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Abstract 

Background:  Atractylodes lancea (Thunb.) DC, a medicinal herb belonging to the Asteraceae family, often faces 
severe drought stress during its growth. Until now, there has been no research on the effect of drought stress on the 
quality formation of A. lancea. Therefore, the present study aimed to study the effects of drought stress on A. lancea 
through physical and chemical analysis, and to reveal the related molecular mechanisms via transcriptome analysis.

Results:  The photosynthesis was markedly inhibited under drought stress. There were alterations to photosynthetic 
parameters (Pn, Gs, Ci) and chlorophyll fluorescence (Fv/Fm, NPQ), and the chlorophyll content decreased. Twenty 
genes encoding important regulatory enzymes in light and dark reactions, including the Rubisco gene of the Calvin 
cycle, were significantly downregulated. After exposure to drought stress for more than 4 days, the activities of four 
antioxidative enzymes (SOD, POD CAT and APX) began to decrease and continued to decrease with longer stress 
exposure. Meanwhile, most of the genes encoding antioxidative enzymes were downregulated significantly. The 
downregulation of 21 genes related to the respiratory electron transport chain indicated that the blocked elec-
tron transfer accelerated excessive ROS. The MDA content was significantly elevated. The above data showed that 
15 days of drought stress caused serious oxidative damage to A. lancea. Drought stress not only reduced the size 
and dry weight of A. lancea, but also lowered the amount of total volatile oil and the content of the main bioactive 
components. The total volatile oil and atractylodin content decreased slightly, whereas the content of atractylon 
and β-eudesmol decreased significantly. Moreover, ten significantly downregulated genes encoding sesquiterpene 
synthase were mainly expressed in rhizomes.

Conclusions:  After exposed to drought stress, the process of assimilation was affected by the destruction of photo-
synthesis; stress tolerance was impaired because of the inhibition of the antioxidative enzyme system; and bioactive 
component biosynthesis was hindered by the downregulation of sesquiterpene synthase-related gene expression. All 
these had negative impacts on the quality formation of A. lancea under drought stress.
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expression, Quality formation
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Background
Atractylodes lancea (Thunb.) DC, a perennial herb 
belonging to the Asteraceae family, has been listed as an 
endangered medicinal plant [1]. This medicinal herb has 
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been traditionally used as an important crude drug for 
the treatment of digestive disorders, rheumatic diseases, 
night blindness, and influenza for a long time [2–5]. 
Besides that, it has been well proved that the active com-
ponents from A. lancea exert great anti-cancer effect, 
especially in treatment of cholangiocarcinoma and gas-
tric cancer [6–9]. Recently, it is interesting to find that A. 
lancea is frequently used in the treatment of Coronavirus 
Disease 2019 (COVID-19) and ranks first among the key 
Chinese herbal medicines for national epidemic preven-
tion and control in China [10, 11]. So, there is an increas-
ing demand of A. lance with high quality. The main 
production areas in China (Jiangsu, Hubei, and Henan) 
have a temperate or subtropical climate, with aridity and 
little rain in spring and high temperature in summer; 
therefore, A. lancea often faces severe drought stress dur-
ing its growth [12]. In addition, because of the scarcity 
of agricultural irrigation resources [13], artificial irriga-
tion cannot be widely implemented to alleviate drought 
stress of A. lancea. Therefore, drought has become the 
main limiting factor affecting the quality formation of A. 
lancea.

The quality formation of medicinal plants is directly 
or indirectly influenced by the physiological state of 
plants [14]. Generally, plants with better physiological 
characteristics, such as more efficient photosynthesis 
and higher stress tolerance, can form better quality than 
plants with poor physiological traits [15, 16].

As the most basic and complex physiological process, 
photosynthesis is critical to all green plants. It is well 
established that drought stress can considerably influence 
plants’ photosynthetic physiology by yellowing leaves, 
closing stomata, and weakening photosynthesis [17, 18]. 
The decreased photosynthetic capacity due to drought 
stress not only hampers the plant growth but also is 
directly/indirectly associated with the reduction of yield 
and quality in medicinal plants. Therefore, photosynthe-
sis is a crucial and widely used physiological indicator to 
assess the influence of drought stress on the quality for-
mation of medicinal plants [19]. However, there are still 
no reports about the photosynthetic response of A. lan-
cea to drought stress. This hinder the understanding of 
the influence of drought stress on the quality formation 
of A. lancea.

It is generally believed that drought stress can induce 
excessive production of reactive oxygen species (ROS) 
which often disrupt the growth and quality formation 
of plants [20]. Antioxidative enzyme in plants is the 
major defense system to scavenge ROS for maintain-
ing the normal physiological state of plants [21]. Thus, 
the high level of antioxidative enzyme activity is impor-
tant for plants to tolerate stress for keeping good growth 
state and forming good quality. Generally, when plants 

were subjected to drought stress, antioxidative enzymes’ 
activities increased initially, but decreased with elevated 
drought stress level [22]. Zhou et  al. [23] and Dai et  al. 
[24] reported that short-term drought stress could induce 
the enhanced activities of antioxidant enzymes in A. lan-
cea seedlings to reduce oxidative damage. This indicated 
that drought stress could affect the antioxidative enzyme 
activities of A. lancea. But, the plant material used in 
Zhou’s and Dai’s researches were A. lancea seedlings. 
So, it is essential to analysis the alteration of antioxida-
tive enzyme activity in the adulted A. lancea exposed 
to drought stress for understanding of the influence of 
drought stress on the quality formation of A. lancea.

