
Co-expression networks in Chlamydomonas reveal
significant rhythmicity in batch cultures and
empower gene function discovery
Patrice A. Salomé1,*,† and Sabeeha S. Merchant 1,2,*,†

1 Department of Chemistry and Biochemistry, University of California—Los Angeles, Los Angeles California 90095
2 Departments of Molecular and Cell Biology and Plant and Microbial Biology, University of California-Berkeley, Berkeley, California 94720 and

Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

*Author for correspondence: salome@chem.ucla.edu (P.A.S.), sabeeha@berkeley.edu (S.S.M.)
†Senior authors.
P.A.S. designed and conducted all analyses with supervision from S.S.M. P.A.S. wrote the manuscript.
The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the
Instructions for Authors (https://academic.oup.com/plcell) is: Patrice A. Salomé (salome@chem.ucla.edu).

Abstract
The unicellular green alga Chlamydomonas reinhardtii is a choice reference system for the study of photosynthesis and
chloroplast metabolism, cilium assembly and function, lipid and starch metabolism, and metal homeostasis. Despite deca-
des of research, the functions of thousands of genes remain largely unknown, and new approaches are needed to categori-
cally assign genes to cellular pathways. Growing collections of transcriptome and proteome data now allow a systematic
approach based on integrative co-expression analysis. We used a dataset comprising 518 deep transcriptome samples de-
rived from 58 independent experiments to identify potential co-expression relationships between genes. We visualized co-
expression potential with the R package corrplot, to easily assess co-expression and anti-correlation between genes. We
extracted several hundred high-confidence genes at the intersection of multiple curated lists involved in cilia, cell division,
and photosynthesis, illustrating the power of our method. Surprisingly, Chlamydomonas experiments retained a significant
rhythmic component across the transcriptome, suggesting an underappreciated variable during sample collection, even in
samples collected in constant light. Our results therefore document substantial residual synchronization in batch cultures,
contrary to assumptions of asynchrony. We provide step-by-step protocols for the analysis of co-expression across tran-
scriptome data sets from Chlamydomonas and other species to help foster gene function discovery.

Introduction

Discovering the functions of genes has driven biology for
over a century, using a multitude of tools to determine the
factors associated with a given cellular process. In the green
unicellular alga Chlamydomonas (Chlamydomonas reinhard-
tii), mutant screens have advanced our understanding in
fields such as photosynthesis, metabolism, cell division, and
cilium function (Lewin, 1954; Levine, 1960; Ebersold et al.,
1962; Levine and Goodenough, 1970; Girard et al., 1980;
Erickson et al., 1986; Choquet et al., 1988; Diener et al., 1990;

Smith and Lefebvre, 1996; Fleischmann et al., 1999; Depège
et al., 2003; Kathir et al., 2003; Rymarquis et al., 2005;
Dutcher et al., 2012; Tulin and Cross, 2014; Dent et al., 2015;
Li et al., 2019). While the cloning of the causal loci can be
painstaking and hindered by our tendency as scientists to
guess wrong (Baxter, 2020), Chlamydomonas mutants are
amenable to transgenic rescue with large fragments of cloned
genomic DNA (Kindle, 1990; Purton and Rochaix, 1994;
Zhang et al., 1994), partially circumventing these limitations.
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With the advent of sequencing technologies, more holistic
and global approaches have been embraced, such as shot-
gun proteomics analyses of entire organelles or cellular frac-
tions. For instance, the complement of cilia proteins has
been determined, aided by the relative ease with which
Chlamydomonas cilia can be purified (Pazour et al., 2005).
Of the �1,000 proteins identified as being part of the cilium,
some are likely to represent contaminants during purifica-
tion or correspond to sticky proteins. Likewise, thousands of
genes encode proteins that localize to the chloroplast, where
they will participate in various metabolic pathways and pho-
tosynthesis. A fraction of these genes is essential for survival,
but the majority will have little to no phenotype under lab-
oratory growth conditions when inactivated. In each case,
how to prioritize which protein to characterize next is al-
ways difficult. One useful approach is to use multiple com-
plementary data types and sources to inform the choice,
and integration of genome-scale transcriptome data for a
guilt by association perspective can be powerful (Usadel
et al., 2009; Baxter, 2020). Expression profiling by microar-
rays, and later by deep sequencing of the transcriptome
(RNA-seq) now provide easy access to the changes of the
transcriptome in response to genetic or environmental per-
turbations. In Chlamydomonas alone, RNA-seq analysis has
empowered hypothesis generation by providing a detailed
picture of the changes in gene expression in response to
light (Xiang et al., 2001; Zhu et al., 2008; Wittkopp et al.,
2017), CO2 (Fukuzawa et al., 2001; Xiang et al., 2001;

Brueggeman et al., 2012; Fang et al., 2012), and stress (Urzica
et al., 2012a; Wakao et al., 2014; Blaby et al., 2015; Blaby-
Haas et al., 2016), as well as nutritional deficiencies such as
nitrogen or iron (González-Ballester et al., 2010; Miller et al.,
2010; Castruita et al., 2011; Dudley Page et al., 2012; Urzica
et al., 2012b; Blaby et al., 2013; Schmollinger et al., 2014;
Kajikawa et al., 2015; Ngan et al., 2015). RNA-seq data have
largely been analyzed in a contrasting mode, that is, by com-
paring the wild type to the mutant, or between untreated
and treated cultures, not only in Chlamydomonas but also
in other systems. Algal cultures that are sampled for subse-
quent RNA-seq analysis are generally grown in constant
light, with the assumption that, even though individual cells
will exhibit circadian and cell cycle-related rhythms, the cul-
ture as a whole will be asynchronous. We recently observed
significant residual rhythmicity in bulk Chlamydomonas cul-
tures grown in constant light when performing single cell
RNA-seq (scRNA-seq), calling this assumption into question
(Ma et al., 2021). A rhythmic component during transcrip-
tome analysis can generate false positive (and false negative)
associations: in Arabidopsis (Arabidopsis thaliana), samples
collected 30 min apart from seedlings entrained to light–
dark cycles can exhibit differential expression of hundreds of
genes that can be explained by the progression of rhythmic
gene expression rather than true differential expression (Hsu
and Harmer, 2012). Whether the algal circadian clock has
any noticeable effect on gene expression profiles of cultures
grown in constant light is unknown.

IN A NUTSHELL
Background: Transcriptome deep sequencing (RNA-seq) has become a routine method to query changes in gene 
expression after a genetic, physiological or chemical perturbation. While each laboratory typically analyzes a few 
samples in their condition of choice, the community has explored the transcriptional landscape of countless species 
under hundreds, if not thousands, of variables.

Question: We wished to summarize the past ten years of RNA-seq data from the unicellular green alga 
Chlamydomonas reinhardtii into a single, large, normalized expression matrix for co-expression analysis. We 
reasoned that the various growth conditions and treatments queried by each individual study would modulate the 
expression of all genes in a genetically programmed manner, which would become accessible by looking for co-
expressed genes with a gene or genes of interest.

Findings: Depending on the level of stringency applied, any given nuclear gene in Chlamydomonas reinhardtii is co-
expressed with tens to hundreds of genes. We determined that about 400 genes (out of a 1,000 predicted to encode 
cilia components based on a published proteomics data set) were strongly co-expressed. In addition, these co-
expressed genes shared the same diurnal phase, matching the time when cells regenerated their flagella after cell 
division. We applied the same analysis to genes with roles in cell division, photosynthesis, tetrapyrrole biosynthesis 
and respiration, yielding hundreds of promising candidate genes for follow-ups. Unexpectedly, we also observed a 
strong rhythmic component (diurnal, circadian, or driven by the cell cycle) in most RNA-seq samples, although the 
sequenced RNA was extracted from cells grown in constant light. These results indicate that cells may remain 
synchronized for far longer than previously assumed, stressing the need to collect time-matched samples for RNA-
seq rather than waiting for cultures to reach equal cell densities.

Next steps: Our approach rapidly generates a list of high-confidence candidate genes based on user-defined criteria. 
Such lists can then be compared to existing data obtained from other methods such as proteomics or large-scale 
mutant screens being carried out in Chlamydomonas reinhardtii. The overlap between each list may not be perfect, 
but might make us feel more confident in our choice of genes for follow-up studies.
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The analysis and synthesis of multiple transcriptome stud-
ies is thus critical to covering sufficient experimental condi-
tions to maximize the detection of each transcript under at
least one condition, especially when a growth treatment has
no available expression data set. Several pipelines have been
implemented that combine transcriptomics datasets to
build gene regulatory networks and assign gene function
(Aoki et al., 2016; Romero-Campero et al., 2016; Nguyen
et al., 2019), based on the premise that genes involved in a
similar process will be co-expressed, in particular if their
encoded proteins physically interact (Ge et al., 2001; Simonis
et al., 2004; Komurov and White, 2007; Zhu et al., 2008).
However, negative correlations are not generally considered,
as one cannot generate anti-correlation networks. We
wished to develop a simple alternative to current online-
based search tools that can be run on a laptop computer,
based on a rich data set from which to extract co-
expression and anti-correlation estimates for any gene of in-
terest to facilitate prioritization of candidate genes for classi-
cal functional analysis experiments.

We describe here a thorough analysis of the
Chlamydomonas transcriptome landscape, based on the
analysis of Pearson’s correlation coefficients (PCCs) associ-
ated with all nuclear gene pairs using a set of 518 RNA-seq
samples from 58 independent experiments. RNA-seq sam-
ples from a given experiment were more correlated within
the experiment than to samples from any other experiment,
even those querying the same variable, indicating the strong
environmental sensitivity of Chlamydomonas cultures. We
observed frequent co-expression between genes, but also re-
port on anti-correlations, an underappreciated dimension in
regulatory networks. We illustrate our approach by revisiting
gene lists curated by the Chlamydomonas community and
by exploring co-expression modules with visual representa-
tion by the R package corrplot (Wei and Simko, 2017) and
identify high-confidence candidate genes involved in cilia
function, photosynthesis, cell division, and the proteasome.
Finally, we discovered that the majority of RNA-seq samples
exhibits substantial diurnal rhythmicity, even when derived
from cells grown in constant light. We provide simple R
scripts for data exploration and hope that this resource will
be of use to the community, as this approach can be ap-
plied to any biological system.

Results

Remapping and normalization steps of the
Chlamydomonas transcriptome
The analysis of changes in gene expression typically covers a
limited number of conditions on selected genotypes to iden-
tify treatment-specific modulators of the transcriptome in a
given organism. While this approach is powerful, we wished
to integrate multiple transcriptome datasets that represent
multiple variables in growth conditions and genotypes. To
this end, we collected 58 transcriptome deep-sequencing
(RNA-seq) datasets, corresponding to 518 samples, gener-
ated by the community and by our own laboratory. We

remapped all reads to version v5.5 of the Chlamydomonas
genome to account for changes in gene models between
experiments. We did not attempt to compensate for batch
effects or variation in sequencing platforms, which were all
Illumina-based but reflected the sequencer in use at that
time (Genome Analyzer, Genome Analyzer II, HiSeq1000/
2000/2500).

We then assessed the global expression of all 17,741
Chlamydomonas nuclear genes across our set of 518 sam-
ples. Most nuclear genes were expressed at levels of 1 frag-
ments per kilobase of transcript per Million mapped reads
(FPKM) in most samples, with 59.6% of all genes expressed
above 1 FPKM in over 400 of the 518 samples. Only 494
genes (or 2.8% of nuclear genes) never reached an expres-
sion value above 1 FPKM (Supplemental Table S1). With a
higher threshold for expression, the fraction of expressed nu-
clear genes decreased: 20.6% of nuclear genes were expressed
above a cut-off of 1 FPKM in fewer than 150 samples, but
this percentage rose to 69.3% with a cut-off of 10 FPKM,
92.3% with a cut-off of 50 FPKM, and 95.8% with a cut-off
of 100 FPKM (Supplemental Table S1). Likewise, the number
of genes expressed across at least 501 out of 518 samples
dropped from 33.6% (for FPKM4 1) to 5.2% for
FPKM4 10, 1.1% for FPKM4 50, and 0.7% for
FPKM4 100. Looking at median distributions, each sample
had a median gene expression level ranging from 0.6 FPKM
to 5.9 FPKM; likewise, each gene showed a median expres-
sion level between 0 and 10,134, with an average median of
only 30.9. This pattern indicates that most genes are
expressed at moderate levels and only in a limited number
of conditions (Supplemental Table S1).

