.
The infection will cause pneumonia, extreme acute respiratory
syndrome, septic shock, multi-organ failure, and death in more
serious cases [4–7]. It was determined that men are more afflicted
than women, and that children from 0–9 years of age do not
die [8]. Respiratory concentrations of COVID-19 pneumonia cases
are higher as compared to stable individuals [9]. In many devel-
oping nations, the health sector has failed to control the reduction
of cases and providing more intensive care units. The number of
infected patients is increased more than the available resources.
Intensive care facilities are packed with patients of worsening
COVID-19 pneumonia symptoms.

According to the guidance shared by the Chinese govern-
ment, the diagnosis of COVID-19 should be confirmed by gene
sequencing of respiratory samples or blood samples as a primary
predictor of Reverse Transcription Polymerase Chain Reaction
(RT-PCR) or hospitalization. In the latest public health emergency,
the low sensitivity of RT-PCR means that many COVID-19 cases
may not be easily detected and will not be treated properly.
They also run the risk of infecting a wider population, con-
sidering the extremely contagious nature of the virus [25,26].
Instead of testing people for a positive virus scan through the
older method, treatments now require chest X-ray scan images
to identify the COVID-19 virus. These approaches would help

hospitals to identify and treat patients quicker. Even if COVID-19
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able 1
verview of previous approaches, their strengths, gaps and improvement of proposed DenseNet model over them.
ource: Table was derived from [10].
Reference Proposed approach Main features

Apostolopoulos et al. [11] Used transfer learning models based on MobileNetV2,
VGG19, Xception, Inception and ResNetV2

Used X-ray and achieved a maximum of 93% accuracy

Wang and Wong [12] Introduced their own model named COVID-Net, the first
open-source COVID-19 detection system

Used X-ray and achieved a maximum of 92% accuracy

Song et al. [13] Proposed their own model DRE-Net and compared its
performance with DenseNet, VGG-16 and ResNet

Used CT and achieved a maximum of 86% accuracy

Sarker et al. [14] Used transfer learning on DenseNet-121 network Used X-rays and achieved 85.35% accuracy with 3 classes

Hasan et al. [15] Used DenseNet-121 network Used CT and achieved 92% accuracy

Zheng et al. [16] Proposed their own model DeCoVNet for classification Used CT and achieved 97% accuracy

Xu et al. [17] Proposed modifies version of ResNet-18 based CNN
network

Used X-ray and achieved 86% accuracy

Minaee et al. [18] Used ResNet50, ResNet18, DenseNet-121, and
SqueezeNet network

Used X-ray and achieved 97.6% AUC

Ozturk et al. [19] Proposed their own model DarkCovidNet for classification
of COVID-19

Used X-ray and achieved 97% accuracy

Ardakani et al. [20] Used 10 CNN networks including AlexNet and
ResNet-101 for classification of 2 classes

Used CT and achieved a maximum of 99% accuracy

Li et al. [21] Proposed their own model COV-Net for classifying 3 classes Used CT and achieved 96% accuracy

Yang et al. [22] Used ResNet-50 and DenseNet-169 network for
classification.

Used CT and achieved 79.5% accuracy with DenseNet-16

Abbas et al. [23] Proposed their own model DeTrac-ResNet18 CNN that uses
Decompose, Transfer, and Compose architecture

Used X-ray and achieved a maximum of 95.12% accuracy

Chen et al. [24] Used UNet++ along with Keras for segmentation of
CT images and detection of COVID-19

Used CT and achieved 95.24% accuracy
does not cause death, some patients still recover with permanent
lung damage. According to theWorld Health Organization (WHO),
COVID-19 can open holes in the lungs such as Severe Acute
Respiratory Syndrome (SARS), giving lungs a ‘‘honeycomb-like
appearance’’ [27].