The oil content of A. lancea reaches about 2.02% to 
4.06% [25]. The volatile oil, mainly composed of sesquit-
erpenes, is the main active substance of A. lancea and has 
liver-protective, analgesic, anti-viral, and gastrointestinal 
motility activities [2, 26, 27]. High levels of atractylon, 
β-eudesmol, and atractylodin are present in the vola-
tile oil, and their levels are commonly used as indices to 
evaluate the quality of A. lancea [28]. Sesquiterpenes are 
mainly synthesized by the mevalonate (MVA) pathway in 
plants [29]. The universal precursor, farnesyl diphosphate 
(FPP), can be converted into different sesquiterpene skel-
etons by different sesquiterpene synthases (SSs) [30]. 
Previous studies showed that drought stress changed the 
content of sesquiterpenes in Ocimum basilicum L. by 
regulating the expression of key genes encoding enzymes 
of terpene biosynthesis [31]. Until now, some researches 
on the biosynthetic pathway of sesquiterpenes in A. lan-
cea have been reported [32, 33], but, the effect of drought 
on accumulation and biosynthesis of sesquiterpenes in 
A. lancea is still unclear. Thus, it is essential to determine 
the accumulation of main bioactive component and to 
analysis expression level of genes related to sesquiterpene 
biosynthesis in A. lancea under drought stress. This will 
help us to understand the influence of drought stress on 
the quality formation of A. lancea.

The main research content of the present study was: 
1. To establish a transcriptome database of A. lan-
cea leaves and rhizomes under normal water manage-
ment and under drought stress using DNA sequencing, 
and to verify the accuracy of the data using quantitative 
real-time reverse transcription PCR (qRT-PCR); 2. To 
study the effects of drought stress on the photosynthetic 
physiology of A. lancea by measuring chlorophyll con-
tent, photosynthesis parameters, and chlorophyll fluo-
rescence (ChlF), and to analyze the expression levels of 
genes encoding important regulatory enzymes in photo-
synthesis; 3. To study the antioxidant ability of A. lancea 
under drought by measuring the activity of antioxidative 
enzymes and analyzing the expression levels of genes 
associated with antioxidative enzymes and 4. To study 
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the effect of drought stress on the yield and quality of A. 
lancea by determining the dry weight and the content 
of bioactive components and analyzing the expression 
levels of genes related to bioactive components’ biosyn-
thesis. Through the achievement of the above research 
content, we hope to provide a detailed understanding of 
the influence of drought stress on the quality formation 
of A. lancea. This will not only benefits for developing 
management strategy of A. lancea to minimize the qual-
ity reduction induced by drought, but also contributes to 
future drought tolerance breeding in A. lancea.

Results
Transcriptomic profiles, differentially expressed genes 
(DEGs) clustering analysis, and qRT‑PCR validation
A total of 351,123,566 high-quality clean reads with a 
Q20 ≥ 97.86% and a GC base ratio between 44.84% and 
46.01% (Table S1) were generated. After assembling the 
clean reads, 82,677 unigenes and 14,0145 transcripts 
were obtained (Table S2). The detailed annotation results 
of the 82,677 unigenes were shown in Fig. 1A, and the top 
four similar species were Cynara cardunculus (51.96%), 
Lactuca sativa (12.31%), Helianthus annuus (9.03%), and 
Artemisia annua (8.67%) (Fig. 1B). These four species all 
belong to the Asteraceae family, as does A. lancea.

Using p-adjust < 0.001 and |log2FC|≥ 1, 30,510 DEGs 
were obtained between drought treatment (DT) group 
and control (CK) group. Using cluster analysis, these 
30,510 DEGs could be divided into six clusters according 
to their pattern of gene expression. Cluster 1 contained 
4160 DEGs that were downregulated in both leaves 
and rhizomes. Cluster 2 comprised 2714 genes whose 

expression was downregulated in leaves, but was not sig-
nificantly different in rhizomes. Cluster 3 contained 3377 
genes that were downregulated in leaves and upregu-
lated in rhizomes. Cluster 4 contained 6452 DEGs whose 
expression was downregulated in rhizomes but was not 
significantly different in leaves. Cluster 5 contained 6452 
DEGs that were upregulated in leaves and downregulated 
in rhizomes. Cluster 6 contained 7480 genes that were 
upregulated genes in both leaves and rhizomes (Fig. 2A). 
GO functional enrichment analysis were performed 
on the DEGs in the six clusters (Fig.  2B). It is interest-
ing that many DEGs in cluster 1 and cluster 5 were 
enriched in GO terms associated with redox processes, 
such as "oxidoreductase activity" (GO:0,016,901), "hydro-
gen peroxide metabolic process" "(GO:0,042,743), and 
"monooxygenase activity" (GO:0,004,497). In addition, 
DEGs in cluster 3 were mainly enriched in GO terms 
related to photosynthesis, such as "chloroplast thylakoid 
membrane" (GO:0,009,535) and "photosynthetic mem-
brane" (GO:0,034,357), and these genes are all downregu-
lated in leaves, suggesting that the photosynthesis of A. 
lancea was inhibited by drought stress.