We next normalized our RNA-seq data set following the
same steps used for the ALCOdb gene co-expression data-
base for microalgae (illustrated in Supplemental Figure S1;
Aoki et al., 2016). The final normalization step centered ex-
pression estimates to zero, as a Z-score normalization would
(Supplemental Figure S1,B and Supplemental Figure S1).
RIBOSOMAL PROTEIN GENES (RPGs; Supplemental Data Set
S1) illustrated the effect of each normalization step
(Supplemental Figure S2).

Samples from the same experiment show strong
positive correlations
This data set allowed us to assess the extent of correlation
between samples/experiments (each sample being repre-
sented by its unique 17,741 gene expression estimates) or be-
tween genes (each gene being characterized by its unique 518
gene expression estimates across all samples). We used the R
package corrplot to visualize correlations across samples or
genes (see Supplemental Figure S3 for details). FPKM values
failed to extract a pattern, as most samples were strongly and
positively correlated, based on Pearson’s correlation coeffi-
cients (PCCs) between samples (Figure 1A; mean PCC =
0.74± 0.18). The same held true for log2- and quantile-
normalized datasets (Supplemental Figure S4; mean PCC of
0.83± 0.17). However, mean-centering normalization revealed

1060 | THE PLANT CELL 2021: 33: 1058–1082 P. A. Salomé and S. S. Merchant
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localized correlation clusters that appeared to be restricted to
within each experiment (Figure 1B). Indeed, although the en-
tire correlation matrix had a mean PCC close to zero
(0.002± 0.226), samples belonging to the same experiment
exhibited strong and positive correlations (Figure 1C).
Samples from a given experiment (including the reference or
control samples) were more related to each other than to
any other sample, even when designed to query the same bi-
ological question (see, for example, nitrogen deprivation sam-
ples, Figure 1C and Supplemental Figure S4,E). Likewise, the
laboratory provenance of samples did not explain the extent
of relationship between samples: over half of all RNA-seq
samples analyzed here have been generated by our labora-
tory, and yet most failed to exhibit significant correlations
outside of each experiment (Supplemental Figure S4,F).

Two sets of experiments deviated from the general trend:
experiments that were 1) metal-related (Figure 1D) or 2)
that spanned a diurnal cycle (Figure 1E). Positive correlations
largely segregated samples collected from cultures lacking a
single micronutrient (Cu, Fe, Mn, or Zn) into their targeted
deficiency. Based on correlations across samples, Fe-deficient
cultures were slightly more similar to Zn- and Mn-deficient

cultures than they were to Cu-deficient cultures (Figure 1C),
as expected. These observations support the hypothesis that
these three metals (Fe, Zn, and Mn) are transported by par-
tially overlapping sets of transporters and involve partially
shared regulon components (Merchant et al., 2006;
Malasarn et al., 2013; Hong-Hermesdorf et al., 2014; Tsednee
et al., 2019).

The correlation matrix between diurnal samples was strik-
ing: we observed the highest degree of positive correlation
between samples that were temporally close to one another
within and across diurnal experiments (Figure 2E). At a
slightly broader scale, samples collected during the day were
generally positively correlated, again within and across diur-
nal experiments, although the extent of correlation was
stronger between samples from the same experiment. The
same observation held true when comparing samples col-
lected during the night part of the diurnal cycle. Finally,
samples collected during the day were negatively correlated
with samples collected at night, both within and across
experiments (Figure 1E). In all diurnal samples, over 80% of
nuclear genes exhibited a rhythmic pattern with phases
spanning the entire day (Zones et al., 2015; Strenkert et al.,
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Figure 1 Samples from the same experiment are strongly correlated. A), Correlation matrices between all samples using expression estimates for
all 17,741 nuclear genes as FPKM. B), As in panel A, but after all normalization steps. In panels A and B, samples belonging to the same experiment
are in consecutive order, and roughly in chronological order. C), Distribution of PCCs between (inter-expt, gray) and within (intra-expt, green)
experiments. PCCs for all comparisons between experiments are shown as violin plots and box plots, alongside mean PCCs from all samples within
each experiment, samples collected in the context of nitrogen deprivation (blue), PCCs for all metal-related samples (light purple) and specific
metals (darker shades of purple), samples collected over a diurnal cycle (light orange), and PCC between subsets of samples (darker shades of or-
ange). Values along the diagonal of the matrix (equal to 1) were discarded prior to plotting. D), Correlation matrix for samples from metal-related
experiments, all from the Merchant laboratory, and in which either one micronutrient has been omitted from the growth medium (for deficiency
conditions: copper Cu, iron Fe, manganese Mn, and zinc Zn) or a toxic metal was added to observe the effect on homeostasis (cadmium Cd and
nickel Ni). E), Correlation matrix of samples collected over a diurnal cycle. The light- and dark-part of each sampling day is indicated on the left
and bottom sides of the matrix as white and black bars, respectively. Four time courses are compared here (Panchy et al., 2014; Zones et al., 2015;
Strenkert et al., 2019).
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2019). That diurnal samples can cluster so clearly according
to their collection time suggests that the endogenous timing
of an unknown sample might be accessible by comparing its
correlation profile with that of known diurnal datasets. This
approach is similar in concept to the molecular timetable
method used to detect sample time from single time-point
data (Ueda et al., 2004).

Co-expression potential in manually curated gene
lists
We next turned our attention to correlation between genes
to dissect co-expression potential in Chlamydomonas. We
calculated PCCs for all gene pairs (157,362,670 pairs, not
counting self–self pairs); they followed a normal distribution
(Kolmogorov–Smirnov test statistic D = 0.019, P-value 5
2.2 � 10–16), indicating that most gene pairs are not co-
expressed (Supplemental Figure S5,A).

Hierarchical clustering suggested that sets of genes dis-
played highly similar expression behaviors (Supplemental
Figure S5,B and C). A cursory exploration of our data set in-
dicated that we recapitulate known patterns of co-
expression (Supplemental Data Set S2). For instance, the
genes LHCSR3.1 and LHCSR3.2 are induced in response to
high light, as are the genes PSBS1 and PSBS2: we saw the
same pattern illustrated in our data set, although most sam-
ples were not collected under high light conditions
(Supplemental Figure S6,A). Likewise, we characterized the
correlation pattern in the expression of heat shock genes
HSP70 and HSP90 and the plastid chaperonin genes CPN60:
their expression was largely correlated, with stronger co-
expression between members of the same gene family
(Supplemental Figure S6,B). Genes involved in nitrogen up-
take and assimilation similarly showed strong co-expression,
with some known exceptions; for example, the ammonium
transporters AMT6 and AMT7 were anti-correlated with
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co-expression profiles of chloroplast- and mitochrondrion-localized energy production systems. The respiratory complex matrix is redrawn from
Supplemental Figure S9.E, Distribution of PCCs between groups of genes. The gray distribution is the genome-wide distribution of all PCCs be-
tween all gene pairs. photo., photosynthesis; tetra., tetrapyrroles; resp., respiration.
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other transporters AMT1, ATM4, and AMT5 (Supplemental
Figure S6,C), which is consistent with their transcriptional re-
pression in response to nitrogen deprivation, in contrast to
the other transporters (Schmollinger et al., 2014).

Based on these encouraging observations, we followed a
three-pronged approach to test for co-expression and iden-
tify co-expressed genes. First, we determined the extent of
co-expression and anti-correlation in gene lists manually cu-
rated from the community. Second, we defined the co-
expression cohort associated with a given nuclear gene.
Third, we identified co-expression modules. Both latter
approaches entailed calculating the mutual rank (MR) asso-
ciated with each gene pair (Obayashi and Kinoshita, 2009;
Aoki et al., 2016; Wisecaver et al., 2017). We then turned
MRs into edge weights as a measure of the connection be-
tween co-expressed genes (or nodes) for the construction of
five MR-based co-expression networks with decreasing decay
rates, denoted N1–N5. During this process, we identified all
genes that were co-expressed with each individual nuclear
gene (Supplemental Files S2–S4 for networks N1–N3) and
their anti-correlated cohorts, by inverting the rank order
(Supplemental Files S5–S7). Each gene was at the center of
a co-expression cohort with a clustering coefficient of zero
(Supplemental Table S2). Under the most stringent
criteria for co-expression, a Chlamydomonas gene was co-
expressed with 1–68 genes, with a mean cohort size of 17
genes. Relaxing the stringency imposed on co-expressed
genes increased the mean size of cohorts to 36 (N2 net-
works) and 98 genes (N3 networks) (Supplemental
Table S2).

As a proof of concept, we turned to gene lists compiled
by the community. These lists comprised genes that partici-
pate in the same biological function or pathway, but infor-
mation about their co-expression potential is incomplete. In
addition, most co-expression analyses focus on positive cor-
relations as the core criterion for the identification of co-
expressed groups, and largely ignore anti-correlated genes.
Here, we tested 1) whether genes from a list were co-
expressed and 2) whether the expression profile of any gene
within the lists was anti-correlated with others.

Since Chlamydomonas is a premier reference organism for
organellar biogenesis and cilia biosynthesis and biology, we
determined the co-expression potential of genes encoding
components of the mitochondrial respiratory chain
(Supplemental Data Set S3), photosystems, and biosynthesis
of chlorophyll and hemes (Supplemental Data Set S4 and
Figure 2), as well as motile cilia (Supplemental Data Set S5
and Figure 3). We also assessed the co-expression potential
of ribosome protein genes (RPGs) in Chlamydomonas
(Supplemental Data Set S1 and Figure 4), as much early
work in Chlamydomonas has described the organellar pro-
tein translation machinery in detail (Sager and Hamilton,
1967; Siersma and Chiang, 1971; Ohta et al., 1975; Martin
et al., 1976). Finally, we tested co-expression between his-
tone genes in Chlamydomonas (Figure 5).

Nucleus-encoded organellar energy systems

Mitochondria and chloroplasts provide energy and reducing
power to the cell, although the underlying genes may show
distinct expression profiles. Based on previous results (Zones
et al., 2015; Strenkert et al., 2019), we expected to observe
global co-expression of genes encoding components of the
mitochondrial respiratory complex. Indeed, most genes
whose products participate in mitochondrial electron trans-
port or oxidative phosphorylation were co-expressed
(Figure 2A), although some genes deviated from this pat-
tern. For instance, CONSERVED IN THE GREEN LINEAGE 66
(CGL66, Cre09.g390467) was negatively correlated with other
complex 1 genes, suggesting that it may not belong to this
complex, or functions as a negative regulator. Proteins
encoded by two related genes provided an example of po-
tential sub-functionalization: NUOS4B (Cre16.g681700, from
complex 1) and MITOCHONDRIAL PROCESSING PEPTIDASE
ALPHA SUBUNIT (MPPA1, Cre17.g722800, from complex 3)
were not co-expressed with other genes coding for compo-
nents forming their respective complexes, although the re-
lated genes NUOS4A and MPPA2 were (and were also more
highly expressed).

Of the genes involved in tetrapyrroles biosynthesis, only
those encoding enzymes responsible for chlorophyll biosyn-
thesis appeared to be co-expressed, with the exception of
the porphobilinogen deaminase gene PBGD2
(Cre02.g113850) and the magnesium chelatase subunit H
gene CHLH2 (Cre11.g4776625), although their homologs
PBGD1 and CHLH1 were (Figure 2B), with PBGD1 expressed
at much higher levels than PBGD2. By contrast, heme bio-
synthetic genes exhibited no co-expression with genes from
either photosystem (mean PCC: –0.03± 0.23).