One of the techniques used to detect pneumonia is a computed
hest tomography (CT) scan. Artificial Intelligence (AI) based au-
omated CT image analysis systems have been developed to iden-
ify, measure, and track coronavirus, and also differentiate pa-
ients with coronavirus from disease-free [28]. They developed
deep learning-based method for automated segmentation of all

ungs and infection sites using CT [29], in a study by Fei et al.
iaowei et al. aimed at developing an early screening model
or the differentiation between COVID-19 and Influenza-A viral
neumonia and stable cases using pulmonary CT images and deep
earning techniques [30]. Butt et al. [31] used ResNet-18 on CT
can images to achieve an accuracy of 86%.
Depending on the COVID-19 radiographic changes from CT

mages, Shuai et al. research developed a deep learning algorithm
hat can extract the graphical characteristics of COVID-19 to
rovide a clinical diagnosis before pathogenic testing, and thus
aves the valuable time for diagnosis of the disease [32].
COVID-19 is demonstrated as the cousin of MERS-CoV and

ARS-CoV. The diagnosis of MERS-CoV and SARS-CoV involves
cientific publications using X-ray images from the chest. Ahmet
amimi’s study of MERS CoV shows that there are features in
he X-ray and CT of the chest which is similar to pneumonia
anifestations [33]. Data mining techniques were used by Xu-
nyang et al. to differentiate SARS and typical pneumonia based
n X-ray images [34]. X-ray devices are used to scan the bones
nd infections in the body, such as breaks, bone dislocations,
ung diseases, pneumonia, and cancers. CT scanning is a kind of
dvanced X-ray machine that examines the very soft structure
f the active part of the body and clearer images of the internal
oft tissues and organs [35]. Narin et al. [36] aimed at classifying
classes using 3 binary classification models. For achieving this

ask, they used pre-trained models. Using X-ray images, they
2

achieved an accuracy of 98%. Brunese et al. [37] defined 2 models
based on VGG16. They proposed a 2 level system, the first level
to classify affected images from normal images and the second to
classify COVID-19 images from affected images. Using an X-ray is
a method that is quicker, easier, cheaper, and less harmful than
a CT scan. Failure to recognize and treat COVID-19 pneumonia
quickly could lead to increased mortality.

A brief review of previous research done for the detection
of COVID-19 is shown in Table 1. It contains what method has
been used and on what kind of datasets i.e, CT or X-ray along
with what accuracy they achieved. The literature states that most
of the techniques used pre-trained models without any changes
except for the output layer. Moreover, the research done on
DenseNet achieved positive accuracy on CT images, but on X-ray
images accuracy was low. In addition to that, it was noticed that
when compared to DenseNet other models are more complex
and have a large number of parameters that need to be tuned.
This motivated the use of DenseNet as it is less complex, but to
also increase accuracy for X-ray images as an additional dense
layer with 512 perceptrons is proposed to be added in the al-
ready existing DenseNet model. In previous research, DenseNet
models used classical structures and gave average accuracy (80%
to 90%) on X-rays. We proposed a DenseNet model with an
additional layer of 512 perceptrons, which is expected to give
better accuracy.

In this study, we proposed an automatic COVID-19 prediction
system using DenseNet (Using an additional Dense layer with 512
perceptrons), pre-trained BiT models, and chest X-ray images. To
this end, we have used pre-trained BiT models R50×1, R50 × 3,
R101 × 1, R101 × 3, and R152 × 4 to obtain a higher prediction
accuracy for this large X-ray dataset. DenseNet is more efficient
than other models because of its structure, which is deeper,
but has less number tuning parameters and low computational
complexity than other models due to its bottleneck approach.
With an addition of a single Dense layer of 512 perceptrons, it is
observed to yield better accuracy on basis of our experiments. The
novelty of this paper is summarized as follows: (i) The proposed
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able 2
raining dataset.
Pneumonia COVID-19 Normal

5463 490 7966

Table 3
Test dataset.
Pneumonia COVID-19 Normal

594 100 885

models have an end-to-end structure without the extraction and
selection methods of manual features. (ii) We demonstrate that
DenseNet is an effective pre-trained model amongst two other
pre-trained models. (iii) Chest X-ray images are the best tool for
COVID-19 detection. (iv) The pre-trained models were shown to
yield very high performance on the data-set via simulations.

2. Methods and materials

In this section, the methods and methodology are described in
etail.