These 30,510 DEGs were also associated with 133 
KEGG pathways (Figure S1), among which 100 pathways 
belonged to metabolism, accounting for the majority of 
DEGs. It is worth noting that three pathways were related 
to photosynthesis and five pathways were associated with 
terpenoid biosynthesis (Table 1).

The expression levels of five selected genes (DN15090_
c0_g1, DN474_c1_g1, DN18330_c1_g1, DN47389_c0_g1, 
and DN54795_c0_g2) calculated using qRT-PCR were 
listed in Table S3. The gene expression trends were 

Fig. 1  Number of unigenes annotated in the six databases (A) and the species annotation results based on NR database (B) in A. lancea 
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consistent with those in the transcriptome sequenc-
ing data, confirming that the transcriptome-based DEG 
results were reliable to identify drought-responsive genes 
in the present study.

Changes in the photosynthesis system and associated 
gene expression analysis
Under drought stress, all of the measured photosynthesis 
parameters of A. lancea showed obvious alterations. As 
the duration of drought stress treatment increased, the 
chlorophyll (CHL) content, net photosynthesis (Pn) and 
stomatal conductance (Gs) of A. lancea all showed con-
tinuous downward trends (Fig.  3A-3C). On the 15th of 

treatment, the values of CHL, Pn and Gs in the DT group 
were significant smaller than those in the CK group. 
The intercellular carbon dioxide concentration (Ci) of 
A. lancea started to decrease within 4  days of drought 
treatment and then began to increase from the 5th day 
of drought stress treatment, leading to a higher final Ci 
in the DT group (Fig.  3D). As for chlorophyll fluores-
cence, drought stress caused a significant reduction in 
the potential yield of the photochemical reaction of PsII 
(Fv/Fm) and the longer the drought stress, the greater 
the reduction (Fig. 3E). The value of non-photochemical 
quenching (NPQ) also altered significantly as the pro-
longed drought treatment, increased on the first 4 days, 
and then decreased from the 5th day (Fig. 3F).

To gain a deeper understanding of the mechanisms 
underlying the reduced photosynthesis of A. lancea 
under drought stress, 31 DEGs encoding key enzymes 
participating in the light and dark reactions of photosyn-
thesis were identified in leaves. Among these 31 DEGs, 
11 were upregulated and 20 were downregulated. In 
total, among seven DEGs involved in the light reaction 
(Fig.  4A), DN31152_c0_g2 (F-type H+/Na+ ATP syn-
thase gene) and DN1739_c0_g1 (photosystem I P700 
apoprotein A1gene) were upregulated. The other five 
downregulated DEGs associated with the light reac-
tion were DN21336_c0_g1 (photosystem I P700 apo-
protein A1 gene), DN19968_c0_g1 and DN32471_c0_g1 
(F-type H+/Na+ ATP synthase gene), DN18889_c0_g1 

Fig. 2  The cluster analysis (A) and GO functional enrichment (B) of DEGs in A. lancea 

Table 1  Pathways related to photosynthesis and terpenoid 
biosynthesis

pathway ID Description Number 
of DEGs

map00195 Photosynthesis 18

map00196 Photosynthesis—antenna proteins 6

map00710 Carbon fixation in photosynthetic organisms 51

map00909 Sesquiterpenoid and triterpenoid biosynthesis 26

map00900 Terpenoid backbone biosynthesis 27

map00904 Diterpenoid biosynthesis 14

map00902 Monoterpenoid biosynthesis 25

map01062 Biosynthesis of terpenoids and steroids 1
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(photosystem II CP47 reaction center protein gene), 
and DN60086_c0_g1 (photosystem II reaction center W 
protein gene). Twenty-four DEGs were involved in dark 
reaction, among which 9 DEGs were upregulated and 15 
were downregulated (Fig.  4B). The upregulated 9 DEGs 
included five malate dehydrogenase genes (DN7011_c0_
g1, DN18398_c0_g1, DN48988_c0_g1, DN69445_c0_g1 
and DN39038_c0_g1), a glyceraldehyde-3-phosphate 
dehydrogenase gene (DN1992_c4_g1), a ribose-5-phos-
phate isomerase gene (DN1163_c0_g2), a phosphoglyc-
erate kinase gene (DN34957_c0_g1) and a pyruvate, 
phosphate dikinase gene (DN23841_c0_g1). The 15 
downregulated DEGs included six malate dehydrogenase 
genes (DN1618_c0_g2, DN45011_c0_g1, DN3381_c1_g1, 
DN16280_c0_g1, DN61455_c1_g1, and DN17392_c0_g1), 
two triosephosphate isomerase genes (DN7162_c3_g1 
and DN24632_c0_g2), a ribulose bisphosphate carboxy-
lase gene (DN1343_c0_g2), a glyceraldehyde-3-phosphate 
dehydrogenase gene (DN4492_c0_g3), an alanine ami-
notransferase gene (DN14431_c0_g1), a pyruvate, phos-
phate dikinase gene (DN4030_c0_g2), a phosphoglycerate 
kinase gene (DN9649_c0_g1), a phosphoenolpyruvate 
carboxykinase gene (DN3731_c0_g1), and a fructose-
1,6-bisphosphatase gene (DN39571_c0_g2).