All photosynthetic genes were strongly co-expressed
(Figure 2B). Although heme and chlorophyll biosynthesis
compete for the same pool of precursors, the expression of
the genes involved in each pathway was independent (mean
PCC: 0.04± 0.28). Genes encoding heme-containing enzymes
and other cytochromes were however anti-correlated with
chlorophyll biosynthetic genes (Figure 2B–D), thereby ensur-
ing that adequate levels of heme be synthesized without
reaching toxic levels by coordinating the heme pool with
heme binding proteins. The two heme oxygenase genes fol-
lowed distinct expression behaviors: HMOX1 was weakly co-
expressed with photosystems and other tetrapyrrole biosyn-
thetic genes, whereas HMOX2 was strongly anti-correlated
with them, consistent with the light-dependent repression
of this gene (Wittkopp et al., 2017). Furthermore, the hmox1
mutant is pale-green, a phenotype typical for chlorophyll
biosynthesis mutants. Notably, the expression of genes in-
volved in photosynthesis is not affected in the hmox1 back-
ground, which is consistent with the general lack of correlation
between HMOX1 and photosystems (Wittkopp et al., 2017).

Finally, genes encoding proteins that form the mitochon-
drial respiratory complex were largely anti-correlated with
photosynthetic and tetrapyrrole biosynthetic genes
(Figure 2D and E). This anti-correlation may partially stem
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from the distinct temporal separation of the underlying cel-
lular events: high expression during the day for photosynthe-
sis and tetrapyrroles biosynthesis, and high expression in
two peaks, one in the middle of the night and a second one
during the day for mitochondrial respiration (Zones et al.,
2015; Strenkert et al., 2019). That respiratory complex genes
are expressed in the middle of the day coincides with the
higher respiration rate seen at that time (Strenkert et al.,
2019).

Cilia

The components of the Chlamydomonas cilia are coordi-
nately transcribed following cell division at night, as cells first
resorb their existing flagella prior to division and must syn-
thesize a new pair for a daughter cell in anticipation of
dawn and photosynthetic activity (Rosenbaum et al., 1969;
Wood et al., 2012; Cross and Umen, 2015). Although most
RNA-seq samples were collected from cultures grown in
constant light and, presumably, asynchronous, we observed
strong co-expression across most genes encoding structural
components of the cilia (mean PCC: 0.65± 0.18), as well as
with components of IntraFlagellar Transport (IFT) particles

responsible for the assembly, maintenance, and signaling
within cilia (mean PCC: 0.74± 0.17) (Figure 3A). Several cilia-
related genes did not follow this general trend: they
encoded proteins that modify protein function and there-
fore act at the post-translational level (Flagella Associated
Protein 8 [FAP8], a protein phosphatase 2A regulator; eno-
lase, contributing to ATP production within cilia, and a
number of chaperones or heat shock proteins [DNJ1,
HSP70A]). Other genes that were not co-expressed encoded
proteins with cellular roles outside of cilia, for instance
HSP70A, actin, and profilin, suggesting that a fraction of the
total pool of each protein participates in cilia biogenesis
while the bulk carries out functions in the cytosol.

Centriole proteins have been identified by a number of
techniques, including mass spectrometry of purified cen-
trioles, co-expression following deflagellation, and compara-
tive genomics (Li et al., 2004; Keller et al., 2005; Keller and
Marshall, 2008). Genes encoding most basal body compo-
nents were indeed co-expressed across all our samples and
showed strong co-expression with PROTEOME OF
CENTRIOLE (POC) genes. Both basal body and POC genes
were however only weakly co-expressed with genes coding

Figure 3 Confirmation of high-confidence cilium proteins based on co-expression of their encoding genes. A), Correlation matrix of structural
constituents of the Chlamydomonas cilium, in the order defined by Zones et al. (2015). DRC, dynein regulatory complex; BBS, Bardet–Biedl syn-
drome protein complex; BUG, basal body upregulated after deflagellation; POC, proteome of centriole; IFT, intra-flagellar transport. B),
Correlation matrix between genes belonging to CiliaCut (green) or encoding components identified in the cilium proteome (light purple; Pazour
et al., 2005). The genes within each subset were subjected to hierarchical clustering (FPC method in corrplot). C), Venn diagram of the overlap be-
tween genes encoding putative components of the cilium proteome, CiliaCut, and the cilia and basal body. Note that the gene lists do not reflect
co-expression here. D), Venn diagram of the overlap between genes encoding putative components of the cilium proteome, CiliaCut, and genes
belonging to cilia-related co-expression modules (listed in Supplemental Table S3). E, Venn diagram of the overlap between genes encoding puta-
tive components of the cilia and basal body and genes belonging to cilia-related co-expression modules.

1064 | THE PLANT CELL 2021: 33: 1058–1082 P. A. Salomé and S. S. Merchant
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for cilia components, as might be expected: the centriole is
always present in the cell, whereas cilia form a more dy-
namic structure (Figure 3A). As previously described, the
majority of BASAL BODY UPREGULATED AFTER
DEFLAGELLATION (BUG) genes were more co-expressed
with cilia components than with basal body markers
(Figure 3A). The co-expression profile of several BUG genes
(BUG23, BUG24, BUG27) suggested that their function may
be instead associated with the centriole proper, as they
showed stronger co-expression with basal body genes. We
also noted a lack of co-expression between basal body com-
ponents and CCT3, HSP90A, FMO11, and PHB1, all predicted
to perform function(s) outside of the centriole (Zones et al.,
2015).

Genes encoding components of the Bardet–Biedl syn-
drome protein complex (BBSome) were only weakly co-
expressed (mean PCC: 0.29± 0.16) and were not co-
expressed with basal body constituents (mean PCC:
0.23± 0.16), while moderately with ciliary structures (mean
PCC: 0.38± 0.23). Our co-expression analysis of cilia and cen-
triole components therefore accurately grouped genes based
on function and cellular localization and highlighted those

genes with distinct expression profiles. The ability to identify
bona fide cilia and centriole components based on co-
expression also offered the opportunity to subject larger lists
to a similar analysis. The cilium proteome is predicted to
comprise close to a thousand proteins based on proteomics
analysis (Pazour et al., 2005), although a fraction is likely to
correspond to contaminants. Likewise, a comparative geno-
mics approach uncovered around 200 genes encoding pro-
teins conserved between ciliated species and absent in all
other species, referred to as “CiliaCut” (Merchant et al.,
2007). These two lists overlap only partially, with 81 genes
belonging to both. We wondered if co-expression profiling
might allow to pull high-confidence cilia components: we
measured co-expression in three groups (CiliaCut only;
CiliaCut + cilium proteome overlap; cilium proteome only).
The resulting correlation matrix is shown in Figure 4B.
Genes only included in the CiliaCut set were on average not
co-expressed with each other (mean PCC: 0.03± 0.24) and
consisted of many MOTILITY (MOT) genes not found in
Caenorhabditis elegans (which lacks motile cilia) and
SENSORY, STRUCTURAL AND ASSEMBLY (SSA) genes
(Merchant et al., 2007). Similarly, about 550 genes only
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Figure 4 Co-expression between RPGs reflects the final location of the corresponding ribosomal proteins. A), Correlation matrix between RPGs
(Supplemental Data Set S1) and their translation regulators, sorted by the subcellular localization of their encoded proteins. For each set of RPGs
and their regulators, we followed the same gene order defined by Zones et al. (2015). B), Correlation matrix restricted to RPGs. Each set of RPGs
was subjected to hierarchical clustering (FPC method in corrplot) to single out non-co-expressed genes. C), Distribution of PCCs between RPG
gene pairs encoding large or small ribosome subunits. The gray distribution indicates the PCC distribution of all gene pairs for the
Chlamydomonas genome. D), Distribution of PCCs for gene pairs belonging to distinct RPG groups. E), Correlation matrix for 357 RPGs
(Supplemental Data Set S5) using the fully normalized dataset derived from Arabidopsis microarray experiments (Supplemental Data Set S6).
“Nuclear” and “unclear” denote RPGs whose encoded proteins are predicted to localize to the nucleus or lack a clear localization, respectively.
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present in the cilium proteome gene list showed no pattern
of co-expression, with a mean PCC of 0.01± 0.22. In sharp
contrast, 76 genes that belonged to both lists were highly
co-expressed (mean PCC: 0.63± 0.20). Equally highly co-
expressed was a set of �300 genes whose encoded proteins
are only found in the cilium proteome (mean PCC:
0.63± 0.15), with many uncharacterized FLAGELLAR
ASSOCIATED PROTEIN (FAP) genes. Together, these two sets
comprised over 400 co-expressed genes that are prime can-
didates for functional dissection (Supplemental Data Set S5).

Ribosome protein genes

Nucleus-encoded RPGs code for proteins with three cellular
destinations. The co-expression pattern observed between
RPGs largely reflected the organelle in which their encoded
subunits will function (Figure 4A). Plastid RPGs exhibited
the strongest degree of co-expression (mean PCC =
0.88± 0.06). The sole exceptions were the PLASTID SPECIFIC
RPGs PSRP1 and PSRP4, which are among the lowest
expressed genes encoding small subunits proteins, and the

gene encoding the Chloroplast Stem-loop binding Protein of
41 kD, CSP41 (mean PCC = 0.27± 0.09) (Figure 4B). Neither
PSRP1 or CSP41 are thought to be plastid ribosomal pro-
teins, but both participate in efficient translation, either by
inducing conformational changes within the ribosome
(PSRP1, Sharma et al., 2010) or by stabilizing target plastid
RNAs (CSP41, Qi et al., 2012). Large and small plastid ribo-
somal subunits were co-expressed equally strongly (PRPLs:
0.89± 0.04; PRPSs: 0.86± 0.09 excluding PSRP1 and PSRP4)
(Figure 4C). Plastid translation factors also displayed a high
degree of co-expression with one another (mean PCC:
0.52± 0.18) and with plastid RPGs (mean PCC: 0.59± 0.20).
Co-expression between chloroplast translation regulators de-
fined three sub-groups: one group that was highly co-
expressed with plastid RPGs (11 genes), one group that was
not co-expressed (four genes: RNA-BINDING PROTEIN 38
RB38, ACETATE REQUIRING 115 AC115, BUNDLE SHEATH
DEFECTIVE2 BSD2, and CHLOROPLAST RHODANESE-LIKE
TRANSLATION CRLT), and a single weakly anti-correlated
gene with all plastid RPGs, the translation regulator TBA1

Figure 5 Correlations between Chlamydomonas histone genes. A), Correlation matrix among Chlamydomonas histone genes, ordered according
to their genomic coordinates, using RNA-seq data derived from poly(A)-selected samples. B), Same as (A), using RNA-seq data derived from ribo-
depleted samples. Histone genes that are not regulated by the cell cycle are indicated as “non-replication histones.” H1, histone H1 genes; HVs, his-
tone variants. C), Distribution of PCCs for classes of histones genes shown in (A) and (B). Histone variants (HVs) are shown in light blue,
replication-associated histones in purple, and non-replication histones in light green. D), Global clustering of histone genes in Chlamydomonas.
All histone genes occur as divergent pairs and are oftentimes grouped as one representative of each major histone type (H2A, H2B, H3, and H4).
The number to the left gives the number of instances of the given arrangement in the Chlamydomonas genome. E), Comparison of histone gene
clustering in selected photosynthetic organisms. O. lucimarinus, Ostreococcus lucimarinus; D. salina, Dunaliella salina; V. carteri, Volvox carteri; C.
zofingiensis, Chromochloris zofingiensis; M. polymorpha, Marchantia polymorpha; P. patens, Physcomitrium patens. The asterisk for Histone H2B
genes in D. salina indicates that they are absent from the current annotation, but were identified by TBLASTN against the D. salina genome with
Chlamydomonas histone H2B protein sequence as query.
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https://doi.org/10.5068/D1WD55


(translational affector of psbA; mean PCC against RPGs: –
0.35± 0.19).