.1. Dataset

In this research, chest X-ray images were retrieved from the
pen-access github repository of 590 COVID-19 patients [38]. This
ist is comprised primarily of patients with Acute Respiratory
istress Syndrome (ARDS), COVID-19, Respiratory Syndrome of
he Middle East (RSME), influenza, and extreme acute respiratory
yndrome. In comparison, 6057 chest X-ray images affected by
neumonia were collected from Kaggle’s collection named ‘‘Chest
-ray Images (Pneumonia)’’ [39]and 8851 normal X-ray images.
he distribution of data is shown in Tables 2 and 3.
It is evident from Tables 2 and 3, that the data are more biased

owards normal and pneumonia images. The ‘‘COVID-19’’ training
xamples are 16 times less likely than the normal Images, which
eems a very unbalanced dataset. Without appropriate hyper-
arameter tuning, getting positive accuracy on the COVID Images
s hard. As without tuning the model, it would only learn to
ifferentiate between ‘‘Pneumonia’’ and ‘‘Normal’’ images while
gnoring the ‘‘COVID-19’’ completely.

Possible Solution
One solution is using image sampling, i.e., randomly sample

mages from the ‘‘COVID-19’’ block and then again put them in
he ‘‘COVID-19’’ block. This technique provides positive results,
owever, not all the time. This technique is used to let the model
djust to the specific images.
Another solution is reducing the size of ‘‘Pneumonia’’ and

‘Normal’’ images to level with the ‘‘COVID-19’’ Images. However,
t would not be a beneficial choice in this case. There would be
o issue if we set a larger number of ‘‘COVID-19’’ images, maybe
round 2000. However, in this case, there are only 590 images
n total. This would not be a great option because we could lose
ata.
In this paper, the model learns the features of X-ray images by

he ‘‘Pneumonia’’ and ‘‘Normal’’ images, and then uses weighted
oss at the end to force the model to better classify the ‘‘COVID-
9’’ images. This method of using weighted loss is very promising
nd achieved positive results. The weighted loss is discussed in
etail in Section 2.2.
In Figs. 1 and 2, representative chest X-ray images of normal

nd COVID-19 patients are given.
Data Preprocessing and Augmentation
All the images were resized to a fixed size of 480 × 480

pixels. We used different fine-tuned models to identify the most
 g

3

Fig. 1. Normal chest X-ray.

Fig. 2. Covid-19 affected chest X-ray.

Table 4
Image augmentation parameter details.
Parameter Value

Samplewise center True
Samplewise std normalization True
Horizontal flip True
Vertical flip False
Height shift range 0.05
Width shift range 0.1
Rotation range 10
Shear range 0.1
Fill mode Nearest
Zoom range 0.15

accurate model in them. Later, the images are resized to their
original size (higher resolution) and given as input to the iden-
tified fine-tuned model to reduce time spent viewing. Besides
this, we used samplewise center and sample-wise std normalization
methods for data preprocessing and augmentation. Due to an
increase in the training loss, no other data preprocessing or
augmentation techniques are applied to the dataset. The training
loss of a model trained using image augmentation technique,
their parameters and values are shown in Table 4. The history
of training loss generated by training the same model on two
augmentation techniques is shown in Figs. 3 and 4, respectively.

Fig. 3 shows that when the model is trained on images that
are augmented through samplewise center, it does not learn, and
training loss of the model keeps fluctuating. While Fig. 4 shows
the loss curve when the model is trained on images augmented
through samplewise_std_normalization, the loss curve keeps on
decreasing and fluctuation is also very low. The accuracy obtained
by the first method in Fig. 3 was also far less than the second
method in Fig. 4. This shows samplewise std normalization is better
n our experimental setup.

.1.1. Image augmentation
Image augmentation is the most important technique to in-

rease the samples of the dataset and to allow the model to better
eneralize to the real-world, data but sometimes it decreases
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Fig. 3. Training loss curve when samplewise_center augmentation is applied
without model learning).

