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Abstract
The evolution of recognition specificities by the immune system depends on the generation of receptor diversity and on
connecting the binding of new antigens with the initiation of downstream signaling. In plant immunity, the innate
Nucleotide-Binding Leucine-Rich Repeat (NLR) receptor family enables antigen binding and immune signaling. In this study,
we surveyed the NLR complements of 62 ecotypes of Arabidopsis thaliana and 54 lines of Brachypodium distachyon and
identified a limited number of NLR subfamilies that show high allelic diversity. We show that the predicted specificity-
determining residues cluster on the surfaces of Leucine-Rich Repeat domains, but the locations of the clusters vary among
NLR subfamilies. By comparing NLR phylogeny, allelic diversity, and known functions of the Arabidopsis NLRs, we formulate
a hypothesis for the emergence of direct and indirect pathogen-sensing receptors and of the autoimmune NLRs. These
findings reveal the recurring patterns of evolution of innate immunity and can inform NLR engineering efforts.

Introduction
Plants lack the adaptive immunity of vertebrates. With their
immune receptor specificities encoded in the germline,
plants can achieve remarkable receptor diversity at the pop-
ulation level (Bakker et al., 2006). The mechanisms that gen-
erate this diversity and select for useful (and against
deleterious) receptor variants are thus of great importance
to both basic science and crop improvement (Dangl et al.,
2013). Ongoing efforts at pan-genome sequencing of both
model and crop species reveal the intraspecies diversity of
plant immune receptors, their natural history, mechanisms
of action, and the evolutionary forces that shape plant

immunity (Gordon et al., 2017; Stam et al., 2019a, 2019b;
Van de Weyer et al., 2019; Seong et al., 2020).

Two types of plant immune receptors form the basis of
pathogen recognition: extracellular receptors, including
receptor-like kinases (RLK) and receptor-like proteins (RLP);
and intracellular Nucleotide-binding Leucine-Rich Repeat
(NLR) proteins (Dangl et al., 2013). While RLKs and RLPs
monitor the extracellular environments of plants, NLRs are
cell death-executing receptors that are shared across the
plant and animal kingdoms (Jones et al., 2016). Plant NLRs
are typically composed of three domains, including a central
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nucleotide-binding (NB-ARC) domain that mediates recep-
tor oligomerization upon activation, the C-terminal Leucine-
Rich Repeat (LRR) domain that defines receptor specificity,
and one of three N-terminal domains: Resistance To
Powdery Mildew 8 (RPW8), Coiled-Coil (CC), or Toll/
Interleukin-1 Receptor homology (TIR) domains, which me-
diate the immune effector function. NLRs are divided into
three monophyletic classes based on the N-terminal
domains and their evolutionary origin: RPP8-NLR (RNL), CC-
NLR (CNL), and TIR-NLR (TNL) (Shao et al., 2016).

NLRs can function as sensors or signal transducers (help-
ers; Wu et al., 2017). For example, all RNL genes are thought
to be helpers (Jubic et al., 2019), while TNLs and CNLs can
fulfill either function. Sensor NLRs recognize pathogens using
three main modes: (1) direct binding to the pathogen-
derived effector molecules; (2) indirect recognition of effec-
tor activities on other plant proteins, and (3) recognition of
modifications to a noncanonical integrated domain of the
NLR, which acts as a bait for the effector (Cesari, 2018). The
recognition mode of a given sensor NLR is likely to have a
large effect on the evolutionary pressure it experiences.
Indirect recognition NLRs likely undergo balancing or purify-
ing selection based on the monitoring of conserved effector
activity. In contrast, effector recognition upon direct binding
likely requires NLRs to adapt rapidly to keep track of easy-
to-mutate effector surface residues. Among the best studied
NLRs that directly bind pathogen-derived effectors are the
flax (Linum usitatissimum) L genes (Ellis et al., 2007;
Catanzariti et al., 2010), the MLA/Sr50 locus in barley
(Hordeum vulgare) and wheat (Triticum spp.; Chen et al.,
2017; Saur et al., 2019), and the Recognition of Peronospora
Parasitica 1 (RPP1) genes in Arabidopsis (Krasileva et al.,

2010; Goritschnig et al., 2016). Their effector targets are
structurally diverse, suggesting that the current recognition
specificities of individual alleles are recently derived, rather
than ancestral.

The continuous generation of diversity in sensor NLRs is
required to provide protection from diverse pathogens and
is thought to result from divergent (diversifying) selection
and a birth-and-death process acting on NLR gene clusters
(Michelmore and Meyers, 1998). NLRs diversify through
copy number variation, recombination, gene conversion,
gene fusion, and point mutations (Baggs et al., 2017). In a
subset of NLRs, these mechanisms combine to produce an
astounding array of alleles (Bakker et al., 2006; Ding et al.,
2007). Not unexpectedly, such diversity comes at a price.
Hybrid necrosis has been observed widely in inbreeding and
outcrossing plants in both cultivated and wild populations
and can be considered as a plant version of autoimmunity
(Bomblies, 2009). Hybrid necrosis occurs due to a mismatch
between immune receptor variants and other plant genes,
leading to autoimmune recognition, as exemplified by
Dangerous Mix genes in Arabidopsis thaliana (Bomblies
et al., 2007; Chae et al., 2014; Atanasov et al., 2018) and
Ne genes in wheat (Zhang et al., 2016). Tomato (Solanum
lycopersicum) Cf-2 is an example of a non-NLR immune re-
ceptor that shows this phenotype (Kruger, 2002; Santangelo
et al., 2003). These negative interactions revealed in crosses
are likely only a small fraction of the cost of derivation of
new immune specificities in the presence of the whole intra-
cellular plant proteome.

Cross-species phylogenetic analyses of the NLR gene family
have provided important insights into NLR evolution. A
combined phylogeny of maize (Zea mays), sorghum

IN A NUTSHELL

Background: Harmful bacteria, fungi, oomycetes, insects, nematodes, and viruses threaten plant health and can 
devastate agricultural crops. Plants have an innate immune system that protects them from disease. Unlike human 
immune proteins, which can rapidly generate new recognition specificities in response to infection or immunization,
plant immune proteins do not change over the lifetime of a single organism. The generation of plant immune receptor 
diversity must therefore occur at the population level. How plants learn to recognize newly emergent threats remains 
to be fully explored. 

Question: We wanted to find out where the new recognition specificities in plant immunity come from.

Findings: In this study, we used data already available for the model dicot and model monocot plants Arabidopsis 
and Brachypodium, respectively. In each species, we compared immune receptors across over 50 divergent plant
varieties. We developed new methods to analyze plant immune receptors that rely on careful reconstruction of their 
natural history and on using protein alignment entropy to find variable positions. We observed that some immune 
protein families contain receptors that vary little from ecotype to ecotype while others are highly variable. In the 
families with high sequence diversity, the observed differences clustered together on the protein surfaces, allowing us 
to predict the regions used to bind to the pathogen targets in each receptor. We concluded that at the population 
level, the highly variable receptor families form a reservoir of new specificities, while at least some of the invariable 
receptors serve as a repository of the successful variants derived over many years of evolution.