The co-expression of RPGs encoding proteins destined for
the mitochondrion or cytosol was less pronounced, but sim-
ilar between large and small subunits RPGs (Figure 4C). For
both compartments, correlation coefficients between RPGs
followed a bimodal distribution, with a fraction of PCCs
around zero. For mitochondrial RPGs, high expression levels
appeared to come at the cost of lower PCCs, whereas the
opposite was true for cytosolic RPGs. Mitochondrial RPGs
tended to be weakly co-expressed with plastid RPGs (mean
PCC: 0.13± 0.14) while anti-correlated with cytosolic RPGs
(mean PCC: –0.08± 0.15) (Figure 4D). There was no clear
correlation between the expression of most plastid and cy-
tosolic RPGs (mean PCC: –0.0006± 0.14) (Figure 4D). As the
single exception, the cytosolic RPG RPS27E2/RPS27B, which
is generally expressed at much lower levels than all other cy-
tosolic RPGs, stood out with a pronounced anti-correlation
with plastid RPGs (mean PCC: –0.54± 0.05) (Figure 4B).
Nitrogen deficiency results in a sharp increase in RPS27E2 ex-
pression, concomitant with a global arrest in plastid transla-
tion until more auspicious conditions return (Schmollinger
et al., 2014; Kajikawa et al., 2015), which may explain the
pattern observed here.

Given the strong correlation between sets of RPGs in
Chlamydomonas, we tested whether Arabidopsis RPGs
might exhibit a similar pattern next. Accordingly, we sub-
jected microarray data sets downloaded from AtGenExpress
to the same normalization steps described above. The
Arabidopsis genome contains 429 RPGs (Sormani et al.,
2011); of those, 357 were represented by a probe on the
ATH1 Affymetrix microarray and were predicted to encode
ribosomal proteins localizing to the cytosol (184), mitochon-
dria (55), chloroplasts (69), or with an unclear localization
(49, including 13 with a predicted nuclear location)
(Supplemental Data Set S6). We extracted their normalized
expression values from Supplemental File S8, calculated the
associated PCCs and reordered each RPG subgroup as a
function of their clustering with the first principle compo-
nent (FPC) method in corrplot. The resulting correlation ma-
trix was reminiscent of that seen with Chlamydomonas
RPGs: indeed, each organellar RPG set was co-expressed, ex-
cept for 17 cytosolic RPGs with low to negative PCCs
(Figure 4E). Plastid RPGs were globally anti-correlated with
mitochondrion and cytosolic RPGs, which would be consis-
tent with a temporal allocation of amino acids to each
group of ribosomes, highly abundant proteins that impose
high nitrogen demands on the cell. In addition, cytosolic
RPGs showed a stronger correlation pattern with other cyto-
solic RPGs than they did with mitochondrion RPGs, provid-
ing a possible signature for the final subcellular location of
the encoded proteins. Finally, RPGs encoding proteins with
an unclear localization appeared to be highly correlated with
mitochondrion and cytosolic RPGs, but not with plastid
RPGs, thus making it unlikely that this RPG subset would en-
code ribosomal proteins with plastid localization (Figure 4E).

Histones

Turning to Chlamydomonas genes encoding DNA-binding
proteins, we took a closer look as histone genes
(Supplemental Data Set S7), most of which are coordinately
expressed with a peak in expression shortly before cell divi-
sion as non-polyadenylated transcripts (Zones et al., 2015;
Strenkert et al., 2019). A small group of histone genes also
remain constantly expressed over the diurnal cycle and are
termed “non-replication” (or emergency) histones; their
transcripts are polyadenylated. We therefore separated sam-
ples from ribodepleted sequencing libraries from all others,
and re-ran the normalization steps on both sets of samples
(polyA-selected and ribodepleted). Non-replication histone
genes were highly co-expressed in both subsets, with a
mean PCC of 0.77± 0.05 across polyA-selected samples
(Figure 5A and C) and a mean PCC of 0.86± 0.08 across
ribodepleted samples (Figure 5B and C). Although replica-
tion histones showed high co-expression in the same data
set, with a mean PCC of 0.51± 0.16, we hypothesized that
much of this pattern is an artifact of the normalization to
the mean, which will overinflate their variation in expression.
However, replication histones were clearly globally co-
expressed, as demonstrated by their high (0.96± 0.05) mean
PCC when restricting the data set to ribodepleted samples
(Figure 5B and C). Histone variants showed weaker and
more variable correlation, with mean PCCs of 0.24± 0.26
across polyA-selected samples and 0.44± 0.32 in ribode-
pleted samples (Figure 5A–C).

While assembling the gene list for histones, we noticed
that all histone genes were arranged as divergent gene pairs:
all histone H2A and H2B genes were present as divergent
pairs, and all histone H3 genes occurred as a divergent part-
ner to a histone H4 gene. In many cases, each major histone
class was represented in a four-gene cluster, corresponding
to 84 (out of 117) histone genes (Figure 5D and E). To de-
termine how widespread this histone arrangement might be,
we surveyed the histone gene family in the algae Volvox car-
teri, Chromochloris zofingiensis, Dunaliella salina,
Ostreococcus lucimarinus, and Micromononas sp.: in all cases,
most histone genes occurred as divergent gene pairs
(Figure 5E and Supplemental Data Set S8). For example, in
Micromonas sp., the four histone genes were arranged as
two divergent pairs, with H2A and H2B belonging to one
pair, and H3 and H4 found in the second pair. Likewise,
most histone genes from C. zofingiensis, D. salina, and V. car-
teri grouped in divergent pairs. By contrast, the genomes of
the liverwort Marchantia polymorpha, the moss
Physcomitrium (Physcomitrella) patens, and the land plant
Arabidopsis showed no such arrangement (Figure 5E), hint-
ing at the complex evolutionary history of the histone gene
family.

Co-expression modules
We next used our co-expression cohorts and associated
edge weights as input for the graph-clustering Cytoscape
plugin ClusterONE (Nepusz et al., 2012), resulting in the
identification of 616 co-expression modules for network N1,
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248 modules for network N2, and 117 modules for network
N3 (Supplemental Figure S7 and Supplemental Table S2).
We restricted our efforts to the N3 network as a good com-
promise between larger module sizes and significant GO en-
richment within modules. Out of 117 N3 modules, we
grouped 37 modules into 8 functional groups based on their
significant enrichment in biological processes: transcription,
translation, ribosome biogenesis, protein degradation, DNA
replication, transport, photosynthesis, and flagella biogenesis
and function (Supplemental Table S3 and Supplemental File
S9). A single module defined a ninth group associated with
response to phytohormones, specifically cytokinin, whose
signaling cascade is incomplete in the microalga (Lu and Xu,
2015). These categories were not surprising: they broadly
mapped to conserved cellular functions, or to processes
where Chlamydomonas is a premier model organism for
their study.

To obtain genes that are co-expressed with a list of inter-
est, we separately used manually curated gene lists as baits
to extract their co-expressed genes from the N1, N2, and N3
networks. As stringency decreases from the N1 to the N3
networks, the number of selected genes increased, but the
resulting lists were nested. Co-expression cohorts associated
with gene lists expanded the number of potentially informa-
tive genes 2–20 fold, with an average increase of 10-fold
(Supplemental Figure S8). Using genes from co-expression
modules as baits, we thus identified their associated co-
expressed cohorts and determined the extent of overlap
with other user-defined lists (as illustrated in Figure 3C) to
obtain high-confidence genes. We also established the tim-
ing of peak expression over the diurnal cycle for each mod-
ule, group, and co-expressed cohorts, using the diurnal
phase of all genes considered rhythmic in two diurnal data-
sets (Supplemental Figure S9; Zones et al., 2015; Strenkert
et al., 2019).

Cell division modules

Five modules involved in cell division and DNA replication
comprised a non-redundant set of 245 genes (Figure 6A),
with 88 genes with an acronym and 157 with no prior func-
tional knowledge. Using guilt by association, we propose
that these non-annotated genes play a role in some aspect
of cell division. Only 19 out of the 245 genes overlapped
with 79 genes identified by forward genetic screens for
defects in cell cycle progression; this overlap was limited to
the highly co-expressed genes within both sets (Figure 4A;
Tulin and Cross, 2014; Breker et al., 2018). We then deter-
mined the co-expression cohorts associated with each gene
list and assessed their overlap. By definition, all genes within
our modules are highly inter-connected, but they also exhib-
ited co-expression with �400 additional genes that define a
larger cohort with presumptive function in cell division
(Figure 6B). Similarly, hundreds of genes showed strong co-
expression with the 30 co-expressed genes from the genetics
list (Figure 6C). Finally, we defined a third list comprising
genes critical for DNA replication, chromosome segregation,

and cell division proper, for which we determined the co-
expression cohorts (Figure 6D and Supplemental Data Set
S9). Notably, although the initial gene lists were distinct
(Figure 6E), their cohorts shared more genes as
network stringency decreased, suggesting that the intersec-
tion of co-expression cohorts converged on a common set
of genes.

Proteasome-dependent protein degradation

Two modules shared a function in protein degradation.
They largely overlapped and defined a set of 96 genes that
included all but two of the 26S proteasome subunit genes.
Most genes encoding subunits of the 26S proteasome were
highly co-expressed (mean PCC: 0.67 + 0.13). CSN2 and
CSN6 were however not part of the protein degradation
modules; they exhibited the weakest co-expression profile
with other 26S proteasome subunit genes, although clearly
still quite high (CSN2 mean PCC: 0.54± 0.15; CSN6 mean
PCC: 0.53± 0.06) (Supplemental Figure S10,A). The
Chlamydomonas ortholog for the E3 ubiquitin ligase
CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1),
Cre13.g602700 (currently annotated as SPA1, Gabilly et al.,
2019), showed no co-expression with the 26S proteasome
(mean PCC: –0.09± 0.10), consistent with a role as a regula-
tory component of the proteasome. We observed the same
absence of co-expression in Arabidopsis between COP1 and
the remaining subunits of the proteasome, indicating a con-
served mode of control from unicellular algae to land plants.

Proteasome-dependent proteolytic degradation entails the
addition of ubiquitin onto the protein targeted for removal
by the concerted action of E1 ubiquitin-activating enzymes,
E2 ubiquitin-conjugating enzymes, and E3 ubiquitin ligases.
The Chlamydomonas genome contains 13 genes for ubiqui-
tin, three genes encoding potential E1 enzymes
(Cre09.g386400, Cre06.g296983, and Cre12.g491500) and 17
genes coding for E2 enzymes. We did not compile a list of
all E3 ubiquitin ligase genes, as they form large gene families,
and respond to various different signaling pathways. Our
protein degradation modules only incorporated a single
gene each for ubiquitin (UBQ2), E1 activating enzyme
(Cre12.g491500, annotated as UBA2), and E2 conjugating en-
zyme (UBC21, although it was the second lowest-expressed
UBC gene in our dataset; Supplemental Figure S10,A). No
other ubiquitin gene displayed a co-expression pattern with
our protein degradation modules. By contrast, both remain-
ing E1 enzyme genes (Cre09.g386400 and Cre06.g296983)
were highly co-expressed with genes from our protein degra-
dation modules. Likewise, we identified a subset of genes
encoding E2 conjugating enzymes that were co-expressed
with 26S proteasome subunit genes: UBC3 (Cre03.g167000),
UBC9 (Cre16.g693700, also the most highly expressed UBC
gene), and UBC13 (Cre01.g046850) and present in the co-
expression cohort linked to our modules. In addition, the
gene UBC22 (Cre12.g515450) appeared anti-correlated with
other 26S proteasome subunit genes, hinting at a previously
unexpected level of control.
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We used the 96 genes that formed the protein degrada-
tion modules as baits to identify their co-expressed cohorts
in each of our three most stringent networks (N1–N3).
Via guilt by association prediction, we thus assigned a
potential function in protein degradation for 350–760
genes in addition to those already found within our

modules (Supplemental Figure S10,B and Supplemental Data
Set S10).