Changes in the protective enzymes system and associated 
gene expression analysis
The activities of SOD, POD, CAT and APX were higher 
in the DT group than those in the CK group during the 
early stage of drought stress. For SOD and POD, the 

early stage of drought stress was 0 to 8  days. For CAT 
and APX, it was 0 to 4  days. After the early stage, the 
activities of these enzymes began to decrease. On the 
15th day of drought stress, the activity of the four anti-
oxidative enzymes were all different with those in the CK 
group. The activitives of SOD and APX in the DT group 
were significantly lower than those in the CK group. The 
POD activity was significantly higher than that in the 
CK group and CAT activity is slightly (non-significantly) 
lower than that in the CK group (Fig.  5A-5D). In addi-
tion, the amount of MDA increased rapidly in A. lancea 
under drought stress, while there was no change in MDA 
levels in the CK group (Fig. 5E). The relative conductivity 
showed a similar result to the MDA content (Fig. 5F).

The detailed analysis of transcriptome of A. lancea 
under normal water management and under drought 
stress provided a large number of DEGs encod-
ing antioxidant enzymes. There were five SOD genes 
(DN3525_c0_g1, DN19179_c0_g3, DN19917_c0_g1, 
DN474_c1_g1, and DN53562_c0_g1) and ten CAT 
genes (DN5539_c0_g4, DN42828_c0_g1, DN3870_c0_
g1, DN49828_c0_g1, DN9135_c1_g1, DN5359_c0_g1, 
DN3848_c0_g1, DN7441_c0_g1, DN25688_c0_g1, 
and DN3848_c0_g2). These 15 DEGs were all down-
regulated under drought stress. In addition, 18 POD 
genes were obtained, including six upregulated DEGs 
(DN21191_c0_g1, DN4672_c0_g2, DN51705_c0_g1, 
DN35661_c0_g1, DN2622_c1_g1, and DN18330_c1_g1)
and 12 downregulated DEGs (DN838_c0_g1, DN68449_
c0_g1, DN7681_c1_g1, DN75393_c0_g2, DN9309_c0_g2, 

Fig. 3  Chlorophyll content (A), Pn (B), Gs (C), Ci (D), Fv/Fm (E), and NPQ (F) of A. lancea under drought stress. The values are presented as the 
means ± SD. One asterisk and two asterisks indicate significantly different values in DT compared to CK at p ≤ 0.05 and p ≤ 0.01, respectively
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Fig. 4  DEGs involved in light reaction (A) and dark reaction (B) of photosynthesis
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DN40830_c0_g1, DN52474_c0_g4, DN42408_c0_g1, 
DN61971_c0_g1, DN45395_c0_g1, DN19722_c0_g2, and 
DN15530_c0_g3).

It has been reported that ROS can act as second mes-
sengers to transduce the signal to transcription factors, 
thus in turn activate gene expression of antioxdative 
enzymes. So, we also paid attention to DEGs associated 

with ROS production and found that 21 downregulated 
DEGs were related to the respiratory electron trans-
port chain under drought stress (Fig.  6). The 21 DEGs 
comprised four NADH: ubiquinone oxidoreductase 
genes (DN215_c1_g1, DN13447_c0_g2, DN5922_c2_
g2, and DN30220_c0_g1), two cytochrome-c oxidase 
genes (DN7184_c0_g1 and DN26312_c0_g1), and 15 

Fig. 5  SOD (A), POD (B), CAT (C), APX (D) activities, MDA content (E) and relative conductivity (F) of A. lance under drought stress. The values are 
presented as the means ± SD. One asterisk and two asterisks indicate significantly different values in DT compared to CK at p ≤ 0.05 and p ≤ 0.01, 
respectively

Fig. 6  The hypothetical regulatory network about the effect of drought stress on the oxidative enzyme activities of A. lancea 



Page 8 of 14Zhang et al. BMC Plant Biol          (2021) 21:293 

ATP synthase genes (DN7129_c0_g1, DN1539_c0_g1, 
DN1467_c0_g1, DN19968_c0_g1, DN5265_c0_g1, 
DN14586_c0_g1, DN4776_c0_g1, DN32471_c0_g1, 
DN5303_c1_g2, DN2129_c1_g1, DN2238_c0_g2, DN1584_
c1_g3, DN17811_c0_g1, DN27345_c0_g1 and 
DN77850_c0_g1).