Next steps: These findings will help us look for natural forces that determine the patterns of evolution of different 
immune receptor families. They will also guide future efforts to engineer disease resistance in the crop species in 
order to improve plant health.
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(Sorghum bicolor), brachypodium, and rice (Oryza sativa)
NLRs was used to identify recently derived NLR immune
specificities against rice blast disease (Yang et al., 2013).
An expansion of a network of helper and sensor NLRs was
identified across asterids in which a set of diverse sensors
signal through a redundant set of helpers that show reduced
diversity (Wu et al., 2017). Phylogenetic analyses in grasses
identified major integration clades of NLRs that incorporate
additional domains that serve as baits for pathogens (Bailey
et al., 2018). In view of the recent progress in elucidating the
intra-species NLR complements of both model and nonmo-
del plants (Gordon et al., 2017; Stam et al., 2019a, 2019b;
Van de Weyer et al., 2019; Seong et al., 2020), a systematic
analysis is needed to uncover the relationships between NLR
phylogeny, mode of recognition, and the amount of allelic
diversity.

The recent elucidation of both the pre-activation mono-
meric and activated resistosome-forming conformations of
ZAR1, an indirect recognition CNL, dramatically improved
our understanding of both target binding and the receptor
activation mechanisms of NLRs (Wang et al., 2019b, 2019a).
The structures of Roq1 and RPP1, both direct binders, in
complex with their targets, were recently revealed (Ma et al.,
2020; Martin et al., 2020), further shedding light on LRR and
post-LRR domain-dependent target recognition and down-
stream TIR domain activation. While more NLR structures
are likely to be revealed in the future, structure determina-
tion efforts will likely lag behind the pan-genome sequencing
due to the cost and difficulty of the experiments involved.
Therefore, the prediction of the mode of recognition and
specificity-determining residues of NLRs based on sequence
data is an attractive direction that is yet to be fully explored.
The idea that highly variable residues determine immune re-
ceptor specificity predates the elucidation of the first anti-
body structure by 3 years (Kabat, 1970). In the subsequent
decades, several measures of amino acid diversity were ad-
vanced. Shannon entropy, which originated in information
theory, is given by the formula:

H ¼ �
X20

i¼1
pilog2pi

where pi is the fraction of 1 of the 20 amino acids in a col-
umn of a protein sequence alignment. This measure was
first applied to study residues that determine antibody and
T-cell receptor specificity (Shenkin et al., 1991; Stewart et al.,
1997). High entropy values correlate strongly with surface
exposure and hydrophilic character (Liao et al., 2005) and
can be used to predict rapidly evolving ligand-binding sites
(Magliery and Regan, 2005). In addition to B- and T-cell
receptors, entropy-based measures have been applied to
identify binding sites in TRP repeat proteins, ankyrin repeat
proteins, Zn-finger transcription factors, and G protein-
coupled receptors (Magliery and Regan, 2005; Sanders et al.,
2011).

In the current study, we used phylogenetic analyses to
group Arabidopsis and Brachypodium NLRs into near allelic
series and applied Shannon entropy analyses of protein

alignments to define highly variable NLRs (hvNLRs) and their
candidate specificity-determining residues. Our results show
that, depending on the ecotype, 15–35 Arabidopsis NLRs
belong to rapidly diversifying families. These families are
distributed in the NLR phylogeny among both CC- and TIR-
containing NLRs and encompass the known Dangerous Mix
NLRs. We further show that in the hvNLRs, the highly vari-
able residues identified by Shannon entropy cluster on the
surface of the LRR domain and contain surface-exposed
hydrophobic residues, thus identifying likely binding sites.
The exact location of the putative binding sites on the LRR
surface is not conserved across different NLRs. Based on the
phylogenetic distribution of hvNLRs, we formulate a hypoth-
esis regarding the origin of indirect recognition sensor NLRs.
When applied to Brachypodium distachyon pan-genome,
our methods reveal a similarly dispersed phylogenetic distri-
bution of hvNLRs in this model grass species. Collectively,
our results reveal the origins of novel recognition specificities
in NLR innate immune receptors and the common patterns
in the evolution of innate immunity.

Results

Arabidopsis NLRome shows variable rates of NLR
diversification
The recent elucidation of the NLR complements of over
60 accessions of the model plant A. thaliana (Van de Weyer
et al., 2019) provided a unique opportunity to examine
rapidly evolving clades of Arabidopsis NLRs. The unique
advantage of the Arabidopsis dataset is the ability to corre-
late observed diversity to known functional classes of the ex-
tensively characterized NLRs. Previous NLRome analyses of
this dataset were performed using OrthoMCL followed by
orthogroup refinement. While these analyses provided a
valuable basis for global analyses of selection pressures, they
did not produce robust allelic series for each gene. This is
likely due to the divergent rates of diversification across
NLRs, which complicate orthogroup assignment. To circum-
vent this challenge, we adopted a phylogeny-based ap-
proach. To group NLRs into near allelic series, we first built
a unified phylogeny of all NLRs based on their shared
nucleotide-binding domain (Figure 1A). This tree contained
7,818 NB-ARC sequences that had 470% coverage across
the NB-ARC domain and represented 7,716 NLR genes, in-
cluding 168 NB-ARC sequences of NLRs from the reference
Arabidopsis Col-0 assembly. Even though the N-terminal
domains were not included in the analysis, this phylogeny
clearly split into clades corresponding to the three canonical
architectures: RPW8, CC, and TIR domain-containing NLRs
(Shao et al., 2016; Tamborski and Krasileva, 2020). We arbi-
trarily placed the root of the tree between TNL and non-
TNL NLRs to simplify downstream analyses.

We split the overall phylogeny into 65 clades based on
clade size (40–500 sequences) and bootstrap support. Of
these, 43 clades had bootstrap scores of 100, 12 additional
clades had bootstrap scores 470, and only 10 clades had
low bootstrap values, grouping sequences that could not be
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confidently assigned elsewhere (Figure 1B). To gain insight
into the relative ages of the initial clades, we used the
Evolutionary Placement Algorithm to place Arabidopsis lyr-
ata and Capsella rubella NLRs in the A. thaliana pan-
NLRome (Supplemental Figure 1). Of the 65 initial clades, 53
had representative sequences from either or both outgroups
(Supplemental Data Set 1). In the initial partition, the largest
clade contained 431 sequences, allowing us to construct de

novo full-length alignments and clade phylogenies for all
clades. A tree of one of the initial clades, Int14015, contain-
ing the resistance gene RPP8, is representative of observed
evolutionary dynamics and is shown in Figure 1C. This tree
contains five well-supported subclades that differ in size and
internal diversity, as reflected by the very short internal
branch lengths in four out of five subclades. The observation
that closely related sequences evolve at very different rates

Figure 1 Phylogenetic analyses of Arabidopsis pan-NLRome. A, Maximum likelihood tree for 7,818 Arabidopsis NB-ARC sequences rooted on a
branch connecting TNL and non-TNL clades. Ninety-nine percent or better bootstrap values are shown as dots. B, Same tree as in (A) partitioned
into 65 initial clades, with circle radius proportional to clade size, and indicating bootstrap support for each clade. C, Int14015 clade tree (rooted
midpoint) based on a full-length alignment of the clade sequences. Ninety-nine percent or better bootstrap values are shown as dots. D, Int9878
clade ML tree (rooted midpoint) based on a full-length alignment of the clade sequences. Ninety-nine percent or better bootstrap values are
shown as dots; branch length represents the number of substitutions per site.
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is true not only for RPP8, but throughout the NLR family.
RPP1, a well characterized NLR that directly interacts with
its target ATR1, also has closely related sequences that are
largely identical in different ecotypes (Figure 1D). In fact, all
clades with longer branches, i.e. higher amino acid diver-
gence, have closely related clades with paralogous genes that
show very little variation between ecotypes. These observa-
tions are consistent with the notion that closely related NLR
genes are experiencing different selection pressures (Ding
et al., 2007).