Cilia modules

Four modules were associated with GO terms with a func-
tion in cilia assembly or intraciliary transport. They also

Figure 6 Core cell division genes are coordinately and highly co-expressed. A), Correlation matrix of non-redundant cell division modules and cor-
relation matrix of genes whose loss of function leads to cell division defects (Tulin and Cross, 2014; Breker et al., 2018). Genes within each set were
ordered according to hierarchical clustering using the FPC method in corrplot. B–D), Co-expressed cohorts, shown as nested Venn diagrams, asso-
ciated with genes from the cell division modules (B), the genetics list (C), or genes involved in DNA replication and chromosome segregation
(manual list) (D) from networks N1–N3. E), Overlap between original gene lists related to cell division (modules, genetics, and manual lists). F),
Correlation matrix of non-redundant cilia modules (modules) and genes belonging to CiliaCut only (CiliaCut), the cilium proteome and shared
genes between CiliaCut and the cilium proteome (overlap). The color bars on the right refer to the color scheme used for co-expression cohorts
in G–J. G–I), Co-expressed cohorts, shown as nested Venn diagrams, associated with genes from CiliaCut (G), the overlap between CiliaCut and
the cilium proteome (H), and the cilium proteome (I) from networks N1–N3. J), Overlap between N1 cohorts associated with each initial gene list
(CiliaCut, overlap, and cilium proteome). K), Correlation matrix of non-redundant photosynthesis modules, photosynthesis-related genes, and tet-
rapyrrole biosynthesis-related genes. L–N), Co-expressed cohorts, shown as nested Venn diagrams, associated with genes from the photosynthesis
modules (L), photosynthesis-related genes (M), and tetrapyrrole biosynthesis-related genes (N) from networks N1–N3. O), Overlap between initial
gene lists. P), Overlap between N1 cohorts associated with photosynthesis and tetrapyrrole biosynthesis. In panels C, D, M, and N, the asterisk
indicates that the gene list was restricted to highly co-expressed genes, based on FPC clustering of the data.
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demonstrated partial overlap between themselves, indicating
that these four modules defined a single, larger cilia group
consisting of 221 nuclear genes (Figure 6F). The genes mak-
ing up these modules were highly co-expressed, with a frac-
tion of genes identified in CiliaCut and the cilium proteome
(Figure 6F). The intersection of the initial gene lists (mod-
ules, CiliaCut, overlap, and cilium proteome) defined a set of
44 genes, nine of which (ODA1, DRC3, IFT121, IFT46, IFT74,
MBO2, MIA1, PF16, and PF20) were previously identified
through forward genetic screens. We also extracted the co-
expression cohorts associated with cilia modules, CiliaCut,
and the cilium proteome (Figure 6G–I and Supplemental
Data Sets S5, S11), linking several hundred genes to cilia.
Their overlap (when using the N1 network) consisted of a
set of 193 high-confidence cilia-related genes.

Photosynthesis modules

Four modules defined a larger photosynthesis group
(Figure 6K) that we subdivided into three modules contain-
ing many of the genes encoding tetrapyrrole biosynthetic
enzymes, while the last module was related to photosystems
components. We extracted their co-expression cohorts
(Figure 6L–N), resulting in hundreds of genes exhibiting
strong co-expression. We also determined the overlap be-
tween the initial gene lists (Figure 6O) and their N1 cohorts
(Figure 6P): the co-expression modules clearly included both
photosynthesis- and tetrapyrrole-biosynthesis-related genes.
As might be expected for genes necessary for proper chloro-
plast function, the overlap between N1 cohorts was substan-
tial across all categories tested (modules, photosynthesis,
and tetrapyrroles), highlighting interesting genes for poten-
tial follow-up studies within the modules and the N1 cohort
(Supplemental Data Set S12).

Genes in co-expression modules cluster based on
their diurnal phase
During our analysis of co-expression modules, we noticed a
high proportion of diurnal synchronization between co-
expressed genes within modules and their associated co-
expression cohorts, even though diurnally expressed genes
occupy the entire diurnal time landscape (Figure 7A and B).
We therefore asked how frequently genes within co-
expressed modules shared the same phase. Out of 117 mod-
ules extracted from the N3 network, 110 contained at least
two rhythmic genes (Figure 7C), with a mean percentage of
rhythmic genes of 65% and a median value of 71.6%
(Figure 7C). Modules with few rhythmic genes tended to be
associated with large standard deviations, indicative of little
synchronization between the genes comprising them
(Figure 7C). By contrast, modules consisting of a higher fre-
quency of rhythmic genes showed high synchrony; their
mean phase provided information relating to the biological
function of each module, as illustrated below. Notably, the
anti-correlated cohorts to most modules exhibited a mean
phase that was 6–12 h out of phase with that of their

related module (not shown), highlighting the importance of
time-of-day when considering co-expression.

Molecular events leading to cell division are coordinately
expressed with a phase distribution between 10 and 12 h af-
ter dawn: accordingly, we determined that the phase distri-
bution of cell division modules and genes from the cell
division “genetics” list showed the same phase preference
(with 232 out of 245 genes being rhythmic) as did their as-
sociated co-expressed cohorts from the N1 network
(Figure 7D and E). After cell division, cells reassemble cilia in
anticipation of the coming dawn: 191 (out of 221) genes
within cilia modules exhibited a marked preference for the
middle of the night part of the diurnal cycle, which precisely
corresponds to the time of cilia biogenesis (Figure 7F). The
degree of synchrony may provide an additional selection cri-
terion for co-expressed genes, as seen with phase distribu-
tions of genes belonging to CiliaCut only (i.e. CiliaCut genes
whose gene products were not detected in the cilium prote-
ome). Indeed, CiliaCut only genes displayed a wide range of
diurnal phases, whereas co-expressed cilium proteome genes
and genes at the intersection of CiliaCut and the cilium pro-
teome were highly rhythmic and synchronized to the middle
of the night (Figure 7).

We used the 96 genes (Figure 7H, inset) that form the
protein degradation modules as baits to identify their co-
expressed cohorts. They displayed a high degree of synchro-
nized rhythmicity across diurnal datasets (Figure 7H). Only 2
out of the 96 genes from the protein degradation modules
did not show rhythmic expression over a diurnal cycle. The
occurrence of diurnal rhythmicity remained high in their as-
sociated co-expression cohorts, with 391 rhythmic genes out
of 450. The distribution of their diurnal phases was also
quite narrow for both sets of genes, with a peak in the sec-
ond half of the day (Figure 7H). We speculate that timed
protein degradation offers a mechanism for the removal of
photo-oxidized proteins, which is broadly consistent with
the recent characterization of Chlamydomonas mutants
lacking activities for the E3 ubiquitin ligase and Cullin com-
ponents of the SCF (Skip, Cullin, F-box) complex (Gabilly
et al., 2019).

The majority of genes that belonged to the non-
redundant translation modules N3-5/94 was rhythmic (121
out of 158), with diurnal phases concentrated in a narrow
window of time between 3 and 5 h into the dark part of
the diurnal cycle (Figure 7I). GO enrichment analysis indi-
cated a role for these two modules in the nucleolus and ri-
bosome biogenesis (Supplemental Table S3). Cytosolic RPGs
were constitutively expressed and thus had no clear diurnal
phase, whereas both plastid and mitochondrial RPGs exhib-
ited preferred diurnal phases between 1–2 h and 3–5 h after
dawn, respectively (Figure 7J), as expected (Zones et al.,
2015).

Four modules defined a larger photosynthesis group that
we subdivided into three modules containing many of the
genes encoding tetrapyrrole biosynthetic enzymes, while the
last module was related to photosystems components. Both
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sub-groups were highly rhythmic over the diurnal cycle and
restricted to a small time window. Their respective phases
agreed with their underlying biological function: genes
encoding tetrapyrrole biosynthetic enzymes peaked �2 h
prior to components of both photosystems (Figure 6K).
While highly co-expressed, photosynthesis-, and
tetrapyrroles-related modules did not substantially overlap
(Supplemental Data Sets S4, S12), indicating that a diurnal
phase difference of 2 h was sufficient to form independent
clusters.

We conclude that co-expression modules are strongly
influenced by the diurnal phase of their constituent genes.
While this result may in itself not be surprising, it also raised
the question of the overlap contribution of diurnal phase to
clustering in our dataset, which we addressed next.

Genes cluster based on their diurnal phase
While the majority of Chlamydomonas genes exhibits a diur-
nal expression profile when cells are grown under light–dark
cycles, most of the samples included in our RNA-seq dataset
were collected from cells grown in constant light, with the
assumption that cells in such cultures would be largely asyn-
chronous. Since we observed frequent co-expression that fol-
lowed diurnal phase information, we determined whether
genes globally clustered according to their diurnal phase,
and whether cells in constant light retained some entrained
properties.

We first explored how various clustering methods ordered
genes as a function of their diurnal phase. We performed
this analysis on three datasets: the fully normalized and
complete dataset (RNAseq4), which included samples
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Figure 7 Co-expression modules routinely comprise genes with similar diurnal phases. A), Schematic of the Chlamydomonas diurnal cycle in cell
division events. B), Phase distribution of 10,294 high-confidence diurnally rhythmic genes, shown as a circular plot covering the full 24 h of a com-
plete diurnal cycle. Gray shade indicates night. C), Co-expression modules with a high percentage of rhythmic genes exhibit a uniform diurnal
phase. The light purple shade indicates the distribution of rhythmic modules. D–K), Example of phase distribution for co-expression modules and
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collected from cells grown in constant light and under diur-
nal cycles; RNAseq4LL, only consisting of samples collected
from cells grown in constant light; and RNAseq4LD, com-
prising all samples with a rhythmic component, either diur-
nal or related to cell cycle progression. We calculated all
pairwise PCCs and ordered genes according to hierarchical
clustering (hclust, as shown in Supplemental Figure S5B),
Angle of the Eigenvectors (AOE, Figure 8A), or FPC
(Supplemental Figure S11). The AOE correlation matrix
exhibited a smooth transition from the first gene to the last
gene (along each row), with strong positive correlations
along the diagonal and at the upper right corner, separated
by a gradual transition to negative correlations parallel to
the diagonal (Figure 8A). The matrix also lacked the local-
ized clustering seen with the hclust method (compare
Figure 8A with Supplemental Figure S5B). The FPC correla-
tion matrix arranged pairwise PCCs in a similarly smooth
pattern, with the strongest positive PCC values located in
the upper left corner and the strongest negative PCCs in
the upper right corner (Supplemental Figure S11A). The
PCCs generated from RNAseq4LD followed a wider normal
distribution relative to those of RNAseq4 and RNAseq4LL
(Figure 8B), which we hypothesize results from the smaller
number of samples and a higher amplitude in gene expres-
sion under rhythmic conditions, in contrast to averaged val-
ues from asynchronous cells.

We next assigned a row number to each gene according
to their place within the AOE correlation matrices, from 1
to 17,741. For those that also exhibited a diurnal expression
pattern (Supplemental Figure S9; Zones et al., 2015;
Strenkert et al., 2019), we plotted their diurnal phase (on

the y-axis) as a function of AOE gene order (on the x-axis).
As shown in Figure 8C, the relationship between AOE gene
order and diurnal phases was far from random, and instead
followed a linear pattern, whereby genes that appeared first
in the AOE correlation matrix had phases with peaks in the
late evening. As gene row number increased, diurnal phases
gradually decreased, demonstrating the widespread influence
of diurnal phase on correlation potential between gene
pairs. In addition, the overall pattern of the AOE correlation
matrix was reminiscent of that seen for diurnal experiments
(Figure 1C and E), with genes separated by 12 h in terms of
diurnal phases showing the strongest anti-correlations, while
genes in similar time neighborhoods shared strong co-
expression.