Fig. 4. Training loss curve when samplewise_std_normalization augmentation is
pplied (with model learning).

he model’s performance. In our case, we used the Chest X-ray
mages of different patients. The details in a Chest X-ray are very
ensitive, for example the placement of the heart, the relative
ize of the lungs, the size of the area of the infected part of the
ungs. When we apply the augmentation technique as used in
he first method, we are unintentionally making changes to the
tructure of our body. For example, flipping the image of the
eart moves it to the other side, that results in a case called
extrocardia, which is not that common and is useless to teach
he model to understand. Moreover, by rotating the image, we are
otating/displaying every major part of our chest. These changes
ight not be affected when dealing with other types of datasets.
owever, in this case, it greatly affects the data. Moreover, image
ugmentation is done to match with the real data. However, the
eal-world data will also be similar to one that we are using and
here will be no rotation, shear, or random zooming. The images
ill be perfect because we are dealing with a very sensitive type
f data.
4

Fig. 5. Contribution before introducing weights for each class.

Fig. 6. Contribution after introducing weights for each class.

2.2. Weighted loss

The weighted loss can be described as N = total number of Im-
ages/Samples Positive weights (Pw). = No. of negative examples
for each class/N

Negative weights (Nw) = No. of positive examples for each
lass/N

σ = −
(
Pw∗y∗ log (p) + Nw∗ (1 − y) ∗ log ∗ (1 − p)

)
(2.1)

It is used to balance out the contribution of positive and
negative cases of each class. As seen from Fig. 5, each class has a
very uneven distribution of positive and negative cases in terms
of percentage. To deal with this problem the contribution of
weights are leveled for positive and negative class by introducing
weights, as can be seen in Fig. 6. However, there is still a problem
that ‘‘COVID-19’’ is not contributing as much as other classes.
Weighted loss solves the problem of the balance between positive
and negative samples for each class, which is useful and gives
positive results; however, there will be a bias towards the other
two classes. To deal with this, we introduced a new hyperparam-
eter ‘‘c’’, which will try to balance the contribution of each class.
After including this hyperparameter, our loss function becomes:

N = total number of Images/Samples
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alue of parameter c vs. Variation in accuracy value.
Value of C Accuracy of the COVID-19 class

Less than 0 Decreases
0–5 Increases
Greater than 5 No learning, Accuracy fluctuates

Fig. 7. Labeling after choosing the right value of parameter c.

Negative weights = Nw = No. of positive examples for each
lass/N Updated pos weights = Pw [i] + c , where i is the index
f the covid class

σ = −
(
Pw∗y∗ log (p) + Nw∗ (1 − y) ∗ log ∗ (1 − p)

)
(2.2)

It will add additional weight to the concerned class, in the
class of COVID-19. Dealing with this parameter is quite complex.
If the value of c is too low then there will be no effect, if it is too
high then the loss will be beyond infinity and there will be no
learning.

One example of using the right value of c results in Fig. 7.
It can be seen that all classes are almost at the same level and
contributes equally to training the model.

This might not work in all cases because this may cause the
loss to lead to infinity. As in the COVID-19 case, it causes the loss
to reach infinity and thus no learning occurs. Many values of c are
tested on the dataset along with the base model. The output in
the variation of accuracy by the value of c is shown in Table 5. The
optimal value of c lies between 0 to 5, at this point distribution of
data is such that the overall accuracy of classification increases.
Below and above this value distribution is uneven and accuracy
decreases or the model does not learn.

In our case, the output of optimal value of c resulted in Fig. 8.
Fig. 8 shows the tuned results of parameter c, which leads to

higher accuracy in labeling the data. The addition of weighted loss
keeps the percentage of each class from 20% to 25% while training.

2.3. Proposed model and simulations

We have tested many models of architectures and tried out
many hyperparameters, some of them are discussed below.

2.3.1. BiT model
BiT also stands for ‘‘Big Transfer’’ is a new CNN-based model

released by Google. The main purpose of developing such a model
is highlighted by Google itself, ‘‘A common method to mitigate
the lack of labeled data for computer vision problems is to use
5

Fig. 8. Different classes after optimal value of parameter c.

Fig. 9. Residual Layer: Building block of ResNet [40].

methods that have been pre-trained on standard data (e.g., Im-
ageNet). The concept is that visual features learned on standard
data can be re-used for the task of interest. Although this pre-
training starts working reasonably well in practice, the ability to
quickly grasp new concepts still fall short of both’’.