We iteratively refined the initial clades by splitting them
into two or more subclades and repeating the alignment
and phylogeny generation steps. We prioritized cutting long,
well supported internal branches, and therefore tended to
preserve both rapidly evolving and low variability subclades
(see Methods). After two iterations, the NLRs fell into 223
non-singleton and 14 singleton clades. The distribution of
clade representatives across all ecotypes is summarized in
Supplemental Data Set 2. This NLRome partition is some-
what more conservative than the OrthoMCL-based analysis,
which produced 464 orthogroups and 1,663 singletons (Van
de Weyer et al., 2019). In our final clade assignments, 83% of
all clades contained no more than one gene for all repre-
sented ecotypes, thus approximating allelic series. Over 90%
of all NLRs fell into clades of 20 or more genes, allowing
sampling for sequence diversity analysis. Only six large clades
that ranged in size from 73 to 323 sequences contained
multiple genes for 10 or more ecotypes and could not be
split further due to the lack of long internal branches with
strong support (Supplemental Data Set 2). The large clades
contained RPP1, RPP4/5, RPP39, and RPP8, suggesting that
interallelic exchange complicated the phylogeny and pre-
vented separation into allelic series. Taken together, our
analyses suggest that pan-genomic NLR repertoires can be
clustered into near-allelic series using phylogenetic
approaches.

Sequence analysis of the NLRome clades identifies
hvNLRs
NLR genes encode immune receptors that provide protec-
tion during pathogen infection. Their highly variable regions
are expected to contain the specificity-determining residues.
We used Shannon entropy as a sensitive and robust mea-
sure of amino acid diversity. Entropy is zero at positions
that are invariant, and it reaches a theoretical maximum of
log220 or �4.32 when all 20 amino acids are present in
equal ratios; a position with two variant amino acids present
at equal ratios produces a value of 1 bit. A Shannon entropy
plot thus represents a fingerprint of sequence diversity
encoded in the alignment (Figure 2A).

Several functional classes of NLRs produced entropy plots
with limited diversity. The ancient helper RNL NRG1.1, the
indirect recognition CNL RPS2, and the integrated-domain
TNL RRS1B produced entropy plots in which entropy never
exceeded 1 bit. The low sequence variability in these clades
is consistent with their conserved functions. By contrast,

30 NLR genes in the reference ecotype Col-0, including
14 CNL genes and 16 TNL genes belonged to clades whose
alignments repeatedly scored above 1.5 bits and revealed a
series of periodic spikes in the LRR region. Among these
genes were the known direct recognition proteins from the
RPP13 and RPP1 clades. Using Shannon entropy as a metric,
we defined hvNLRs as those with 10 or more positions
exceeding 1.5 bit cutoff (see Supplemental Figure 2 for the
relevant distribution). No protein known to indirectly recog-
nize pathogen effector was found among hvNLRs, and all
known direct binders were detected among hvNLRs
(Figure 2B). When we ran Shannon entropy analyses on the
previously identified NLR orthogroups (Van de Weyer et al.,
2019), we only detected 15 hvNLRs, five of which did
not overlap with our phylogeny-based analyses (three
slightly below 1.5 bits cutoff and two not supported as
true orthogroups by phylogeny). This suggests that
phylogeny-based orthogroup assignment is a better option
for preserving and detecting hvNLR clades. We predict that
phylogeny-based NLR clade analysis combined with
Shannon entropy can be applied to nonmodel plants to
computationally separate candidate direct binders from
other NLRs based on their sequence diversity.

hvNLRs are distributed throughout the TNL and
CNL clades
We observed that hvNLRs were distributed over the NLR
tree of the reference accession Col-0 with representatives
in both TNL and CNL major clades. Within both major
clades, there were multiple hvNLR genes right next to
conserved paralogs that did not show excess diversity.
This is consistent with our prior observation that NLR
subclades with long branches have close paralogs with
limited subclade diversity. Recent duplications of hvNLRs
have produced local hvNLR clusters such as those near
RPP7, RPP39, RPP4/5, and RPP1. NLRs found in phyloge-
netic proximity often also cluster physically on the
Arabidopsis chromosomes (Supplemental Figure 3).
Nonetheless, genomic clustering with close paralogs is not
required for an NLR to become highly variable, as shown
by RPP9, RPP13, and RPP28. Also, presence in a physical
cluster does not force a gene to become an hvNLR, as
shown by RLM3 in the RPP4/5 genomic cluster and CW9
in the RPP7 genomic cluster. Thus, it appears that
the copy number variation observed in the clusters is an
independent process that helps create material for NLR
evolution, but the generation of hvNLRs can proceed out-
side of genomic clusters.

The physical proximity and phylogenetic relationships of
hvNLRs and their closely related low variability paralogs sug-
gest that rapid switches in selective pressure were involved
in generating the apparent diversity. Since the selection of
an NLR is likely to correlate with its function, we located
the known guardian NLRs within the phylogeny. Since these
NLRs are expected to maintain binding sites for conserved
plant proteins, we expected them to show low entropy
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scores. As we have already seen for RPS2, other known
guardian NLRs including RPM1, RPS5, and ZAR1 all showed
low variability. However, they did not form a separate clade

within the phylogeny; instead, they were interspersed by
hvNLRs. This phylogenetic arrangement, together with the
excess of both copy number variation and amino acid

Figure 2 Identification and phylogenetic distribution of hvNLRs. A, Domain diagrams and Shannon entropy plots of clade alignments containing
known NLRs from ancient helper (NRG1.1), guard (RPS2), integrated decoy (RRS1B), and direct recognition (RPP1) functional groups. It is
not presently known whether RPP8 is a direct recognition NLR. B, Phylogenetic distributions of NLRs of the reference ecotype, Col-0, indicating
positions of known genes and showing the locations of hvNLRs and autoimmune Dangerous Mix NLRs. Ninety-nine percent or better bootstrap
values are shown as dots; branch length represents the number of substitutions per site.
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diversity in the hvNLRs, argues for a mechanism where
hvNLRs mostly act in direct recognition mode but are infre-
quently able to generate indirect recognition alleles that are
preserved due to their competitive advantage.

hvNLRs contain the known NLR autoimmune loci
Generating diverse receptors in the immune system carries
with it a cost of autoimmune recognition. In the known
Dangerous Mix gene pairs, at least one and sometimes
both causative alleles are NLRs (Chae et al., 2014). If our
prediction that hvNLRs are sources of novel direct binding
is correct, we would expect to find a strong overlap be-
tween hvNLRs and Dangerous Mix NLRs. Indeed, hvNLR
clades contain all the known NLR Dangerous Mix genes
including RPP7, RPP8, RPP4/5, and RPP1. We suspect that
in the future, more Dangerous Mix NLRs will be found
that will map to other hvNLR loci. This finding also sug-
gests that targeted resequencing of NLRs in crop species
could help identify loci responsible for hybrid necrosis
phenotypes, which are a frequent impediment to
breeding.