Changes in bioactive component contents and associated 
gene expression analysis
The rhizomes of A. lancea, sampled after 15  days of 
drought stress treatment, were used as the experimental 
materials for quality assessment. Morphologically, the 
rhizomes of A. lancea from the DT group were smaller 
than those from the CK group (Fig.  7A). Moreover, 
drought stress treatment led to a reduction in the dry 
weight of A. lancea rhizomes. The average dry weight 
of the rhizomes from the DT group was 7.85 ± 2.01  g, 
while the average dry weight of the rhizomes from the 
CK group was 14.23 ± 4.16 g. The proportion of essential 
oil also showed difference between the two groups. The 
essential oil content of A. lancea in the CK and DTgroup 
was 0.111 ml/g and 0.096 ml/g, respectively. In addition, 
the content of three bioactive components (atractylon, 
β-eudesmol, and atractylodin) all showed decreasing 

trends in A. lancea in the DT group compared with that 
in the CK group (Fig.  7B). Importantly, the amount of 
atractylon decreased significantly (P < 0.05). Notably, a 
sharp reduction (P < 0.01) was observed in the content of 
β-eudesmol.

We next turned our attention to DEGs associated with 
“terpenoid backbone biosynthesis” (map00900) and “ses-
quiterpenoid and triterpenoid biosynthesis” (map00909) 
and identified 18 DEGs associated with sesquiterpenoid 
biosynthesis. Among them, eight DEGs were related to 
the MVA pathway, including two hydroxymethylglutaryl-
CoA synthase genes (DN8392_c0_g1 and DN2865_c0_
g3), four hydroxymethylglutaryl-CoA reductase genes 
(DN48911_c0_g2, DN1889_c2_g2, DN86031_c0_g1, and 
DN16497_c0_g1), and two diphosphomevalonate decar-
boxylase genes (DN79187_c0_g1 and DN23531_c0_g1). 
Under drought stress, some of these 8 genes were upreg-
ulated and some were downregulated, i.e., they did not 
show a consistent pattern. In addition, 10 DEGs associ-
ated with sesquiterpene synthase were obtained. Among 
them, seven (DN56449_c0_g2, DN2689_c0_g2, DN1597_
c0_g1, DN54795_c0_g2, DN18787_c0_g2, DN1159_c0_g1, 
and DN3448_c0_g2) were significantly downregulated 
(Fig. 8) and three (DN18629_c0_g2, DN18787_c0_g1, and 

Fig. 7  Morphology, dry weight (A) and bioactive component content (B) of A. lancea under drought stress. The determination of each component 
was performed for three times. One asterisk represents a significant difference of p < 0.05 and two asterisks represent a significant difference of 
p ≤ 0.01

Fig. 8  The effect of drought stress on the biosynthesis pathway of sesquiterpene in A. lancea 
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DN85030_c0_g1) were upregulated. These sesquiterpene 
synthase genes were mainly differentially expressed in 
rhizomes (n = 8) with only two expressed in leaves.

Discussion
The quality formation of medicinal plant is an extreme 
complex process which was mainly determined by two 
aspects: heredity and environment [34]. Certainly, suit-
able environment is quite important for the quality 
formation of medicinal plants [35]. However, with the 
deterioration of the global climate, encountering drought 
stresses has been more common and frequent during 
medicinal plants’ growth. Thus, drought has become a 
crucial limiting factor that influence the quality forma-
tion of medicinal plants [36, 37]. In present study, the 
effect of drought stress on the quality formation of A. 
lancea was studied by analyzing photosynthesis, anti-
oxidative enzyme activity and bioactive component 
accumulation.

Photosynthesis is particularly sensitive to drought 
stress and often is inhibited because of stomata closure 
induced reduced CO2 supply and further metabolic 
impairment by drought stress [38, 39]. Generally, the 
total dry matter production of a plant is equal to its net 
photosynthesis [40]. So, drought stress causes a reduc-
tion of photosynthesis rates in medicinal plants, leading 
to low yields of medicinal plants. In present study, the 
significant decrease of Pn in A. lancea from the DT group 
confirmed that drought stress lasted for 15  days caused 
obvious photosynthesis inhibition in A. lancea. This 
result was consistent with previous studies [41, 42]. The 
continuous declined Gs indicated that limitations of CO2 
uptake caused by stomata closure was responsible for 
photosynthesis inhibition [43]. With prolonged drought 
stress, Ci began to increase, suggesting that metabolic 
impairment induced by drought became another main 
limiting factor. Rubisco (ribulose bisphosphate carboxy-
lase) is the key enzyme participated in the first stage of 
the Calvin cycle by catalyzing ribulose-1,5-bisphosphate 
and CO2 to form two molecules of 3 phosphoglyceric 
acid (3-PGA) [44]. In the present study, A Rubisco gene 
(DN1343_c0_g2) was significantly downregulated under 
drought stress, indicating that drought stress caused 
metabolic impairment in A. lancea by inhibiting the car-
boxylation reaction of CO2. The rate of photosynthesis 
also depends on the regeneration of RuBP [45]. Fructose-
1,6-bisphosphatase (FBP) and triosephosphate isomerase 
(TPI) can catalyze glyceraldehyde-3-phosphate (GAP) 
through a series of transformations to reform RuBP [46, 
47]. A FBP gene (DN39571_c0_g2) and two TPI genes 
(DN7162_c3_g1 and DN24632_c0_g2) were significantly 
downregulated, indicated that drought stress could also 

cause metabolic impairment in A. lancea by hindering 
the regeneration of RuBP.