To summarize, this model was developed to fine-tune different
datasets for achieving state-of-the-art performance on different
tasks. We took the original ResNet and increased the dimensions
of each layer to create five different types of models, ranked in
order of their size ‘‘R50 × 1, R50 × 3, R101 × 1, R101 × 3,
R152 × 4’’. For example, we took R152 and widened each layer
by 4. All of the BiT models used in this paper are from the BiT-M
category trained on ImageNet-21K.

A ResNet model consists of a residual layer as shown in Fig. 9.
The residual layer takes input from previous layers and does
not let the model overfit. ResNet takes the residual layer as
the building block, the convolutional layer with average pooling
layers in the end. The architecture of ResNet is shown in Fig. 10.

For fine-tuning of our data set, we started with the biggest
available model, ‘‘R152 × 4’’ trained on ImageNet-21K and added
ahead of the size equal to the number of labels at the end. The
last layer of this model is only trained. Training the last layer of
such a big model is quite a difficult task. When enabled 25 GB
RAM and GPU support on Google Collab, it could only process
a batch size of length 4. Any Batch size bigger than 4 would
result in ‘‘OOM’’, which cannot allocate the TensorFlow model in
memory. However, the model is unable to give any positive re-
sults. Our proposed model achieved positive performance results
in comparison with the state-of-the-art techniques.
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Fig. 10. Architecture of different ResNet models [40].
Table 6
Training overview (Epoch vs. Learning rate).
Epoch Learning rate

1–20 (0.003 ∗ Batch Size/512)
20–30 (0.003 ∗ Batch Size/512)∗0.1
30–40 (0.003 ∗ Batch Size/512)∗0.01
40–50 (0.003 ∗ Batch Size/512)∗0.001
After 50 (0.003 ∗ Batch Size/512)∗0.0001

There are many hyperparameters (learning rate) of the pro-
osed technique involved in the training. However, they are not
onsidered in tuning. Due to the lot of usage of RAM, the learning
ate of scheduler usually occurs OOM. So, the proposed model is
ased on the epoch number for tuning the learning rate. Most
f the hyper-parameters, except the loss and the epochs, were
nitialized using the BiT Hyper rule. The hyper rule is a set of
ules that the BiT model has defined for fine-tuning. The overview
f the training cycle is described in Table 6. It can be seen that
s the number of epochs increases learning rate decreases. If the
earning rate is high throughout the training, then the model
ight cross the optimal value or if the rate is too low, the model
ill take a large number of epochs to reach the optimal value of
he loss. As the model moves towards optimal value, a decrease in
earning rate ensures that the model does not cross the optimal
alue, and the number of epochs until convergence is also not
igh as the learning rate decreases gradually. At first, we fine-
uned the ‘‘R101 × 1’’ model and skipped the ‘‘R101 × 3’’ model
o see a pattern in the relation between data and the model. The
odel ‘‘R101 × 3’’ was eventually trained as well. However, in the

second phase, this model is not large in size as compared to the
previous model. So, the batch size is increased to 8 and no OOM
occurred during the training. We trained the ‘‘R101 × 3’’ model
or a certain time and the accuracy stopped increasing after 80
pochs and reached its minima. Nevertheless, a boost in accuracy
s achieved and tried by adding one extra layer at the end before
he output layer,. However, it remains the same. Additionally, we
ried using dropout and ‘Batch Normalization’, but the training
ccuracy decreased instead of increasing.
After all, we fine-tuned the base model, ‘‘R101 × 1’’ on our

ataset by keeping the learning rate very low and despite a
ery small dataset. This technique allowed us to achieve the best
esults. This technique also introduced a small amount of conflict
ith the table we created in the section for weighted loss. Also,
e observed that with the increase in accuracy for the COVID
lass, the overall performance of the model decreased by a slight
ecline of about 1%.
6

Fig. 11. Training loss vs. Epoch.

After that, we fine-tuned the ‘‘R101 × 3’’ model using the
above technique and also fine-tune the whole model. The pattern
and this model are unable to outperform the ‘‘R101 × 1’’ model
but certainly outperformed the ‘‘R152 × 4’’ model. Furthermore,
we fine-tuned both ‘‘R50 × 3’’ and ‘‘R50 × 1’’ models, but none
could outperform ‘‘R101 × 1’’. If we increase the model size from
‘‘R101 × 1’’, accuracy starts to decrease, and if the model size is
decreased accuracy further decreases (less than ‘‘R101 × 3’’).