Highly variable residues cluster on the surfaces of
LRR domains of hvNLRs
The LRR domains are known to encode the recognition
specificities of plant NLRs. First, we wanted to know
whether highly variable residues occur predominantly in
the LRR domain. This was indeed the case for all 30
hvNLRs examined (Table 1). We noticed, however, that
regions in the NB-ARC domain also had high entropy
scores in multiple NLRs (RPP1 and RPP8 in Figure 2A).
This suggests that a limited number of residues in the NB-
ARC domain could participate in target binding in these
receptors. Alternatively, these could compensate for
changes in the LRR in order to maintain the off state in
the absence of the ligand. Many TNLs have post-LRR
domains that lack the characteristic LRR pattern of resi-
dues yet are predicted to be folded and form a contiguous
structure with the preceding repeats (Van Ghelder and
Esmenjaud, 2016). We observed that the post-LRR
domains also often contained residues with high entropy
scores (RPP1 in Figure 2A). Together, these data suggest
that the LRR carries the majority of binding residues, while
NB-ARC and post-LRR domains can also participate in li-
gand binding.

If the high entropy residues do indeed make up the tar-
get binding sites, we would expect to find them in one or
two clusters on the receptor surfaces and to include ex-
posed hydrophobic residues. LRR domains fold in a pre-
dictable manner that buries the conserved leucines and
exposes the variable residues on the protein surface; this
allows us to skip structure prediction and to approximate
LRR surfaces based on repeat annotation. The concave
side of LRR domains contains a beta-sheet with a regular
array of surface-exposed residues, and it can be repre-
sented as a table with one line per repeat unit and the
columns corresponding to variable positions in the

canonical Lx2x3Lx5Lx6x7 repeat. In the case of ZAR1, the
first plant NLR whose structure was elucidated, such ma-
trix representation based on repeat annotation perfectly
matches the one that is based on the experimental struc-
ture (Figure 3A).

In order to test whether entropy analysis can predict NLR
binding sites, we annotated LRRs for each hvNLR gene in
Col-0 and mapped entropy scores onto this representation.
This analysis revealed that in all the hvNLRs, the periodic
spikes in entropy signal over the LRR likely correspond to
one or two surface clusters in the NLR protein (Figure 3B
for three representative examples, Supplemental Data Set 3
for all Col-0 hvNLRs). In the first example, AT5G43740, the
strongest variability signal is found in LRRs 8 through 12
and positions 3, 5, 7, and 8 of the repeat. Additional high
entropy signal comes from LRR1 through LRR5 positions 8
and 10. In RPP13, the positions C-terminal to the predicted
beta sheet appear to play an important role in determining
binding specificity. Unlike AT5G43740, highly variable
residues in positions 8, 9, and 10 of the repeats appear
throughout the annotated LRR region, while all residues in
positions 2 and 3 are conserved. We therefore predict that
in RPP13, loops that follow the beta strands play a key role
in determining substrate specificity. Our prediction that
specificity determinants of RPP13 stretch between LRR1 and
LRR12 are in agreement with the large experimentally identi-
fied specificity-determining region in RPP13 (Rentel et al.,
2008, and see Figure 5 below).

RPP1 is a well-studied example of a direct recognition
NLR where multiple alleles have different recognition profiles
of the effector ATR1 of the downy mildew pathogen
Hyaloperonospora arabidopsidis (Rehmany et al., 2005). In
RPP1, we observed a large number of contiguous residues
that likely contribute to binding specificity stretching from
LRR1 to LRR15. Highly variable residues are concentrated in
positions 5, 7, and 8 at the beginning of the domain but
shift toward the start of the beta strands in the later repeat
units, with residues 2, 3, and 5 lighting up uniformly in
LRR7–LRR15. Rather unusually, we also observed some vari-
able residues in the –1 and –2 positions. We conclude that
in RPP1 (and in AT5G43740) the targets likely bind through
the middle of the horseshoe LRR shape rather than on one
side of it, as in the case of RPP13. The high-entropy residues
in RPP1 contain the amino acids previously shown to ex-
tend recognition specificity of the RPP1 allele NdA towards
ATR1-Maks9 (Krasileva, 2011) and those that directly inter-
act with ATR1 in the cryo-EM structure (Ma et al., 2020; see
Figure 6 below).

To further investigate whether the identified highly
variable surfaces indeed represent target-binding sites, we
surveyed these regions of high diversity for the presence of
exposed hydrophobic residues, which are commonly found
at the centers of protein–protein binding sites (Figure 3C).
Indeed, in every case, the highly variable residues included
exposed hydrophobic amino acids, often including bulky
aromatics such as tryptophan and phenylalanine. We also
tested whether the entropy-based predictions agree with
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the results of positive selection analyses that have been used
in the past to identify functionally important residues in
NLRs (Kuang et al., 2004). In RPP13, 66% of all high-entropy
residues (41.5 bits) were under positive selection according
to phylogenetic analysis by maximum likelihood (PAML)
Model 8 (Supplemental Figure 4). All of the remaining
high-entropy residues fell into regions that contained gaps
in the alignment and could not be analyzed by PAML. Thus,
the results of the entropy analyses of hvNLR surfaces are
consistent with the results of the widely accepted molecular
evolution analyses performed on the underlying nucleotide
sequences.

NLR-binding sites are largely similar across the
NLRome
We next examined how the placement of the highly variable
residues and the predicted ligand binding site evolved across
the NLR phylogeny (Figure 4). Overall, closely related paral-
ogs shared a similar binding site location, and most variation
was apparent between CNLs and TNLs. We observed that
the clustering of highly variable residues was largely similar
across CNLs, with most sites clustering together in C-

terminal repeats and most variability introduced by the re-
peat number variation. In TNLs, highly variable sites were
more dispersed across the LRRs, and the predicted binding
site was stretched across NLRs with a larger number of
repeats. Across both TNLs and CNLs, the N-termini of LRRs
1–4 were invariable: this region is in contact with the invari-
able part of the NB-ARC domain and might be important
for regulating NLR activation.

The ZAR1-RKS1 binding site overlaps with the bind-
ing site of RPP13 predicted by entropy-based
analysis
Arabidopsis ZAR1 is an indirect-recognition NLR and the
first one with an elucidated structure. In our phylogeny, its
closest hvNLR is RPP13 (Figure 2B). While the ZAR1 entropy
plot lacked high-entropy residues, we wanted to compare
the known footprint of RKS1, the ZAR1 binding partner,
with the positions of highly variable residues in RPP13
(Figure 5A). Unusually for hvNLRs, highly variable residues of
RPP13 cluster on the C-terminal side of the repeats, with
positions 7–10 of the repeat units showing the highest

