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Abstract: In this paper, a switchable and dual-tunable terahertz absorber based on patterned
graphene and vanadium dioxide is proposed and analyzed. By controlling the Fermi level of
graphene and the temperature of vanadium dioxide, the device’s function can be switched and its
absorbing properties can be tuned. When the vanadium dioxide is in an insulator state, the device
can be switched from near-total reflection (>97%) to ultra-broadband absorption (4.5–10.61 THz)
as the Fermi level of graphene changes from 0 to 0.8 eV. When the vanadium dioxide is changed
to a metal state, the device can act as a single-band absorber (when the Fermi level of graphene
is 0 eV) and a dual-band absorber with peaks of 4.16 THz and 7.3 THz (when the Fermi level of
graphene is 0.8 eV). Additionally, the absorber is polarization-insensitive and can maintain a stable
high-absorption performance within a 55◦ incidence angle. The multilayered structure shows great
potential for switchable and tunable high-performance terahertz devices.

Keywords: multilayered; switchable; dual-tunable; terahertz; patterned graphene; phase-change
material vanadium dioxide

1. Introduction

The efficient absorption of incident waves in terahertz (THz) bands is of significance
for a wide range of applications such as imaging, food quality control, communication,
spectroscopy, and sensing devices [1–6]. Metamaterial THz technology has been widely
used and investigated in absorbers [7–11]. Graphene is considered one of the most promis-
ing metamaterials for tunable THz absorbers since its conductivity can be easily changed
either by manipulating the Fermi energy through chemical doping or by applying a gate
voltage [12–15]. Owing to its distinctive electromagnetic and optical properties, graphene
is widely considered one of the most effective and promising metamaterials for designing
tunable THz absorbers. Different broadband absorbers made of graphene with patterned
disks and ribbons have been widely studied [7,16–19]. Multilayer structure graphene-based
absorbers and dual-band absorbers have also been proposed and analyzed [1,20–24]. How-
ever, the tunability of graphene absorbers is still limited since, in practice, the Fermi energy
level can only be tuned within a small range of 0–0.9 eV [25,26]. Moreover, most of the
absorbers exhibit a single and unswitchable function that cannot meet various applications.

An efficient approach for realizing switchable and tunable terahertz absorbers is to
combine other materials with graphene. This achieves switchable functionality and pro-
vides extra tunability. Vanadium dioxide (VO2) is an important phase change material that
represents an insulator-to-metal transition. Its conductivity can be increased by four to five
orders of magnitude under light, thermal approaches, and external stimuli [27,28]. When its
temperature exceeds the temperature required for phase transition (68 ◦C), a sharp change
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in conductivity occurs until a conductivity of 2 × 105 S/m is attained. This phase change
leads to a reversible transition of infrared light from transmission to reflection [29,30]. VO2
can undergo remarkable changes in its electromagnetic characteristics and can also be
applied in tunable broadband THz absorber designs [31,32]. In this work, we designed a
multilayered THz absorber based on the combination of patterned graphene and VO2. By
controlling the Fermi levels of graphene and the temperature of VO2, the device’s function
can be switched and its absorbing properties can be tuned. When VO2 is in an insulator
state, the device can be switched from near-total reflection (>97%) to ultra-broadband ab-
sorption 6.11 THz (4.5–10.61 THz) as the Fermi level of graphene changes from 0 to 0.8 eV.
When VO2 is transmitted to a metallic state, the device can act as a single-band absorber
with an absorption band of 0.84 THz (when the Fermi energy level of graphene is 0 eV)
and a dual-band absorber with absorption peaks of 4.16 THz and 7.3 THz (when the Fermi
energy level of graphene is 0.8 eV). Moreover, the absorber is polarization-insensitive and
can maintain a stable high-absorption performance within a 60◦ incidence angle. In this
work, the absorption mechanism is analyzed first with an impedance matching concept [33]
and then investigated by electric field distribution. Our results indicate that the device
shows great potential for switchable and tunable terahertz applications.