2.3.2. DenseNet and inception V3
The main focus of this paper is to get the most out of the BiT

model. Furthermore, it is quite useful to test other state-of-the-
art models. We then fine-tuned a DenseNet model trained on the
ImageNet dataset. We added a fully connected layer with 512
units at the end, and after that added the output layer which
is equal to the size of labels. We first fine-tuned the model by
freezing the top layers of the model for 100 epochs. After that,
we fine-tuned the whole model, including the base model, with
a comparatively low learning rate for 150 epochs. By using the
weighted loss and proper augmentation, the overall accuracy of
the model is greater than our previous best model. However, the
accuracy of the COVID class is far less than the best accuracy.
Due to the potential of the model and increase of the value of
the hyperparameter ‘‘c’’ in the weighted loss to 5.5 and further
trained it for 100 epochs to force the model to learn to better
classify COVID images. This model outperformed the previous
model, however, it was unable to achieve accuracy in detecting
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OVID-19. After the implementation of DenseNet, we tried to
une the Inceptionv3 model. The result is the same because model
ize, dataset size, and the nature of the dataset impact a number
f data. Even though Inceptionv3 is a much bigger model as
ompared to DenseNet. The architecture of different DenseNet
odels and InceptionV3 is shown in Figs. 12 and 13 respectively.
The accuracy of the top 4 models is compared and described

n Table 7. The top 2 models, in this case, are DenseNet and
nhanced R101 × 1 with over-all training and testing accuracy
reater than 90%. Other models have accuracy smaller than 90%.
n terms of COVID-19 detection, R101 × 1 surpasses all the other
models.

Inceptionv3 accuracy is much less than other models. We
have further compared the results of the top two models more
closely in Table 8. DenseNet and R101 × 1 are very close to each
other in terms of everything but in terms of detecting COVID-19
R101 × 1 is best. In terms of other classes, R101 × 1 shows 91.08%
prediction accuracy for pneumonia and 91.18% prediction accu-
racy for normal class. While DenseNet shows 93.26% and 92.43%
prediction accuracy for pneumonia and normal class respectively.

Fig. 11 shows the loss curve of the DenseNet model, which
can be seen as steady in the end. This shows that the DenseNet
model has converged successfully and in a better way. In the
overall scenario, the DenseNet model performs better and have
the same Receiver Operating Characteristic Curve(ROC) Area Un-
der Curve(AUC) score as compared to BiT model as can be seen
from Figs. 14 and 15. However, in the case of COVID-19, the BiT
model outperforms. Figs. 14 and 15 shows ROC curves and AUC
values for detection of three classes under study for R101 × 1 and
DenseNet respectively.
7

2.3.3. Insights from the model training
Five different models (50 × 1, R50 × 3, R101 × 1, R101 × 3,

R152 × 4) were trained for the classification of COVID-19, normal,
and pneumonia X-ray images. Among those models R152 × 4,
R101 × 3, and R101 × 1 showed promising results and gave
est accuracy of 85.8%, 83.47%, and 91.13%. The first insight from
esting these models is that fine-tuning big models do not always
elp. Consider the first case, when we fine-tuned the largest
vailable BiT Model, i.e., ‘‘R152 × 4’’, which was pre-trained on

the ImageNet-21K dataset. However, it did not perform well on
our dataset. The reason is too biased towards the distribution of
the Images in the ImageNet-21K dataset. Also, the chest X-ray
dataset is not very different when it comes to feature extraction
but the distribution of the data, in general, is a lot different.

On the other hand, models below a certain range of size also
do not help. In the case of ‘‘R50 × 3’’, the model accuracy further
drops. However, when model size is reduced further i.e. in the
case of R101 × 1, the model accuracy increases.