Table 1 Number and locations of highly variable residues in hvNLR receptors

Gene Name Type preNB NB-ARC Linker LRR postLRR

No. of
hv aa

Percentage
of total aa

No. of
hv aa

Percentage
of total aa

No. of
hv aa

Percentage
of total aa

No. of
hv aa

Percentage
of total aa

No. of
hv aa

Percentage
of total aa

RPP9 TIR 0 0 0 0 0 0 23 5.8 11 5.3
RPP7 CC 0 0 0 0 1 1.5 34 6.1 0 0
AT1G58807.1 CC 1 0.6 0 0 0 0 29 6.7 1 3.4
AT1G58848.1 CC 1 0.6 0 0 0 0 37 7.2 0 0
AT1G59124.1 CC 1 0.6 0 0 0 0 17 5.6 0 0
AT1G59218.1 CC 1 0.6 0 0 0 0 36 7.1 1 7.7
AT1G61180.1 CC 2 1.3 7 2.1 0 0 35 9.9 0 0
RPP39 CC 2 1.3 4 1.2 0 0 36 8.7 1 2.7
AT1G61300.1 CC 2 4.8 7 2.1 0 0 35 9.9 0 0
AT1G61310.1 CC 2 1.3 7 2 0 0 35 9.9 0 0
AT1G62630.1 CC 0 0 4 1.2 0 0 23 7 2 4
AT1G69550.1 TIR 0 0 2 0.6 2 2.4 58 9.8 1 0.6
RPP28 TIR 1 0.4 0 0 1 3 18 3.7 5 3.4
AT3G44400.1 TIR 2 0.9 4 1.3 3 5.1 22 8.1 18 11.6
RPP1 TIR 3 1.1 6 1.9 3 5.1 35 9.6 17 9.1
AT3G44630.1 TIR 3 1.1 6 1.8 3 5.1 35 9.5 15 8.3
AT3G44670.1 TIR 4 1.5 4 1.3 3 5.1 30 8.9 19 8
RPP13 CC 0 0 0 0 1 2.5 34 11.6 0 0
RPP4 TIR 3 1.6 5 1.7 5 8.3 45 8.4 1 1.6
SNC1 TIR 6 3.2 5 1.7 5 8.5 34 5.5 5 3.6
AT4G16920.1 TIR 7 3.8 5 1.7 5 8.5 51 8.3 3 2.1
RPP5 TIR 7 3.7 5 1.7 5 8.5 41 6.6 8 2.9
AT5G38350.1 TIR 0 0 3 0.9 1 1.7 13 4.6 6 4.1
SSI4-LIKE TIR 0 0 3 1 0 0 21 6.6 4 2.2
AT5G41750.1 TIR 0 0 2 0.6 1 1.9 19 6 2 1
RPP8 CC 0 0 10 2.9 0 0 19 5 0 0
AT5G43740.1 CC 0 0 2 0.6 2 4.1 27 8.2 0 0
AT5G46510.1 TIR 1 0.5 1 0.3 1 0.9 7 2.3 6 1.4
VICTR/ACQOS TIR 1 0.5 1 0.3 1 0.9 7 2.3 6 2.3
AT5G48620.1 CC 0 0 10 2.9 0 0 19 5.3 0 0

The number of residues in clade alignment for each hvNLR with Shannon entropy values of at least 1.5 bits (counted by domain) is shown. The majority of highly variable resi-
dues were found in the LRR domain.
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diversity (Figure 3). Surprisingly, the similarly positioned resi-
dues in ZAR1 are used to bind its stable complex partner,
RKS1 (Figure 5B). This finding is consistent with the notion
that ZAR1 and RPP13 emerged from an hvNLR common an-
cestor that had a binding site similar to that observed in
ZAR1 and predicted in RPP13.

High-entropy residues in RPP13 are required for
recognition of ATR13
To experimentally test our prediction, we created synthetic
RPP13 constructs and transiently expressed them in
Nicotiana benthamiana together with the ATR13 d49
Emco5 allele, which is recognized by RPP13-Nd but not
RPP13-Col. We used another effector, ATR1 d51 Emoy2,

Figure 3 2D representations of LRR surfaces allow comparisons of predicted NLR binding sites to be made in the absence of experimental struc-
tures. A, Beta-sheet on the concave side of ZAR1 LRR domain shows a regular array of surface-exposed residues that correspond to the variable
positions in the LxxLxLxx LRR motif (left). Single-letter amino acid representation of the observed array (center). Identical representation is obtained
from LRR repeat annotation by arranging the rows from bottom to top and hiding the columns containing conserved leucines (right). B, Shannon
entropy scores and amino acid residues of three representative Col-0 hvNLRs mapped onto the 2D surface representation, including five additional
amino acids on either side of the core repeat unit. C, Percentages of hydrophobic residues in the alignments of the same three proteins.
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which is not recognized by either RPP13 variant, as a nega-
tive control. RPP13-Col containing the 509–729 amino acid
region from the Nd allele showed a gain of ATR13 recogni-
tion, which is consistent with our prediction (Figure 5C).
Similarly, swapping 21 amino acids with Shannon entropy
41.5 bit from Nd to Col created a loss-of-function allele,
despite stable protein expression, confirming the functional
requirement for highly variable residues (Figure 5C;
Supplemental File 3). However, the same 21 amino acids
transferred from RPP13-Nd to RPP13-Col were not sufficient
for a gain of recognition, suggesting that residues with lower
entropy scores also participate in target binding. (Neither
functional nor nonfunctional RPP13-Col variants could be
observed by immunoblotting, as reported previously (Rentel
et al., 2008).)

The majority of RPP1 target-binding site residues
show high sequence variability
While this manuscript was in review, the cryo-EM structure
of RPP1 bound to ATR1 was published (Ma et al., 2020),
allowing us to directly evaluate the accuracy of our binding
site predictions. The majority of binding residues had en-
tropy values above one bit (Figure 6A). Both precision (frac-
tion of positives among all predictions) and recall (fraction
of positives recovered) varied with the entropy cutoff cho-
sen. Maximal recall was achieved at a cutoff of 0.8 bit, and
precision improved up to a cutoff of 1.8 bits. Thus, cutoff
values in this range are likely to be useful, with higher cut-
offs achieving greater accuracy at the cost of missing a
greater number of true positives (Figure 6B). Our empirical
1.5 bit cutoff used to define hvNLR clades is therefore a con-
servative one. It is also important to note that sequence-
based analyses predicted a number of RPP1-binding residues
past the LRR domain (Table 1); the structure revealed that
these residues form a contiguous surface on the post-LRR
domain that is characteristic of a number of TNL receptors.

hvNLRs show a similar phylogenetic distribution in
B. distachyon
To test whether our methods and findings are applicable be-
yond A. thaliana, we performed a similar analysis on 54 lines
of B. distachyon, a model grass species. The automatic short-
read assembly and annotation pipeline used to generate the
Brachypodium data is less reliable than the targeted rese-
quencing approach used to generate Arabidopsis pan-
NLRome. Specifically, only 45% of hvNLRs present in refer-
ence strain Bd-21 were recovered in the assembly control.
Nonetheless, the overall picture that emerged from the
analysis of Brachypodium NLR clades is similar to that of
Arabidopsis. After splitting the overall Brachypodium NLR
tree into 91 initial clades, we performed four rounds of clade
refinement to arrive at a final clade partition with 433 sub-
clades. Of these, 28 produced alignments that fulfilled the
hvNLR criteria. Altogether, 40 hvNLRs in the reference acces-
sion Bd21 were identified as hvNLRs.