The RNAseq4 and RNAseq4LD datasets globally resulted
in the same gene order after AOE clustering (Figure 8C),
which at first might imply that samples collected from diur-
nally grown cells imposed the observed gene ordering.
However, this did not appear to be the case, as 1) the over-
all pattern of the AOE matrix for RNAseq4LL-derived PCC
values was identical to that of RNAseq4 (Figure 8A), and 2)
the corresponding gene order still carried diurnal informa-
tion, as evidenced by the increase in diurnal phase with in-
creasing gene order (Figure 8C), and despite the removal of
all diurnal samples. Although the AOE clustering gene order
did change between the RNAseq4 and RNAseq4LL matrices,
the alteration in the pattern was systematic: a scatterplot of
gene order for RNAseq4 and RNAseq4LL underscored the
linear relationship between the two gene order series
(Figure 8D). FPC clustering also sorted genes according to
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Figure 8 Genes cluster based on their diurnal phase. A), Correlation matrix of the 17,741 Chlamydomonas nuclear genes, ordered based on clus-
tering by the AOE method built into corrplot, using the fully normalized dataset RNAseq4, RNAseq4LD (consisting of RNA samples collected from
cells grown under light-dark cycles), and RNAseq4LL (with all other RNA-seq samples) as input. B), Distribution of pairwise PCCs for all gene pairs
using RNAseq4, RNAseq4LD, and RNAseq4LL as input. C), Scatterplot of diurnal phases from 10,294 high-confidence diurnally rhythmic genes, as
a function of their order from AOE clustering, using RNAseq4, RNAseq4LD, and RNAseq4LL as input. We saved gene order following AOE cluster-
ing (from 1 to 17,741) and plotted the diurnal phase of the subset of 10,294 rhythmic genes (along the y-axis). D), Scatterplot of diurnal phases
from 10,294 high-confidence diurnally rhythmic genes, ordered based on the AOE clustering method on RNAseq4 (y-axis) and RNAseq4LD or
RNAseq4LL (x-axis).
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their diurnal phase, although along distinct parameters
(Supplemental Figure S11B).

We conclude that diurnal phase contributes substantially
to the clustering of genes, even for samples obtained from
cells grown in constant light. Such samples appear to retain
diurnal information that shapes the clustering outcome at
the genome level.

Molecular timetable analysis confirms residual
synchronization of the Chlamydomonas
transcriptome
That genes clearly clustered according to their diurnal
phases even in a dataset comprised solely of samples col-
lected from cells grown in constant light raised the possibil-
ity that these samples exhibit residual rhythmicity. We thus
applied the molecular timetable method (Ueda et al., 2004)
to all RNA-seq samples to determine the extent of rhyth-
micity they might show. The molecular timetable method,

whose principle is briefly explained in Supplemental Figure
S12, extracts the rhythmic (diurnal or circadian) information
from single time-point transcriptomes using the known
phases and expected expression levels from a reference diur-
nal (or circadian) dataset. We selected 480 genes across 24
phase bins; their peak time of expression is known exactly,
as well as their expression levels. We then extracted their
normalized expression from RNAseq4 and calculated the
mean expression for each phase bin. Finally, we plotted this
mean for each RNA-seq sample and each diurnal phase bin
as a heatmap.

We first looked at the two large diurnal time courses,
shown in Figure 9A, to validate out methodology. Indeed,
each diurnal sample (one row) showed a rhythmic pattern
with each peak and trough separated by �12 h. In addition,
successive time points were more similar to one another
than to later time points, as observed earlier in the correla-
tion matrix (Figure 1E). These results demonstrated the

Figure 9 Chlamydomonas cultures grown in constant light retain substantial rhythmicity. A), Heatmap representation of the molecular timetable
approach, applied to two diurnal datasets: Strenkert et al. (2019) and Zones et al. (2015). B), Heatmap representation of the molecular timetable
approach, applied to all remaining RNA-seq samples. In panels (A) and (B), each sample is represented as the mean expression of 20 phase marker
genes (per h). In (A), diurnal samples are ordered from top to bottom. For (B), samples were subjected to hierarchical clustering while generating
the heatmap in R. as: heatmap from an asynchronous sample, corresponding to the average expression of all rhythmic genes for each time point.
C), Scatterplot of minimum and maximum normalized expression across all RNA-seq samples. Diurnal time courses are indicated by a gray shade.
as: expected position of minima and maxima for a completely asynchronous sample. The samples are ordered by experiments, therefore consecu-
tive data points belong to the same experiment. D), Peak and trough times largely occur 12 h apart. Scatterplot of all peak expression time (x-
axis) and trough times (y-axis). E), Distribution of peak times across all RNA-seq samples.
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applicability of the molecular timetable method to
Chlamydomonas RNA-seq samples, paving the way for the
extraction of the internal time of the collected sample, as
determined by the phase bin with maximal normalized
expression.

We next subjected all remaining RNA-seq samples to the
same analysis and clustered them based on their underlying
pattern while generating the heatmap shown in Figure 9B.
Completely asynchronous samples should appear off-white
across all phase bins (“as,” bottom of Figure 9B); overwhelm-
ingly, Chlamydomonas RNA-seq samples instead displayed
remarkable residual rhythmicity. Diurnal time courses were
easy to distinguish from other samples when we plotted the
minimum and maximum normalized expression values asso-
ciated with each sample (Figure 9C). Notably, most other
samples, collected from cells grown in constant light,
retained strong global oscillations, which we estimated to
represent a synchronization between cells ranging from 21%
to 96%, with a mean rhythmicity of 48%, based on the am-
plitude between minima and maxima relative to diurnal
time course samples (Figure 9C).

The timing of minimum and maximum gene expression
should be �12 h apart in diurnal and rhythmic samples: we
therefore plotted peak and trough times predicted for all
samples based on the molecular timetable data. As shown
in Figure 9D, most samples indeed reached peak value 12 h
after their lowest time-point, validating our hypothesis that
the majority of Chlamydomonas RNA-seq samples exhibit
strong residual rhythmicity even when the cells were grown
in constant light.

Finally, we asked whether samples displayed a preferential
diurnal phase by plotting the distribution of peak phases
across all samples. To our surprise, about one third of all
samples showed a peak phase between 5 and 6 h after
dawn.

Applicability of the molecular timetable method to
other algae: V. carteri and C. zofingiensis as tests
Incorporating new Chlamydomonas transcriptome datasets
to the one we used here would be cumbersome, as it would
entail repeating all normalization steps each time a new
dataset is added. A more practical approach would be to
subject new transcriptome datasets to an abridged normali-
zation, namely log2 normalization followed by normalization
to the mean calculated from our full dataset. We tested the
usefulness of this method by reanalyzing a transcriptome
dataset included in our original list that was focused on iron
homeostasis (Urzica et al., 2012b), for which
Chlamydomonas cells had been grown with various iron
concentrations (0.25, 1, or 20 mM FeEDTA) in autotrophic
(no reduced carbon source provided, but cultures were bub-
bled with CO2) or heterotrophic (with acetate as reduced
carbon source) conditions. We normalized FPKM counts to
the mean inferred from the full RNA-seq dataset, and used
the respective diurnal phase for each gene (Supplemental
Data Set S13). As shown in Figure 10A, autotrophic cultures

exhibited a similar molecular timetable profile, with an esti-
mated internal phase around dawn across all three iron con-
centrations. In sharp contrast, heterotrophic cultures
responded very differently: indeed, iron-limited cultures
(0.25 mM FeEDTA) were 12 h out of phase with the other
two samples. Iron-limited heterotrophic cultures grow more
slowly than iron-deficient (1 mM FeEDTA) or iron-replete
cultures (20 mM FeEDTA). We hypothesize that the differ-
ence in internal phase between heterotrophic samples
may thus partially reflect the time at which cultures were
sampled, as cells were harvested at the same cell density
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Figure 10 Application of the molecular timetable method to indepen-
dent RNA-seq experiments across algae. A), Reanalysis of a transcrip-
tome dataset included in our initial RNA-seq data (Urzica et a.,
2012b). We subjected FPKM values to log2 normalization, followed by
normalization to the mean (obtained during the normalization steps
that yielded RNAseq4). We then used the molecular timetable
method to determine the rhythmic pattern of the samples
(Chlamydomonas CC-4532 strain grown in Tris Acetate Phosphate
(TAP) or Tris Phosphate (CO2) medium with 0.25, 1, or 20 mM
FeEDTA). B), Molecular timetable method applied to V. carteri sam-
ples collected in duplicates from somatic or gonidial cells (Matt and
Umen, 2018). C), Molecular timetable method applied to C. zofingien-
sis samples collected over 12 h after addition and removal of glucose
(Roth et al., 2019). For (A), we used 960 highly rhythmic genes to
draw the heatmap. For (B) and (C), we included all rhythmic genes
with orthologs in V. cateri (B) or C. zofingiensis (C), after log2 normali-
zation and normalization with the Chlamydomonas-derived gene
means.
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(Urzica et al., 2012b). However, we cannot exclude a contri-
bution to a slower circadian clock under low iron condi-
tions, as described for land plants (Chen et al., 2013; Hong
et al., 2013; Salomé et al., 2013). Nonetheless, we conclude
that the molecular timetable method is applicable to
Chlamydomonas samples after performing log2 and mean
normalization.

We then explored the applicability of this method to
other algae where a high-density diurnal time course is not
available: Vovox carteri and C. zofingiensis. The molecular
timetable method requires two sets of information: the
mean expression and standard deviation of a given gene for
normalization; the predicted diurnal or circadian phase of
the gene. However, both algal strains (V. carteri and C. zofin-
giensis) presently lack a high-density expression estimate
across a diurnal time course. Therefore, we transferred the
mean, standard deviation, and known diurnal phase of all
Chlamydomonas genes over to their putative one-to-one
orthologs, as determined in BioMart at Phytozome.

Vovox carteri samples consisted of two technical replicates
each collected from somatic and gonidial cells (Matt and
Umen, 2018). We obtained one-to-one orthologs between
Chlamydomonas and V. carteri from Phytozome, after which
we subjected all C. carteri genes with a rhythmic
Chlamydomonas ortholog to log2 normalization and to nor-
malization with Chlamydomonas means. We then calculated
the average normalized expression for all genes, in 1-h bins.
Gonidial cells appeared strongly rhythmic, with a peak phase
around 4–5 h after dawn and a trough �12 h later
(Figure 10B). Remarkably, somatic cells exhibited a
completely different profile with a peak phase in the middle
of the night. We performed the same analysis of transcrip-
tome samples collected in C. zofingiensis over a 12-h time
course with addition or removal of glucose from the growth
medium (Roth et al., 2019). Here, cultures were maintained in
light-dark cycles consisting 16 h light and 8 h darkness. All
samples exhibited a rhythmic profile, strongly indicating that
the molecular timetable accurately predicted the internal
phase of the samples. Indeed, the peak phase of samples col-
lected later during the day showed a clear and distinct shift
to a later phase. Notably, the rhythmic pattern extracted
from these transcriptome samples followed the same overall
pattern regardless of the treatment imposed on the cultures,
which is consistent with the strong contribution of time-of-
day noted in these samples (Roth et al., 2019).

We conclude that the molecular timetable method can be
applied to Chlamydomonas and to other algae, even when
they lack a reference diurnal time course. Such analysis
would allow a rapid estimation of the contribution of rhyth-
mic gene expression to variation in gene expression, even in
the absence of a reference diurnal time course.

Discussion
The assembly of 518 RNA-seq samples into one data set
offers a unique opportunity to explore the transcriptome
landscape in Chlamydomonas. We exploited this data set to

determine whether independent experiments exhibit the
same transcriptome profile (they largely do not), whether
genes follow similar expression trajectories (they sometimes
do), and what factors might contribute to their co-
clustering (diurnal time plays a significant role). The analyses
presented here likely only skim the surface of extractable in-
formation; we invite others to use this dataset for their own
research questions.

We were surprised to see how little correlation existed be-
tween Chlamydomonas experiments, even though several
queried the same biological question, such as responses to
nitrogen deficiency or metal deficiencies (Figure 2). Samples
collected in the same laboratory similarly failed to show
strong correlations, although growth conditions are likely to
be similar. We do not fully understand the underlying
source of variation, but we propose that strong residual
rhythmic gene expression may contribute to the observed
pattern. As a test of our analysis pipeline, we determined
the correlation matrix of Arabidopsis microarray data sets,
downloaded from AtGenExpress. As shown in Supplemental
Figure S13, samples (using the expression data for all genes
as data points) clearly grouped as a function of the tissue of
origin, with shoot and leaf samples generally strongly corre-
lated, while anti-correlated with root samples. It is likely that
Arabidopsis samples show strong differentiation of their ex-
pression profiles as a function of the tissue of origin, as
might be expected, thus validating our pipeline.