The Fv/Fm ration represent the potential yield of the 
photochemical center of photosystem II (PSII) [48]. The 
value of Fv/Fm ration has been reported to stay around 
0.83 among many different plant species under normal 
growth conditions [49]. When the plant was exposed 
to drought stress, Fv/Fm is particularly sensitive and its 
value decreased greatly [50]. Thus, Fv/Fm has already 
become an important parameter to judge the physi-
ological state of plants under drought stress. In present 
study, the Fv/Fm value of A. lancea in the CK group was 
kept at a relative stable level, while the Fv/Fm in the DT 
group showed a significantly reduction. This demon-
strated that the efficiency of light energy conversion and 
electron transfer activities were all markedly inhibited 
under drought stress. The characteristic decrease of Fv/
Fm induced by drought stress was consistent with pre-
vious studies [51, 52]. The reduction in Fv/Fm is often 
associated with an increase in the efficiency of non-pho-
tochemical quenching (NPQ) [53]. Under drought stress, 
the significantly increased NPQ showed that excessive 
irradiation could be dissipated into heat to protect A. 
lancea from drought-induced damage. The observed 
reduction in efficiency of PSII was concomitant with the 
down-regulation of genes belonging to the PSII category 
induced by drought stress, evidencing that the reduced 
efficiency of PSII was the other main limiting factor of 
photosynthesis inhibition in A. lancea under drought 
stress.

Combined with the lower dry weight of A. lancea under 
drought stress, we inferred that drought inhibited photo-
synthesis of A. lancea by closing stomata, reducing the 
CHL content, limiting the efficiency of PSII and induc-
ing metabolic impairment, which led to a yield decline, 
thereby affecting the quality formation of A. lancea.

Drought stress inevitably causes excessive produc-
tion of ROS, which can oxidize biofilms, form lipid per-
oxidation products, and damage cells [54]. Antioxidative 
enzymes form the first line of defense against ROS and 
have been reported to contribute directly or indirectly in 
drought tolerance of many plants, such as rice [55], alfalfa 
[56] and canola [57]. Adebayo (2015) stated that sus-
tained yields in maize under drought stress were directly 
related to better antioxidant activities [58]. In present 
study, the activities of SOD, POD, CAT and APX were 
higher in the DT group than those in the CK group dur-
ing the early stage of drought stress. This was consistent 
with Zhou’s and Dai’s researches. This implied that dur-
ing the early stage of drought stress, ROS acted as sec-
ond messengers involved in the stress signal transduction 
pathway to activate antioxidative enzyme activity. Like 
other plants, the induction of antioxidant enzyme activity 
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is an adaptation strategy which A. lancea use to overcome 
oxidative stresses. The balance between ROS produc-
tion and activities of antioxidative enzymes determined 
whether oxidative signaling and/or damage would occur 
[59]. As the duration of drought treatment increased, the 
activities of all four antioxdative enzymes decreased. On 
the 15th day, except for POD, the activities of SOD, CAT 
and APX were lower compared with those in the CK 
group. And gene expression analysis identified 35 anti-
oxidant enzyme genes and 26 of them were significantly 
downregulated under 15  days’ drought stress. This may 
reflect the low ROS scavenging capacity and increased 
damage in A. lancea under 15 days’ drought stress. The 
decrease of antioxidant enzyme activity under progres-
sive drought stress also has been reported by many pre-
vious studies. In addition, 21 significantly downregulated 
genes related to the respiratory electron transport chain 
in A. lancea under drought stress, suggested that the 
blocked electron transport would accelerate the accumu-
lation of ROS [60]. So, it could be concluded that the level 
of ROS induced by 15 days of drought stress in A. lancea 
was beyond the adjustable range of the plant itself, and 
the antioxidative enzyme system could no longer remove 
the excessive ROS. The markedly elevated level of MDA 
and relative conductivity under drought stress also evi-
denced the severe oxidative damage to A. lancea caused 
by drought stress. Taken together, our data suggested that 
the significant decline of antioxidative enzyme activity 
was an important factor affecting A. lancea’s stress toler-
ance, thereby affecting the quality formation of A. lancea.

The amount of volatile oil and the content of atractylon, 
β-eudesmol, and atractylodin are often used as indices to 
evaluate the quality of A. lancea [28]. In present study, 
not only the amount of volatile oil, but also the content of 
atractylon, β-eudesmol, and atractylodin decreased in A. 
lancea under drought stress. This confirmed that 15 days’ 
drought stress negatively affected the quality of A. lan-
cea. Expression analysis of genes related to sesquiterpene 
biosynthesis provided 18 DEGs. Although there was not 
a consistent pattern about the expression regulation of 
DEGs involved in the upstream of sesquiterpene biosyn-
thesis, seven DEGs ecoding sesquiterpene synthase, a key 
regulatory enzyme in the downstream of sesquiterpene 
biosynthesis were significantly downregulated. This sug-
gested that drought stress could reduce the accumulation 
of sesquiterpene components by reducing the expression 
levels of associated sesquiterpene synthase genes. Over-
all, the downregulated gene expression of sesquiterpene 
synthase and the low amounts of volatile oil, atractylon, 
β-eudesmol, and atractylodin illustrated that drought 
stress slowed down the bioactive components’ biosynthe-
sis and accumulation, thereby affecting the quality forma-
tion of A. lancea.