Figure 4 2D representations of Col-0 hvNLR LRR surfaces in the con-
text of the Col-0 NLR tree. The 2D binding site representations are
those in Figure 3 and Supplemental Data Set 3 situated horizontally
and trimmed to include positions –2, –1, 2, 3, 5, 7, 8, 10, and 11 of
each repeat unit. For each cartoon, the –2 position of LRR1 is in the
top left corner and the position 11 of the last LRR is in the bottom
right corner. The tree on the left is a subset of the Col-0 NLR tree
from Figure 2B with only the hvNLR leaves shown.
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Figure 5 Highly variable residues in RPP13 overlap with the observed ZAR1-RKS1 binding site and are required for ATR13 recognition. A,
Shannon entropy plots and domain diagrams for ZAR1, an indirect recognition CNL, and RPP13, a related hvNLR. B, Cryo-EM structure of RKS1
bound to ZAR1 (CC and NB-ARC domains omitted for clarity; PDB ID: 6J5W). RKS1 shown as a secondary structure diagram with rainbow color-
ing from blue (N-terminus) to red (C-terminus), ZAR1 LRR as a secondary structure diagram and transparent surface with RKS1 contact residues
colored blue. RPP13 LRR domain homology model with surface oriented as in ZAR1 and colored by Shannon Entropy of the RPP13 clade align-
ment from low (light blue) to high entropy (dark blue). C, Chimeric constructs of RPP13 regions 501–729 containing highly variable LRR repeats.
The constructs were designed by targeting amino acids with Shannon entropy 41.5 bits and functionally tested by Agrobacterium-mediated
transient expression assays in N. benthamiana together with cognate ATR13d41-Emco5 effector or ATR1d51-Emoy2-negative control at the final
OD600 of 0.6 with constructs mixed in equal ratio. The image was taken at 3 days post infiltration. Each construct was tested on 14 leaves and
showed consistent presence/absence of HR on all leaves. Immunoblotting showed stable expression of both functional and mutated RPP13-Nd
variants. No RPP13-Col variants could be detected despite having an intact HA tag similar to what has been reported previously (Rentel et al.,
2008).
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Similar to A. thaliana, Brachypodium hvNLRs were distrib-
uted throughout the phylogeny, including in the highly ex-
panded monocot-specific CNL clade. Here too, hvNLRs had
sister clades that showed little amino-acid diversity.
Importantly, when we constructed the joint tree for Col-0
and Bd21 reference NLRomes, the only hvNLRs from the
two species that appeared close together belonged to the
RPP13-like clades (Figure 7). This highlights the importance
of sequencing the pan-NLRomes of plants of interest, as the
identification of hvNLRs is unlikely to be transferable except
for closely related species.

Discussion
Even before the first NLR structure or the extensive
sequence datasets were available, Michelmore and Meyers
predicted that hypervariable amino acid positions in the
NLRs would map to the concave surface of the LRR domain
based on the signatures of positive selection in a number
of selected examples (Michelmore and Meyers, 1998). They
generalized that this might be true for all NLRs. This model
was challenged by the discovery of indirect recognition and
of strongly conserved NLRs. Our analysis proposes a

powerful methodology to study NLR-omes, predicts NLR
mode of action through sequence analysis, and reconciles
the evolution of direct recognition NLRs (under diversifying
selection) and indirect recognition NLRs (under purifying or
balancing selection).

In this study, we observed that hvNLRs account for the
known direct recognition NLRs and for autoimmune NLRs.
We also observed that the hvNLRs have close paralogs with
little allelic diversity that include the known indirect recogni-
tion NLRs. Based on this observation, we propose that indi-
rect recognition NLRs are a functional byproduct of hvNLR
evolution, providing an important update of the birth-and-
death model (Michelmore and Meyers, 1998). Our analyses
suggest that in a given species, diversity generation occurs in
a limited subset of NLR genes, creating a wide recognition
potential, including binding to endogenous plant proteins.
When recognition of endogenous proteins is beneficial, such
as under perturbations by the pathogen, the NLR evolves
into indirect recognition and begins to experience different
selective forces.

The resolution and sensitivity of our analyses became pos-
sible when we adopted two key approaches: identifying
orthologous groups of NLR receptors by phylogeny in place
of commonly used distance metrics; and using simpler
Shannon entropy measure of diversity in place of more
complex evolutionary models. Separating rapidly evolving
protein families into meaningful clades or groups for down-
stream analyses is a common challenge. In the NLR family of
plant immune receptors, this process is further complicated
by ongoing information flow between close paralogs
through recombination and gene conversion (Kuang et al.,
2004). Phylogeny-based analyses are considered to be more
accurate than distance-based methods for similar problems
such as classifying Human Immunodeficiency Virus isolates
(Pineda-Pe~na et al., 2013). Our phylogeny-based partition of
NLR immune receptors into clades improved on the pub-
lished OrthoMCL-based partition by producing more
encompassing clades and (in particular) fewer singletons.
OrthoMCL is a distance-based algorithm that was originally
developed to separate members of different protein families
rapidly; it uses a single parameter to determine the rate of
convergence (Li et al., 2003). This makes its use to partition
the pan-NLRome problematic, because closely related NLRs
are known to experience vastly different selection pressures
and thus are expected to contain very different amounts of
allelic diversity (Kuang et al., 2004; Bakker et al., 2006). The
specific danger for hvNLR identification is that highly vari-
able clades will be split, losing the relevant signal. This is in-
deed what we observed, as the OrthoMCL-based analysis
identified only one out of three hvNLRs and missed key
sources of new NLR specificity such as the RPP1 cluster,
which was split into small orthogroups. The drawback of
the phylogeny-based approach is that it is not yet fully auto-
mated; however, we are hopeful that phylogeny-aware algo-
rithms will emerge that will fill this gap. One alternate
approach that would simplify the analysis would be to re-
place the initial clade assignment with iterative matching of

Figure 6 RPP1 contact residues show high sequence diversity. A,
Structure of RPP1 LRR-ATR1 complex (PDB ID: 7CRB) colored by en-
tropy scores, with contact residues shown as sticks for predicted true
positives and ball and stick for false negatives using a 1 bit entropy
cutoff. False positive predictions at the same cutoff are represented as
wire. B, Precision and recall for the prediction of RPP1-ATR1 binding
site residues based on the choice of entropy cutoff.
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NLR sequences against a set of inferred ancestral NLR mod-
els (Shao et al., 2016).

It is well established that closely related NLRs experience
different modes of selection (Kuang et al., 2004; Ding et al.,
2007; Wang et al., 2011). By expanding this observation to
the pan-NLRome and combining it with the wealth of char-
acterized NLRs in Arabidopsis, we were able to decipher a
larger evolutionary pattern where hvNLRs act as sources of
new specificities and encompass the known direct-
recognition NLRs. Their diversification, while advantageous
to the plant, comes at a cost. All known Dangerous Mix

NLR genes that can trigger autoimmune recognition belong
to hvNLR clades. Thus, the generation of novel specificities
goes hand in hand with the potential for self-recognition
and auto-immunity. We also propose that during their con-
tinuous evolution, hvNLRs can generate indirect-recognition
NLRs at a low frequency. Because indirect recognition usu-
ally tracks a conserved effector activity, it is more robust
than direct recognition of the effector surface. Duplication
of such successful variants might then be favored due to the
increased fitness of the progeny where one copy could even-
tually be preserved while the other could continue to

Figure 7 Dispersed distribution of hvNLRs in a joint phylogeny of Brachypodium Bd21 (blue ribbon) and Arabidopsis Col-0 (green ribbon). The
Arabidopsis hvNLR clades (green dots) and Brachypodium hvNLRs (blue dots) do not cluster except for the RPP13 CNL clades. The tree is rooted
arbitrarily on a branch connecting TNL clade (orange branches) and non-TNL clades (RNL branches are shown in purple and CNL branches are
shown in green). Ninety-nine percent or better bootstrap values are shown as dots; branch length represents the number of substitutions per site.
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generate novel specificities (Kondrashov et al., 2002). The
latter inference is consistent with our observation that
ZAR1, an indirect-recognition NLR, binds to its stable com-
plex partner RKS1 through the same surface on the LRR
that contains highly variable residues in RPP13, its closest
hvNLR.