Co-expression modules assemble the most consistent
gene pairs into a coherent list that is characterized by high
connectivity between genes (Supplemental Figure S8B).
However, each gene is itself co-expressed with many genes
that do not necessarily meet the interconnectivity require-
ments for assignment to a module (Supplemental Figure
S8A), here referred to as co-expression cohorts. The co-
expression cohorts can nevertheless provide clues as to the
function of a gene, especially when it does not belong to a
module. In addition, genes with the opposite expression pro-
file can give hints as to the function of a gene of interest.
We have extracted co-expression and anti-correlation
cohorts for all Chlamydomonas genes, provided as
Supplemental Data Sets S4–S9. We also provide the scripts
used here as Supplemental Protocols. We hope that this
type of analysis spurs new discoveries, not only in
Chlamydomonas but also in Arabidopsis and other plants.
Our results with Arabidopsis RPGs (Figure 4E) demonstrate
the applicability of the method to other organisms.

We expect that the resource presented here will be com-
bined with the output from other high-throughput
approaches (Li et al., 2015, 2019; Vilarrasa-Blasi et al., 2020)
to ascertain gene function and/or prioritize genes for further
functional studies.

The Chlamydomonas life cycle resolves around cell divi-
sion, the timing of which can be synchronized to dusk by
light–dark cycles (Cross and Umen, 2015; Zones et al., 2015;
Strenkert et al., 2019). When maintained under entraining
conditions, at least 80% of the Chlamydomonas

The Plant Cell, 2021 Vol. 33, No. 4 THE PLANT CELL 2021: 33: 1058–1082 | 1075

https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koab042#supplementary-data
https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koab042#supplementary-data
https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koab042#supplementary-data
https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koab042#supplementary-data
https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koab042#supplementary-data
https://doi.org/10.5068/D1WD55
https://doi.org/10.5068/D1WD55


transcriptome exhibits rhythmic expression. It is unclear
how quickly algal cells become asynchronous when trans-
ferred to constant light conditions. It is thought that cul-
tures grown in constant light are largely arrhythmic at the
population level due to loss of synchrony. When applying
the molecular timetable to Chlamydomonas RNA-seq sam-
ples, we discovered that the majority of samples exhibited
substantial rhythmicity, even when collected from cultures
grown in constant light (Figure 9). About one third of all
samples appeared to have been collected 5–6 h after subjec-
tive dawn (i.e. the dark-to-light transition had the cells been
maintained under entraining conditions). Based on the am-
plitude between minima and maxima extracted from phase
marker genes, we estimate that 21–96% of cells within a
given culture were synchronized, with a mean of 48%.
Chlamydomonas strain stocks are typically kept in constant
light on solid medium before inoculating a liquid culture,
which will itself be placed in constant light. Pre-cultures are
common before inoculating the test culture; cells are gener-
ally collected by centrifugation when they reach mid-log. It
is therefore possible that diluting cells at the beginning of
an experiment sends a resetting signal to Chlamydomonas
diurnal rhythms, the signature of which is still present 2–3
days later, as evidenced by the degree of residual synchroni-
zation in all samples analyzed. Another possible explanation
would call upon social signaling (or quorum sensing) be-
tween Chlamydomonas cells (Asfahl and Schuster, 2017). In
such a mechanism, cells may secrete signaling molecules or
pheromones that inform other cells of their metabolic state.
Alternatively, cells may secrete and share metabolic inter-
mediates, which could also accomplish synchrony.
Chlamydomonas cultures can secrete agonists of bacterial
quorum sensing (Teplitski et al., 2004), but whether such
compounds have any effect on synchronization of algal cul-
tures has not been investigated.

We are only seeing the bulk behavior of Chlamydomonas
cultures in this data set. Only a single-cell RNA-seq (scRNA-
seq) analysis will allow a more detailed dissection of the di-
urnal contribution to the Chlamydomonas transcriptome
landscape. To begin to explore this possibility, we recently
performed scRNA-seq on almost 60,000 Chlamydomonas
cells grown under three conditions and from two genotypes.
Indeed, we observed a substantial heterogeneity among the
cells that was partially explained by the endogenous phase
of individual cells (Ma et al., 2021). Although cultures were
grown in constant light for several weeks, we hypothesize
that diluting cells at the beginning of an experiment may
act as a resetting signal for the endogenous cell cycle and
other daily rhythms.

Our observations also raise a question regarding the de-
sign of RNA-seq experiments when assessing the effect of a
mutation or a treatment on cultures: Is it more important
to collect samples at the same cell density or at the same
time? Our results suggest that sampling time exerts a far
greater influence on expression outcomes than sampling
density would. Best practices for RNA-seq analysis may

therefore dictate that a matched control sample be col-
lected at each time-point in order to remove any contribu-
tion to differential gene expression from the strong
rhythmicity exhibited by cultures. Genes belonging to the
same co-expressed modules tended to have the same diur-
nal phase (Figure 9C); the narrow window of expression
seen in rhythmic genes would thus be missed when compar-
ing samples collected hours apart. In Arabidopsis, samples
collected 30 min apart already exhibited differential expres-
sion (Hsu and Harmer, 2012). Our results generalize this
observation.

The molecular timetable method is a powerful and easily
implemented method to test the rhythmic component of
transcriptome data. We demonstrate here that
Chlamydomonas data can be transferred onto other algae like
V. carteri and C. zofingiensis to reveal an unexpected dimen-
sion of rhythmic expression from single time points. We pro-
pose that all transcriptome datasets should be subjected to
such analysis before delving into more in depth analysis, to es-
timate the fraction of variation in gene expression that might
be explained by rhythmic expression. We provide the mean
and phase values from Chlamydomonas to normalize RNA-
seq data from other algae as Supplemental Data Set S13.

In conclusion, we describe here an analysis of co-
expression in the green unicellular alga Chlamydomonas.
We observed known and new connections between genes
ad provide the tools to take this analysis further for any
gene of interest, in both Chlamydomonas and other system
with a body of transcriptome data available.

Materials and methods

Co-expression analysis network in Chlamydomonas
We reanalyzed a set of 58 RNA-seq experiments, consisting
of 518 samples, by mapping reads to version v5.5 of the
Chlamydomonas genome (v5.5 from Phytozome) with STAR
(v2.5) (Dobin et al., 2013) using default settings except—
alignIntronMax 10000—outFilterMismatchNoverLmax 0.04.
Expression was calculated in terms of fragments per kb per
million mapped reads (FPKMs) with cuffdiff (v2.0.2)
(Trapnell et al., 2014) using default settings except—multi-
read-correct—max-bundle-frags 1000000000. We assembled
all expression estimates as FPKM into one file and did not
attempt to correct for batch effect at this stage, with the
thought that such effects would contribute to the variation
in expression. We then normalized the resulting expression
data set (Supplemental Protocol S1). First, we log2-trans-
formed mean FPKMs across replicates was with a pseudo-
count of “1” added prior to conversion, followed by quantile
normalization with the R package preprocessCore. Finally, we
subtracted mean expression across all experiments for each
gene, which removed any potential batch effects from the
data. We calculated PCCs with the cor() function in R and
visualized them for each gene pair using the R package corr-
plot, using all 518 expression estimates. We maintained four
expression datasets following each normalization step:
RNAseq1 (mean FPKMs); RNAseq2 (log2-normalized);
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RNAseq3 (quantile-normalized); and RNAseq4 (normalized
to mean).

We calculated the rank for all gene pairs (Supplemental
Protocol S2) by inverting the sign of PCCs by multiplying
the data frame by –1, then converting PCC values for each
gene into ranks with the function rank() in R. We derived
the MRs for two genes a and b from the formula MR(a,b) =
�(ranka!b � rankb!a). Considering a matrix of ranks, the
ranks ranka!b and rankb!a are geometrically linked on ei-
ther side of the diagonal: if ranka!b has the coordinates
(x,y) in the rank matrix, then rankb!a will have the coordi-
nates (y,x). We therefore transposed the rank matrix with
the t() function in R. We obtained MR values for each gene
pair by multiplying each cell from the rank matrix by their
counterpart in the transposed rank matrix, then square-
rooted.

For network selection and visualization, we calculated
edge weights from MR values with the formula: Nx =
e–(MR–1)/x, with x = 5, 10, 25, 50, or 100 (Supplemental
Protocol S2 for networks 1–3). Only Nx 5 0.01 were consid-
ered significant. We extracted gene pairs with significant
edge weights from the full edge weight matrix and loaded
them into Cytoscape 3.5.1. We detected modules of co-
expressed genes with ClusterONE with default parameters
and saved the modules as a .csv file, which includes the P-
value associated with each module. Modules with a P-value
4 0.1 were considered significant.

We also determined lists of anti-correlated genes by rank-
ing PCC values from the non-inverted PCC matrix generated
by corrplot, and by calculating associated edge weights as
above (Supplemental Protocol S3). In this case, we limited
our analysis to identifying anti-correlated genes, as
ClusterONE cannot detect modules using edge weights from
anti-correlated genes.

Co-expression analysis network in Arabidopsis
Microarray datasets were downloaded from the
AtGenExpress project site (http://jsp.weigelworld.org/
AtGenExpress/resources/), and collated into a single file that
consisted of 34 Arabidopsis accessions, 16 sets of etiolated
seedlings exposed to various light treatments, 36 sets of
seedlings exposed to pathogens, 13 cell culture samples, 68
sets each for shoots and roots exposed to various abiotic
stresses, 79 developmental samples (72 from shoots or
leaves, 7 from roots), and 18 sets each for leaves and roots
subjected to iron deficiency, with controls included. We re-
moved all control probes from the data set, bringing the
number of probes on the arrays from 22,810 to 22,746. We
log2-normalized all data when not already done, and fol-
lowed the same normalization steps described for the
Chlamydomonas data set.

Analysis of co-expression from ClusterONE modules
We extracted normalized expression data (from RNAseq4)
for genes belonging to a given cluster in R using the stack()
and unstack() functions, and generated the corresponding
co-expression matrix with corrplot (Supplemental Protocol

S4). We tested for overlap between co-expression modules
with similar predicted function with the online tool Venny
(Oliveros, 2007), and redrew co-expression matrices with a
non-redundant gene list as input. Unless stated otherwise,
we ordered genes based on the FPC clustering method built
into corrplot (Supplemental Protocol S4).

Analysis of co-expression from manually curated
and community gene lists
We extracted normalized expression data for genes that
belonged to manually curated or community-generated lists
as described above for co-expression modules
(Supplemental Protocol S4). We maintained the same gene
order when working with community lists, as the genes
were sorted and grouped based on shared function. We
sorted genes from manually curated lists following the FPC
method in corrplot.

For RPGs from Arabidopsis, we downloaded a list of 429
RPGs identified in the Arabidopsis genome (Sormani et al.,
2011). Of those, 357 were represented by a probe on the
ATH1 Affymetrix microarray and were predicted to encode
ribosomal proteins localizing to the cytosol (184), mitochon-
dria (55), chloroplasts (69), or with unclear localization (49,
including 13 with a predicted nuclear location). We
extracted the normalized expression data for all genes and
performed hierarchical clustering (hclust method in corrplot)
on each RPG subgroup. We then reordered all RPGs repre-
sented on the Affymetrix arrays according to FPC clustering
order and recalculated the correlation matrix.

Analysis of histone gene expression and genome
organization across a subset of the green lineage
Most histone transcripts are not polyadenylated; we there-
fore split our data set into RNA-seq experiments that were
subjected to ribodepletion or with histone expression 45
FPKMs (4 experiments, or 36 samples, including the diurnal
time course from (Strenkert et al., 2019)) and all remaining
480 samples. We then normalized the two data sets sepa-
rately as described in Supplemental Protocol S1 and
Supplemental Figure S1 and plotted their respective correla-
tion matrices, while maintaining histone genes ordered
based on their chromosomal positions.