Conclusions
Drought stress affected the quality formation of A. lan-
cea from the following three aspects. First, genes encod-
ing important regulatory enzymes in dark reaction were 
downregulated significantly, the efficiency of PSII was 
limited, thus, photosynthesis was significantly inhibited. 
Second, gene expression and activities of antioxidative 
enzymes were mostly downregulated, thus, the stress tol-
erance of A. lancea was impaired. Third, gene expression 
of key enzymes involved in sesquiterpene biosynthesis 
were down-regulated, thus, the accumulation of bioactive 
components was slowed down in A. lancea.

Methods
Plant materials and drought stress treatment
A. lancea was obtained from Maoshan (N31°79′14.98’’, 
E119°32′19.56’’), Jurong, Jiangsu Province, China and 
identified as Atractylodes lancea (Thunb.) DC by Profes-
sor Wei Gu (School of Pharmacy, Nanjing University of 
Chinese Medicine, China). The voucher was deposited 
in Department of Chinese Medicine Resources, Nanjing 
University of Chinese Medicine with ID MCZ-19–001.
The A. lancea used in the present study were artificially 
cultivated, so, there was no permission needed for the 
collection of A. lancea. Then the plants were transplanted 
in the Medicinal Botanical Garden, Nanjing University of 
Traditional Chinese Medicine (NUTCM). Five A. lancea 
plants were in a plastic pot (top diameter 38 cm, bottom 
diameter 32 cm, height 35 cm) with approximately 20 kg 
dry soil. The potted plants were grown in a greenhouse 
with 25  °C, 60% relative humidity and 14 h of light and 
10 h of darkness. Soil taken from the Medicinal Botani-
cal Garden of NUTCM was air-dried naturally and then 
passed through a 5  mm sieve. The experimental soil 
was prepared by mixing the air dried soil and farmyard 
manure evenly in a ratio of 4:1. The detailed informa-
tion of the prepared experimental soil was as followed: 
texture, loam; organic matter, 12.74 g/kg; total nitrogen, 
2.12 g/kg, total phosphorous, 3.57 g/kg; total potassium, 
12.53  g/kg; alkalihydro nitrogen, 63.38  mg/kg; available 
phosphorus, 20.53 mg/kg; available potassium, 49.86 mg/
kg; pH, 6.52. After adaption for two weeks, sixty A. lan-
cea plants with similar growth rates were randomly 
divided into two groups: CK group and DT group. Soil 
water content was measured using a TZS-IIW Soil Mois-
ture Meter (Zhejiang Top Instrument Co., Ltd, Zhejiang, 
China). The water content was kept at 55% to 65% and 
25% to 35% of saturated soil water content in the CK 
group and the DT group for 15 days, respectively. At 0, 2, 
4, 8, and 15 days of the stress treatment, leaves of the two 
groups were collected and divided into two parts. One 
part was used for physiological index measurements and 
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the other part was immediately frozen in liquid nitrogen 
for RNA extraction. In addition, the rhizomes of the two 
groups were collected at 0, 2, 4, 8, and 15 days and were 
also divided into two parts. One half of each sample was 
frozen in liquid nitrogen to be used for RNA extraction, 
and the other half was oven-dried at 40 °C to a constant 
weight for quality analysis.

Illumina sequencing and functional annotation
Leaves and rhizomes of the two groups collected at 
15 days were used to isolate total RNA using an RNeasy 
Plus Mini Kit (#74,134; Qiagen, Hilden, Germany). The 
cDNA was synthesized using the fragmented mRNA 
as a template. PCR amplification was then performed, 
and then high-throughput sequencing was performed 
on a Illumina HiSeq TM 4000 instrument by Shang-
hai Megi Biomedical Technology Co., Ltd (Shanghai, 
China). Fastx_toolkit_0.0.14 (http://​hanno​nlab.​cshl.​edu/​
fastx_​toolk​it/) was used for quality assessment of the 
raw sequencing data. After obtaining high-quality clean 
reads. Trinity_v2.8.5 (https://​github.​com/​trini​tyrna​seq/​
trini​tyrna​seq) was used to assemble the clean reads into 
transcript sequences, and TransRate (http://​hibbe​rdlab.​
com/​trans​rate) was applied to filter the transcripts. The 
optimized transcript sequences were stored as FASTQ 
files under the project accession numbers (SRR8699030, 
SRR8699031, SRR8699032, and SRR8699033) in the 
Short Read Archive database of the NCBI.

Gene annotation information was obtained by BlastX 
searching in the NCBI non-redundant protein database 
(NR, http://​www.​ncbi.​nlm.​nih.​gov), and by analysis using 
the following database resources: Cluster of Orthologous 
Groups (COG), Swissprot (http://​www.​expasy.​ch/​sprot), 
Kyoto Encyclopedia of Genes and Genomes (KEGG, 
http://​www.​genome.​jp/​kegg), Pfam (http://​pfam.​xfam.​
org/), and Gene Ontology (GO, http://​www.​geneo​ntolo​
gy.​org). The E-value was set to 1E−5.