When we applied Shannon entropy analysis to the NLR
clades, only a subset of clades gave strong signals; these
clades included known direct recognition NLRs and autoim-
mune NLRs. When we looked at the distribution of high-
entropy amino acids in the 30 hvNLRs of Arabidopsis
reference strain Col-0, we found that these residues com-
monly clustered on the predicted surfaces of LRR domains.
This observation is consistent with the finding that binding
specificities are largely encoded in the LRR domains, as sup-
ported by multiple genetic and biochemical studies (Ellis
et al., 2007; Krasileva et al., 2010), as well as the prediction
(by evolutionary studies) that amino acid residues under
positive selection are located within LRRs (Kuang et al.,
2004; Rose et al., 2004; Wang et al., 2011). When we carried
out a positive selection analysis on the RPP13 clade, we
found that the majority of residues with entropy 41.5 bits
were under positive selection. The only exceptions were
residues that could not be analyzed for positive selection
due to the presence of gaps in the relevant alignment
columns. Shannon entropy calculation does not count gap
characters. Instead, it works without making complex
assumptions about the data and is therefore much faster
computationally.

In our analysis, we went a step further to predict binding
sites in hvNLRs directly from pan-NLRome sequence data.
The identified binding sites are large. This is likely in due (in
part) to the concave shape of the LRR scaffold, which can
place many of the beta strands in contact with a relatively
small target. Comparisons of antibody sequence-based pre-
dictions with experimental structures showed that the pre-
dictions correctly recover �80% of residues that do contact
the antigen, while also producing many false-positives
(550% precision; Kunik et al., 2012). Unlike the antibody,
where the binding determinants are present on loops away
from the core of the structure, in the LRR, many predicted
binding residues fall within the beta sheet located on the
concave side of the domain. This suggests that the accuracy
of the prediction might be higher in this system due to
stronger structural constraints. Additional highly variable res-
idues were located in post-LRR domains and in specific sites
within NB-ARC, suggesting their involvement in substrate
binding, or in case of NB-ARC of a compensatory mecha-
nism to maintain self-inhibition in the absence of the ligand.
Further mutational and structural experiments in well-
established NLR-effector systems would be needed to test
the accuracy of these predictions and to help refine them.

Identification of the immense allelic diversity across
hvNLRs argues that plant immunity is not far in its allele-
generating potential from the most well-known adaptive im-
mune systems. Indeed, LRRs are deployed in the adaptive

immune systems of early-diverging vertebrates, demonstrat-
ing that their modularity is sufficient for the generation of
binding to any foreign molecule (Han et al., 2008; Das et al.,
2013). In the case of plants, enormous diversity is generated
at the population level rather than within a single organism,
and therefore, defending against new pathogens is a com-
munity effort. The identification of specific genes within
crop species capable of such diversity generation and their
deployment in protein engineering efforts could provide
valuable material for plant health.

We conclude that phylogenetic analysis of pan-NLRomes
combined with sequence diversity analysis can rapidly clas-
sify NLRs into functional groups given sequencing informa-
tion for at least 40–60 diverse samples. We also believe that
our method would be generally applicable to the identifica-
tion of highly variable RLP, such as Cf-9 in tomato (Wulff et
al., 2009), and the prediction of binding sites of highly vari-
able extracellular immune receptors. Our method can also
predict incompatibility loci, which can be taken into ac-
count in breeding new crop varieties. Similar allelic diversity
analyses in other nonvertebrate eukaryotes with expanded
immune receptor families are needed to test whether the
patterns of innate immune receptor evolution we observed
are shared across the eukaryotic kingdoms of life.

Materials and methods

Phylogenetic analysis
Phylogenetic tree construction for the A. thaliana and B. dis-
tachyon NLRomes and the NLRomes of reference accessions
was performed as previously described (Bailey et al., 2018).
Briefly, amino acid sequences were searched for the presence
of the NB-ARC domain using hmmsearch (Mistry et al.,
2013) and the extended NB-ARC Hidden Markov Model
(HMM) 13059_2018_1392_MOESM16_ESM.hmm (Bailey
et al., 2018), and initial alignment was made on this HMM
using the -A option. The resulting alignment was processed
with Easel tools (https://github.com/EddyRivasLab/easel) to
remove insertions and retain aligned sequences that
matched at least 70% of the HMM model. This alignment
was used to construct maximum likelihood phylogenetic
trees using RAxML software version 8.2.12 (Kozlov et al.,
2019; raxml -T 8 -n Raxml.out -f a -x 12345 -p 12345 -# 100
-m PROTCATJTT). The sequences of outgroup species were
aligned to the same NB-ARC HMM and placed in the pan-
NLRome tree using RAxML Evolutionary Placement
Algorithm . The trees were visualized in the Interactive Tree
Of Life (iTOL) (Letunic and Bork, 2019).

Initial clade assignments
The phylogeny was used to separate protein sequences into
clades using R scripts prefix_Initial_Assignment.R (hereafter
the prefix is either Atha_NLRome or Brachy_NLRome for
the two species under analysis). This and other scripts refer-
enced below are available at (https://github.com/krasileva-
group/hvNLR). First, for each NB-ARC sequence, a clade 40–
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500 in size with the strongest bootstrap support was chosen.
For sequences that did not belong to clades in this size
range, smaller clades were allowed. Second, the resulting set
of clades was made nonredundant by excluding all nesting
clades. The resulting partitions uniquely assigned the 7,818
A. thaliana NLR sequences to 65 clades and 11,488
B. distachyon NLR sequences to 91 clades.

Iterative clade refinement
For each identified clade, full-length protein sequences were
aligned using the PRANK algorithm (Löytynoja, 2014), and
phylogenetic trees based on full-length alignments were con-
structed as described above using RAxML. Trees were visual-
ized in iTOL, along with subclade statistics calculated in R,
and R scripts were used to produce subclade lists based on
the trimmed branches (prefix_Refinement.R). For the first it-
eration, gappy columns in the full-length alignments were
masked (90% cutoff), and later iterations were analyzed
without masking gappy columns. Clade refinement was per-
formed as follows: all tree branches longer than 0.3 were cut
to form two or more subclades. All branches 0.1 and shorter
were retained in the first iteration, and for the branches be-
tween 0.1 and 0.3, the decision to cut was made by visually
inspecting the tree in iTOL and considering bootstrap sup-
port and overlap in ecotypes on either side of a branch. The
sequences belonging to the refined subclades were realigned
using PRANK, and tree construction repeated. In the follow-
ing iterations, some branches shorter than 0.1 were cut via
tree inspection in iTOL based on bootstrap support and
ecotype overlap. The refinement process converged to pro-
duce the final assignment of all genes into 237 final clades
for A. thaliana and 433 clades for B. distachyon.

Identification of hvNLR clades and prediction of
binding sites in hvNLRs
We used R scripts (prefix_CladeAnalysis.R) to calculate align-
ment Shannon entropy scores using the package “entropy.”
Alignments that contained 10 or more positions with at
least 1.5 bits were considered highly variable. All highly vari-
able clades were examined for the presence of Arabidopsis
Col-0 alleles. For these Col-0 alleles, we predicted the LRR
coordinates manually and cross-checked these predictions
with an LRRpredictor online server (Martin et al., 2020).
R script was used to map entropy scores to the predicted
concave surface of the LRR domain (Atha_NLRome_
GeneEntropy.R). The entropy scores for the individual
strands of LRRs (LxxLxLxx) were exported in tabular format.
The hydrophobicity scores of these residues were calculated
as the percent of hydrophobic residues at a given amino
acid position and exported as a second table. The resulting
2D representations of entropy and hydrophobicity of
the concave sides were visually examined for clustering of
residues that showed both high entropy scores and the pres-
ence of hydrophobic residues. Positive selection analysis of
the RPP13 clade alignment was carried out in PAML (Yang,
2007).