We noticed that the order of histone genes was not ran-
dom in the Chlamydomonas genome. We determined the
orientation of all gene pairs by visual inspection in GBrowse
at Phytozome. To identify histone genes in Arabidopsis, M.
polymorpha, and Physcomitrium patens, we performed
BLASTP searches at NCBI or Phytozome using the protein
sequence for one Histone H2A, H2B, H3, and H4 as query,
followed by ordering of all histone genes based on their
unique locus identifier. To identify histone genes in O. luci-
marinus, C. zofingiensis, D. salina, Micromonas sp., and V. car-
teri, we followed the same steps described above but with a
Chlamydomonas histone protein as query. The current ver-
sion of the D. salina genome lacks annotated histone H2B,
prompting us to perform a TBLASTN search against the D.

The Plant Cell, 2021 Vol. 33, No. 4 THE PLANT CELL 2021: 33: 1058–1082 | 1077

https://doi.org/10.5068/D1WD55
https://doi.org/10.5068/D1WD55
https://doi.org/10.5068/D1WD55
https://doi.org/10.5068/D1WD55
https://doi.org/10.5068/D1WD55
http://jsp.weigelworld.org/AtGenExpress/resources/
http://jsp.weigelworld.org/AtGenExpress/resources/
https://doi.org/10.5068/D1WD55
https://doi.org/10.5068/D1WD55
https://doi.org/10.5068/D1WD55
https://doi.org/10.5068/D1WD55
https://doi.org/10.5068/D1WD55
https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koab042#supplementary-data


salina genome (translated in all six open reading frames)
with Chlamydomonas Histone H2B as query, thus identifying
19 putative Histone H2B loci. Since they have no locus iden-
tifier, we looked for the closest gene model in GBrowse at
Phytozome, revealing 13 Histone H2A genes in a divergent
orientation with the Histone H2B loci.

Identification of co-expression cohorts
We extracted the sets of genes co-expressed with each gene
belonging to any gene list in R by merging each query gene
list with a file representing all nodes and edges from net-
works N1 to N3 (Supplemental Protocol S5). We collapsed
each co-expression cohort into a non-redundant list by us-
ing the function unique() in R, since genes that share the
same expression profile will be part of each other’s co-
expression cohort. We then tested each subset from net-
works N1 to N3 for overlap with merge() or join() in R and
Venny (Oliveros, 2007).

Manually curated and community-generated gene lists
presented an initial challenge, since not all of their constitu-
ents are necessarily co-expressed (e.g. only a fraction of the
genes defined by the mutant screen carried out by Dr.
Frederic Cross for cell cycle mutants is co-expressed). We
therefore 1) ordered genes using the FPC clustering method;
2) counted how many gene pair PCCs were above 0.25, 0.4,
or 0.5 for each row of the matrix in order to 3) define cut-
offs between subsets of genes with high, medium, or low
PCCs. We then used these subsets (from 1 to 3) as bait to
identify their associated co-expression cohort (Supplemental
Protocol S6).

GO category enrichment in co-expressed modules
We tested our co-expression modules for Gene Ontology
term enrichment by using the PANTHER database (pan-
therdb.org) through the Gene Ontology Resource page
(http://geneontology.org). First, all Chlamydomonas gene
identifiers (Crexx.gxxxxxxx) were converted to their corre-
sponding Uniprot identifiers using a gene-to-Uniprot list
generated in-house. Of 117 modules, 86 retained at least 10
genes with corresponding Uniprot identifiers (31 had 49
genes with matching Uniprot identifiers and were deemed
too small for further analysis), and 37 returned significant
enrichment in GO term(s) for Biological Process. We sub-
jected each gene list (as Uniprot IDs) to GO term enrich-
ment analysis by running the analysis on the PANTHER
website manually.

Venn diagrams and gene list overlaps
We compared gene lists and determined the extent of over-
lap with the online tool Venny (Oliveros, 2007).
Proportional Venn diagrams were drawn with BioVenn
(Hulsen et al., 2008) for two-way diagrams or EulerAPE 3.0.0
(Micallef and Rodgers, 2014) for three-way diagrams.

Determination of diurnal phase distribution across
gene lists
We first generated a list of high-confidence rhythmic genes
over the diurnal cycle by selecting genes that were deemed
rhythmic from two recent diurnal studies in
Chlamydomonas (Zones et al., 2015; Strenkert et al., 2019).
Since the two studies used different reference points as time
zero, we corrected the diurnal phases from Zones by shifting
them by 12 h, with manual editing for diurnal phase values
that were larger than 24 h (a phase of 26 h is identical to a
phase of 2 h, e.g.). We then selected rhythmic across both
studies by using the merge() function in R, followed by na.o-
mit() to remove any gene that was rhythmic in only one of
the two lists. We then extracted the subset of genes with a
diurnal phase with the merge() function in R. The resulting
list of diurnal phases was then used as input for the circular
R package to draw the distribution of phases in a circle plot
(Supplemental Protocol S7).

For the plots of diurnal phase as a function of clustering
order, we saved the order of genes following clustering of
the entire gene matrix by the AOE or FPC clustering meth-
ods and turned it into a rank (from 1 to 17,741). We then
matched each rank with the diurnal phase of the corre-
sponding gene and generated the plots, using densCols() in
R to avoid over-plotting.

Molecular timetable method
For the analysis of Chlamydomonas data, we selected 960
highly rhythmic genes, consisting of 20 genes per 1/2 h
phase bins calculated from JTK_CYCLE with the lowest
BH.Q P-value (Strenkert et al., 2019) to act as phase markers
along the diurnal cycle. According to the molecular timeta-
ble method (Ueda et al., 2004), normalized transcript levels
for genes measured in truly asynchronous samples (in this
case, cultures) will tend to hover around zero, with no obvi-
ous pattern. Transcript levels from samples with partial syn-
chrony across cells will however exhibit a clearly identifiable
pattern when their normalized expression is ordered as a
function of their expected diurnal phase (see also
Supplemental Figure S12). We therefore extracted the nor-
malized expression data from the data set RNAseq4 for the
960 markers genes, after which we calculated the mean nor-
malized expression of genes within the same phase bins, and
visualized the results as a heatmap (Supplemental Protocol
S8). We also determined the amplitude of the underlying di-
urnal pattern by defining the minima and maxima of mean
normalized expression data across all phase bins.

For the analysis of RNA-seq data from V. carteri and C.
zofingiensis, we first downloaded the list of orthologs be-
tween Chlamydomonas and V. carteri or C. zofingiensis from
BioMart at Phytozome v12. We also downloaded transcript
lengths for V. carteri, as the one RNA-seq data set available
(GSE104835) reports raw counts rather than FPKMs. We
then converted raw counts to FPKMs, retained only those
genes in V. carteri with a one-to-one ortholog in
Chlamydomonas (7,377 genes), removed genes whose
Chlamydomonas ortholog was not rhythmic (1,840 genes),
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and calculated the mean normalized expression of V. carteri
genes within each phase bin, as predicted by the diurnal
phase of their Chlamydomonas orthologs, and plotted the
results as a heatmap (Supplemental Protocol S9).

We used a previously published expression data set for C.
zofingiensis (Supplemental Data Set S1 from Roth et al.,
2019). The FPKM values were log2-normalized in Excel be-
fore saving the file as a .txt file for import into R. Separately,
we determined the list of C. zofingiensis genes with a
Chlamydomonas one-to-one ortholog (2,351 genes) and
retained those with a rhythmic Chlamydomonas ortholog
(1,541 genes). We then merged the two files, normalized C.
zofingiensis expression values (log2[FPKM + 1]) using the
mean expression of their Chlamydomonas orthologs, aver-
aged in phase bins according to the diurnal phase of the
Chlamydomonas orthologs, and plotted as a heatmap
(Supplemental Protocol S10).

Statistics
PCC values for the entire genome were calculated with the
cor function in R, and their distributions plotted with the
density function in R. A random normal distribution of
mean = 0 and standard deviation = 0.2 was generated with
the rnorm function in R for 100 million values; only 23 val-
ues fell outside of the –1 to + 1 range and were not
discarded.

For comparisons between distributions, we applied a
Kolmogorov–Smirnov test (ks-test) using the ks.test function
in R.

Supplemental data
Please note: Supplemental Data Sets 1-13, Supplemental
Files 1-9, and the Supplemental Protocols are available at
datadryad.org with the DOI: https://doi.org/10.5068/
D1WD55.

Supplemental Figure S1. Normalizations of the
Chlamydomonas transcriptome dataset.

Supplemental Figure S2. How RPGs respond to each nor-
malization step.

Supplemental Figure S3. The R package corrplot and vi-
sualization of large correlation matrices.

Supplemental Figure S4. Correlations between experi-
mental samples and normalization methods.

Supplemental Figure S5. Chlamydomonas gene pairs are
largely not co-expressed.

Supplemental Figure S6. Testing known patterns of co-
expression in the RNAseq4 data set.

Supplemental Figure S7. From co-expression cohorts to
co-expression modules.

Supplemental Figure S8. Using module nodes as baits to
identify co-expressed genes.

Supplemental Figure S9. Convergence of diurnal phase
between two time-courses.

Supplemental Figure S10. Co-expression of the protein
degradation machinery is limited to the 26S proteasome.

Supplemental Figure S11. Genes cluster based on their
diurnal phase.

Supplemental Figure S12. Molecular timetable method
to extract diurnal information from single time-points.

Supplemental Figure S13. Arabidopsis microarray data
clearly differentiate between tissue types.

Supplemental Table S1. Summary of expression estimates
across all conditions and samples

Supplemental Table S2. Cohort and modules sizes for
co-expression data derived from the RNAseq4 dataset

Supplemental Table S3. Summary of GO terms enriched
in N3 co-expressed clusters

Supplemental Data Set S1. RPGs in Chlamydomonas, or-
dered by the final location of their products.

Supplemental Data Set S2. Genes used to test known
patterns of co-expression.

Supplemental Data Set S3. Chlamydomonas respiratory
complex genes.

Supplemental Data Set S4. Photosynthesis and tetrapyr-
role biosynthesis genes.

Supplemental Data Set S5. Genes from CiliaCut and the
cilium proteome.

Supplemental Data Set S6. Arabidopsis ribosome protein
genes.

Supplemental Data Set S7. Histone genes in
Chlamydomonas.

Supplemental Data Set S8. Histone genes in selected al-
gae and plants.

Supplemental Data Set S9. Cell division modules and
their co-expressed cohorts.

Supplemental Data Set S10. Protein degradation, protea-
some, and their co-expressed cohorts.

Supplemental Data Set S11. Cilia genes, sorted by their
overlap with CiliaCut, and their level of co-expression.

Supplemental Data Set S12. Photosynthesis modules and
their co-expressed cohorts.

Supplemental Data Set S13. Mean and diurnal phase of
Chlamydomonas genes for the timetable method.

Supplemental File S1. The fully normalized RNA-seq
dataset.

Supplemental File S2. List of co-expressed genes for each
nuclear Chlamydomonas gene for the N1 network.

Supplemental File S3. List of co-expressed genes for each
nuclear Chlamydomonas gene for the N2 network.

Supplemental File S4. List of co-expressed genes for each
nuclear Chlamydomonas gene for the N3 network.

Supplemental File S5. List of anti-correlated genes for
each nuclear Chlamydomonas gene for the N1 network.

Supplemental File S6. List of anti-correlated genes for
each nuclear Chlamydomonas gene for the N2 network.

Supplemental File S7. List of anti-correlated genes for
each nuclear Chlamydomonas gene for the N3 network.

Supplemental File S8. The fully normalized Arabidopsis
dataset.

Supplemental File S9. List of genes from the 117 co-
expression modules identified in network N3.
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Supplemental Protocols. Scripts to turn RNA-seq data
sets into MRs, gene co-expression cohorts, and co-
expression modules.
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adjustment to plant iron status depends on chloroplast and phy-
tochrome function. EMBO J 32: 511–523
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