Despite an increase in the accuracy, the model remains com-
plex and there are many parameters to be tuned in the case of
R101 × 1. To reduce the model complexity and save resources,
DenseNet model was used but there are many pieces of research
in literature that used DenseNet and showed that they are less
complex but do not gives state-of-the-art accuracy. Taking this
into consideration, we modified DenseNet by adding a dense layer
of 512 perceptrons and saw a boost in the accuracy. Our modified
DenseNet showed a test accuracy of 92% along with the advantage
that the model is not complex and costs less.
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omparison of models training and testing accuracy.
Model Average training accuracy Test accuracy Accuracy of the COVID class

R152 × 4 86% 85.8% ∼75%(N∧)

R101 × 3 87% 83.47% 90%
R101 × 1 93% 91.13% 91%

DenseNet 93.5% 92% 85%(Using an additional Dense layer with 512 perceptrons)
Table 8
Comparison of models ROC and AUC.
Model Sensitivity and

specificity
(percentage)

Confusion matrix Accuracy of the
COVID class
(percentage)

Accuracy of the
pneumonia class
(percentage)

Accuracy of the
normal class
(percentage)

ROC AUC
Score (percentage)

R101 × 1 91 and 96 541, 16, 37,
5, 91, 4,
49, 29, 807

91 91.08 91.19 98

DenseNet
(Using an additional
Dense layer
with 512 perceptrons)

85 and 99 554, 2, 38,
12, 85, 3,
63, 4, 818

85 93.27 92.43 98
Fig. 14. R101 × 1 TPR vs. FPR.

In the end, two models were compared more thoroughly from
ll the models as they gave comparatively higher training and
esting accuracy. R101 × 1 and modified DenseNet are those
wo models. For COVID-19, R101 × 1 gave higher test accuracy,
ut DenseNet showed higher accuracy for the other two classes
normal and pneumonia). The explained comparison on basis of
ccuracy and ROC AUC score can be seen in Table 8.

.3.4. Key points
• The fine-tuning of the BiT model is easy on most data sets

rather than other models and also performs better.
• Fine-tuning of BiT models also does not take a large amount

of time. It could get the maximum possible accuracy after
40 epochs.

• Fine-tuning BiT models is easy as compared to fine-tuning
other models, such as DenseNet. All the hyperparameters
can be initialized using the official BiT hyper rule.
8

Fig. 15. DenseNet TPR vs. FPR.

• Fine-tuning models other than the BiT are sometimes com-
plex. Additional layers may need to be added at the end
and have to be carefully tested at different learning rates
to make sure the number of epochs is enough. Sometimes,
training for more epochs results in less accuracy.

All of the results in this research study have been obtained after
a great mount of hyperparameter tuning.

2.3.5. Comparison with other models
A great amount of models trained in the literature showed

promising training and testing accuracy for COVID-19 classifi-
cation as shown in Table 1. Most models that were used gave
promising accuracy for COVID-classification were either trained
on CT-Scan images or were acting as binary classifiers. Binary
classifiers have fewer classes to predict and thus show better
accuracy than models trained on more classes. Other problems
with previous models were that if they achieved 90%+ accuracy
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hen they were more complex than other models, thus they were
omputationally costly.
We have obtained superior performance as compared to many

ther studies in the literature with more classes, less COVID-19
ataset, and a less complex model. Previous research was also at
disadvantage because COVID-19 data is not in abundance and

hose research models likely used less data than we used. The
ize of COVID-19 datasets is increasing day by day and research in
his domain is enhancing every day, thus it is not fair to compare
hose research models with ours when it is compared to those
ith fewer data. However, with an AUC ROC score of 98% and
ccuracy of 91% on the COVID class, our results out-performed
he state-of-the-art as shown in Table 1 using R101 × 1.

. Conclusion

Early diagnosis of COVID-19 patients is important for pre-
enting the disease from spreading to others. In this study, we
roposed a deep transfer learning method based on chest X-ray
mages that were collected from COVID-19 patients. We trained
ur proposed system and tested it on test data. Performance
esults show that the DenseNet pre-trained model has yielded the
ighest accuracy up to 92% between the three models. Due to the
igh results, it is assumed in the light of our findings that it would
elp doctors to make decisions in clinical practice. This study
rovides insight into how deep transfer learning approaches can
e used to detect COVID-19 at an early stage. The classification
fficiency of various BiT models can be evaluated in subsequent
xperiments by the number of images in the dataset.
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