Structural analysis of RPP13 homology model, ZAR1
structure, and RPP1 structure
In order to compare the 3D spatial distribution of highly vari-
able residues in RPP13 with the ZAR1-RKS1 binding site, we
used phyre2 in one-to-one threading mode to produce a
model for RPP13 (Kelley et al., 2015) based on the ZAR1 ex-
perimental structure. The alignment had 24% identity over
the complete sequences, with 31% identity before and 15%
over the LRR domain. Important for the model accuracy, there
were only two gaps of seven residues and two gaps of three
residues, with several more single-residue gaps in the LRR do-
main. Thus, it is unlikely that whole repeat units are missing
from the model. R script (Atha_NLRome_GeneEntropy.R) was
used to produce a Chimera-formatted attribute files to
color the model surfaces by entropy scores, and figures
were generated in Chimera (Pettersen et al., 2004). The de-
pendence of binding residue prediction recall and precision
on the entropy cutoff was determined using a custom R
script (RPP1_Precision_Recall.R).

Constructs
RPP13-Nd and RPP13-Col cDNA without a stop codon fused
to C-terminal HA tag in pENTRY/TOPO-D were obtained
from the Staskawicz laboratory (Rentel et al., 2008) and
were used to generate chimeric and synthetic RPP13 var-
iants. RPP13 501–729 synthetic constructs with highly vari-
able residues (Shannon entropy cutoff 41.5) swapped
between Nd and Col (Supplemental Data Set 4) were
designed in SnapGene and synthesized as gene fragments by
Integrated DNA Technologies. The clones were digested
with uniquely cutting restriction enzymes SacI (New
England BioLabs) and MslI (New England BioLabs). The chi-
meric constructs were ligated for 2 h at room temperature
with T4-DNA ligase (New England BioLabs) and transformed
into electrocompetent E. coli Top 10b (Invitrogen). The
resulting constructs were introduced into binary vector
pMD:npRPP13 (Rentel et al., 2008) using LR clonase II
(Invitrogen) and transformed into Agrobacterium tumefa-
ciens GV3101(pMP90RK). ATR1 d51 Emoy2 tagged with C-
terminal citrine in pEarleyGate103 (Krasileva et al., 2010)
and ATR13 d41 Emco5 in p1776 (Rentel et al., 2008) were
used for transient transformation.

Transient expression
Agrobacterium tumefaciens strains were grown for 24–48 h
at 28�C in Luria–Bertani broth (100 mg/mL, gentamicin
50 mg/mL, kanamycin 25 mg/mL) with constant shaking.
After pelleting, the cells were resuspended in induction me-
dium (10 mM MgCl, 10 mM MES, and 150 lM acetosyrin-
gone, adjusted to pH 5.6 with KOH), adjusted to a final
OD600 of 0.6, and induced for 3 h at room temperature. Co-
infiltrations were done at a final OD600 of 0.6 and contained
constructs mixed in a 1:1 ratio. Fully expanded leaves of
4- to 5-week-old N. benthamiana plants grown in Supersoil
mix #4 supplemented with Miracle Gro Plant Food fertilizer
at 24�C under a 16-h light (fluorescent lamps)/8-h dark cy-
cle were infiltrated using a blunt end syringe. After
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infiltration, the plants were kept at constant light (fluores-
cent lamps, GE Cat #F405941-ECO) and room temperature.
The hypersensitive response reaction was monitored for 4
days, with pictures taken 3 days post infiltration. Two leaf
disks (1.5 cm2 in diameter) were collected from RPP13/
ATR1 co-infiltrations for protein extraction 2 days post infil-
tration, frozen in liquid nitrogen, and stored at –80�C.

Protein extraction and immunoblotting
Tissue in a 1.5-mL Eppendorf tube was frozen in liquid nitro-
gen a ground with a manual drill using a pre-chilled plastic
pestle. Total protein was extracted by re-suspending the
ground tissue in 2� Laemmli buffer (Bio-Rad, Cat.
#1610737) supplemented with fresh b-mercaptoethanol to a
final concentration of 5% (by volume), boiling for 5 min,
and pelleting the debris for 10 min at 14,000 rpm. Fifteen
microliter of each protein sample was separated on a
4%–15% Mini-PROTEAN gel (BioRad) for 1 h at 100 V and
transferred onto a nitrocellulose membrane using wet trans-
fer for 1.5 h at 300 mA. The membranes were blocked over-
night in 5% milk in Tris-Buffered Saline with 0.05% Tween
20 (TBS-T), incubated for 1 h in rat a-HA-horseradish perox-
idase antibody (clone 3F10; Roche, Cat #12013819001) at
1:1,000 dilution in TBS-T, washed once for 15 min and twice
for 5 min in TBS-T, and imaged using SuperSignal West Pico
PLUS Luminol substrate (Thermo Scientific) inside a Gel
Imager (BioRad). Total protein loading was confirmed by
staining the membrane in Ponceau S and destaining in 5%
acetic acid.

Accession numbers
Arabidopsis pan-NLRome nucleotide assemblies were down-
loaded from the 2Blades foundation (http://2blades.org/
resources/). Gene annotations were downloaded from
GitHub pan-NLRome repository (https://github.com/weigel
world/pan-nlrome/). The gene models that matched assem-
blies were available for 62 A. thaliana accessions (Van de
Weyer et al., 2019), and these were processed to extract the
amino acid sequences of captured protein-coding genes us-
ing bedtools getfasta program (Quinlan, 2014). The reference
set of 168 NLR alleles (including splice variants) of the
Arabidopsis Col-0 genome was extracted as described before
(Sarris et al., 2016). The accession numbers of RPP13 used in
the laboratory experiments are RPP13-Nd (AF209732.1) and
RPP13-Col (AF209730.1). The PDB accession number of the
RPP1 structure used in this study is 7crb. Brachypodium
proteomes for 54 lines were downloaded from BrachyPan
(https://brachypan.jgi.doe.gov) (Gordon et al., 2017). The R
scripts used to analyze project data are available via GitHub
(https://github.com/krasileva-group/hvNLR), the complete
data set for the project including clade alignements and
clade trees is available via Zenodo (DOI: 10.5281/zen-
odo.3951781), and the clade trees can be viewed in iTOL
(http://itol.embl.de/shared/daniilprigozhin).

Supplemental data
Supplemental Figure 1. A. thaliana pan-NLRome tree
showing initial clades and phylogenetic placements of out-
group sequences from A. lyrata and C. rubella.

Supplemental Figure 2. Distribution of highly variable
sites per final clade alignment.

Supplemental Figure 3. Comparison of phylogenetic ver-
sus physical clustering of Col-0 NLRs.

Supplemental Figure 4. Comparison of entropy-based
and positive selection-based binding site predictions.

Supplemental Data Set 1. Number of NLRs from A. lyr-
ata and C. rubella in the initial NLR clades.

Supplemental Data Set 2. Number of NLRs in the final
NLR clades across the 62 A. thaliana ecotypes.

Supplemental Data Set 3. 2D representations of LRR sur-
faces of 30 hvNLRs from ecotype Col-0.

Supplemental Data Set 4. Nucleotide and amino acid
fasta sequences of RPP13 501–729 synthetic constructs that
have highly variable residues swapped between Col and Nd
allele.
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