Gene expression analysis and qRT‑PCR validation
Gene expression was calculated using RSEM (http://​
dewey​lab.​github.​io/​RSEM/) and normalized by the 
FPKM (Fragments per Kilobases per Million reads) value. 
EdgeR_3.24.3 (http://​bioco​nduct​or.​org/​packa​ges/​stats/​
bioc/​edgeR/) were used to obtain DEGs, and Bonferroni 
one-step correction was used as a multiple test correc-
tion method, and p-adjust < 0.05 and |log2fold-change 
(FC)|≥ 2 were used as criteria. Fisher’s exact test was 
used for DEG enrichment analysis. When the false dis-
covery rate (FDR) was < 0.05, the GO function item or 
the KEGG pathway was considered to be significantly 
enriched for the DEG.

Expression levels of five randomly selected genes 
(DN15090_c0_g1, DN474_c1_g1, DN18330_c1_g1, 

DN47389_c0_g1, and DN54795_c0_g2) were analyzed to 
validate the accuracy of transcription sequencing results. 
The qRT-PCR reaction was performed according to the 
Platinum® SYBR® Green qPCR Supermix UDG real-time 
PCR kit instructions (Thermo Fisher Scientific, Waltham, 
MA, USA). The qPCR reaction comprised: Pre-denatur-
ation at 94  °C for 5 min, followed by 40 cycles of dena-
turation at 94  °C for 30  s, annealing at 62  °C for 30  s, 
and extension at 72 °C for 40 s. EF1A1 (encoding EF-1α) 
was used as an internal reference gene, and the 2−ΔΔCt 
method was used to calculate the relative expression level 
of a gene. The experiment was performed three times, 
and each sample was assessed three times. The specific 
qPCR primers were designed using Primer Premier 5.0 
software (PREMIER Biosoft International,San Francisco, 
CA, USA) and were supplied by Generay Biotech Co., 
Ltd. (Shanghai, Chins; Table S4).

Photosynthesis measurement
An LI-6400XT photosynthesis-fluorescence measure-
ment system was applied to measure photosynthesis and 
chlorophyll fluorescence parameters. The determination 
of net photosynthesis (Pn), stomatal conductance (Gs), 
and the intercellular carbon dioxide concentration (Ci) 
were carried out between 9:00 and 11:00 in the morn-
ing. After being subjected to dark adaptation treatment 
for 2 h from 12 noon, the plants were subjected to pho-
tochemical efficiency measurement to obtain the Fv/Fm 
(the ratio of variable to maximum fluorescence). Then, 
after 1 h of light activation, non-photochemical quench-
ing (NPQ) was measured. The content of CHL was deter-
mined using Arnon’s method [61].

Protective enzyme activity
The content of MDA was measured using the thiobarbi-
turic acid method [62]. A conductivity meter, BDS-6300 
(Shanghai Yidian Scientific Instrument Co., Ltd. Shang-
hai, China), was used to determine the relative conduc-
tivity. The riboflavin-trinitrotoluene chloride (NBT) 
method and guaiacol method were applied to detect SOD 
and POD activity [63]. The activities of CAT and APX 
were determined using a UV spectrophotometer UV 
5200 (Shanghai Metash Instruments Co., Ltd. Shanghai, 
China) at 240 nm and 290 nm, respectively [62].

Determination of bioactive components
Essential oil was collected by steam distillation according 
to the volatile oil extraction method in the 2020 edition 
of the Chinese Pharmacopoeia [64].

A Waters e2695 series high performance liquid chro-
matography (HPLC) system (Waters Technology 
(Shanghai) Co. Ltd., Shanghai, China) was employed to 
analyze the samples. A Welchrome C18 analytical column 
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(250  mm × 4.6  mm, 5  mm; Shanghai Welch Technol-
ogy Co. Ltd., Shanghai, China) was used and the mobile 
phase was acetonitrile (A) and 0.1% v/v formic acid solu-
tion (B) at a flow rate of 1 mL·min−1. The gradient was as 
follows: 0–5 min, 10% A, 5–6 min, 14% A, 6–22 min, 30% 
A, 22–27  min, 52% A, 27–55  min, 80% A, 55–65  min, 
100% A. The column temperature was 30  °C and the 
injection volume was 10 µL. The detection wavelength 
was 340  nm for atractylodin and 203  nm for atractylon 
and β-eudesmol, respectively. The reference standards of 
atractylodin, atractylon, and β-eudesmol were purchased 
from Shanghai Yuanye Bio-Technology Co., Ltd (Shang-
hai, China).

Four hundred milligrams of rhizome sample powder 
and 10 mL of methanol were placed together in a brown 
triangular bottle and weighted precisely. After ultrasonic 
extraction for 40  min and cooling to room tempera-
ture, methanol was added to the mixture to make up for 
weight loss. Then, the supernatant was passed through a 
0.45-μm micro-porous membrane to prepare the sample 
solution for HPLC analysis.

Statistical analysis
All data were assessed for significant differences (P < 0.05) 
using one-way analysis of variance (ANOVA) with Bon-
ferroni correction using SPSS 20.0 software (IBM Corp., 
Armonk, NY, USA). Each experiment was performed 
three times independently and all data were presented 
as the mean and standard deviation (SD). The GraphPad 
Prism 8 (GraphPad Software, San Diego, CA, USA) was 
used to construct graphs.
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