2. Materials and Model
2.1. Patterned Graphene

As a 2D material, the surface impedance of graphene is characterized by Kubo’s
formula [34]:

σg( f , µc, τ, T) = je2(2π f−jτ−1)}
π}2

[
1

(2π f−jτ−1)
2

∫ ∞
0 ε
(

∂ fd(ε)
∂ε −

∂ fd(−ε)
∂ε

)
dε

−
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0
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(2π f−jτ−1)
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[
exp
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)
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]−1

is the Fermi–Dirac distribution, and µc and τ are
the chemical potential and the relaxation time of graphene, respectively. }, KB, and T
are the reduced Planck constant, the Boltzmann constant, and the temperature in Kelvin,
respectively. In addition, the surface conductivity of graphene can be divided into two parts:
σg = σintra + σinter, where σinter is the inter-band conductivity and σintra is the intra-band
conductivity. Compared with σintra, the inter-band conductivity (σinter) in the terahertz
band can be safely neglected based on the Pauli exclusion principle. Finally, the surface
conductivity of graphene can be approximated to be a Drude model [35]:

σg( f , µc, τ, T) ≈ σintra( f , µc, τ, T) =
e2µc

π}2
j

(2π f + jτ−1)
(2)

The surface conductivity of graphene can change by controlling its chemical potential.
The relation of µc and bias voltage (Vg) can be expressed by the following approximate
form [36]:

µc = }vF

√
πε0εhvg

eh
(3)

where εh is the permittivity of the dielectric layer, ε0 is the permittivity of the vacuum,
vg is the bias voltage, e is the electron charge, and vF is the Fermi velocity. The surface
impedance (Zg) of the graphene can be written as follows [37]:

Zg =
1
σg

(4)

In our simulations, we assumed a relaxation time of τ = 0.1 ps and a temperature of
T = 300 K. The finite element method was used to investigate the absorption performance
of the proposed absorber in the frequency range of 1 to 11 THz. We numerically calculated
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the real and imaginary parts of the surface impedance of the graphene film with different
chemical energies. The results are shown in Figure 1. The real part remains constant
with an increase in the frequency, whereas the imaginary part increases monotonously as
the frequency increases. It can also be observed that the real and imaginary parts of the
surface impedance decrease as the chemical potential of graphene increases. Tuning can
be achieved by controlling the gate voltage using an ion-gel top configuration [38]. This
changes the surface impedance of the patterned graphene. Therefore, a tunable absorber
is achievable.
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2.2. Phase-Change Material VO2

Within THz range, the relative permittivity of VO2 can be described by the Drude
model [39]:

εVO2(ω) = ε∞ −
ω2

P(σVO2)

ω2 + iγω
(5)

ω2
P(σVO2) =

σVO2

σ0
ω2

P(σ0) (6)

where ε∞ is the infinite frequency permittivity with a numerical value of 12, γ = 5.75× 1013 s−1

expresses the damping frequency, and ω is the angular frequency of the incident wave.
Additionally, σ0 = 3× 105 S/m and ωp(σ0) = 1.4× 1015 rad/s. The conductivity of VO2
spans several orders of magnitude when it is changed from an insulator state to a metallic
state by thermal and electrical stimuli [40]. As VO2 is difficult to control during its transi-
tion, two stable states of VO2 were taken into consideration for investigating the absorber.
For the conductivity of VO2 (σVO2) in Equation (6), we considered values of 10 S/m and
2× 105 S/m for the insulator state and metallic state, respectively [30,41]. A sharp increase
in conductivity makes the impedance of an absorber mismatched with the free space
impedance of some frequencies, and the absorption can be changed by this transition.

2.3. Model Design

Figure 2a shows a schematic view of the proposed structure for this paper. The dual-
tunable THz absorber is composed of two graphene film layers and one VO2-gold based
layer, sandwiched between a SiO2 layer with a relative permittivity of 2.25 [42]. Each
layer can be fabricated by stacking a chemical vapor deposition (CVD)-grown patterned-
graphene on the dielectric spacer (SiO2) which is supported by a back plate. The thicknesses
of the SiO2 layers are h1, h2, and h3 from bottom to top, respectively. Here, the dielectric
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layers act as resonance absorption spaces. The bottom of the structure is a gold mirror
with a thickness of d5 = 0.2 µm. This gold mirror is thick enough to block the propagation
of electromagnetic waves and reflect the energy reduced in graphene. Absorption is
strengthened by this part of the gold mirror. The first layer is an ultra-thin patterned
graphene film, formed by subtracting four rectangular films from a disk with a radius
of 2.7 µm. The width of the interval between these different parts is d1. For the second
layer, eight rectangular films with a side length of l1 and interval width d2 were subtracted
from a square patterned graphene. The third layer consists of a crossed-shaped VO2 with
four gold parts in the corners of the square. The square has a thickness of d4, and the
side length of the outsider square is l1 and the side length of the hollow part is l4. The
absorption of the different layers affects each other, which enhances overall absorption and
expands bandwidth. The electric field of the patterned graphene design is concentrated to
the edge because of the local surface plasmon resonance that contributes to the absorption.
Narrow intervals added to the designed pattern can increase the edge of the graphene and
can enhance its absorption. Moreover, the whole structure is symmetrical to ensure that
the absorber is insensitive to polarizations and incident angles within a large range. The
parameters of the absorber proposed are introduced below. Figure 2b displays an ion-gel
gate device for tuning the chemical level of the graphene [43]. Additionally, an important
factor in the VO2’s transition is temperature. It can be tuned using electrifying and terahertz
radiation. Adulteration is sometimes used to change the transition temperature in order to
suit practical working conditions.
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Figure 2. (a) A schematic view of the graphene–VO2 based absorber and a top view of each layer. (b) Instructure of the
ion-gel gate device that controls the chemical potential of the graphene. Here, S = source and D = drain.

The initial chemical potential of the graphene is assumed as µc = 0.8 eV. VO2 is in
an insulator state with a conductivity of 10 S/m. Both the finite element method and
ANSYS HFSS are applied to analyze the absorption characteristics of the absorber. A THz
wave is applied perpendicular to the upper graphene surface. The periodic boundary
conditions are used for the x-direction and the y-direction, and the Floquet ports are set in
the z-direction. The absorption of the absorber can be calculated as follows:

A( f ) = 1− R( f )− T( f ) (7)

where R( f ) = |S11( f )|2 is the reflection and T( f ) = |S21( f )|2 is the transmission. The S
parameters are obtained from ANSYS HFSS. Due to the ground gold mirror, the T( f ) is
zero and the expression of the absorption can be simplified as follows:

A( f ) = 1− R( f ) (8)

Therefore, a relatively high absorption can be obtained when the reflection efficiency
is close to zero. Furthermore, the equivalent input impedance (Zin) should match the
free space impedance (Zo). The size of the patterned graphene and VO2–gold layers
and the thickness of the dielectric layers can affect the input impedance of the whole
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structure. To facilitate simulation work, the selection and optimization of the proposed
structure parameters were conducted by using the Optimetrics function in ANSYS HFSS.
The parameters proposed in Figure 2a are listed in Table 1 for an intuitive view. These
parameters make the impedance of the structure match the free space within the high
absorption range.

Table 1. Parameters of the proposed structure (µm).

Parameter Size Parameters Size Parameter Size

d1 0.18 d5 0.2 l1 1.05
d2 0.26 l1 5.4 h1 2.15
d3 0.5 l2 5.25 h2 2
d4 0.5 l3 1.8 h3 2.5

3. Results and Discussion

In this section, both the broadband absorption of the proposed structure and the
absorptions of different parts of the structure are displayed and analyzed in Figure 3a,b, re-
spectively. The TE incident wave is chosen. Under the simulation conditions set above, the
whole structure shows an absorption of over 90% in the frequency range of 4.5–10.61 THz
(6.11 THz bandwidth), which is wider than most of the existing broadband THz absorbers
proposed. Additionally, the chemical energy of the two graphene layers is set to 0.8 eV,
thereby making it more convenient to realize in the experiment. The central frequency (f c)
is 7.56 THz, and the fractional bandwidth is 80.87%. It can be concluded that the real part
of the impedance is close to 1 and that the imaginary part is close to 0, which demonstrates
that the impedance of the absorber matches the free space. To further discuss the function
of multilayered structures in achieving broadband absorption, the absorption curves of
both single-layer and multi-layer structures are displayed in Figure 3b. Two graphene
layers with different patterns appear to have two distinctive ranges of absorption over
90%. With only one layer of patterned graphene, an absorption of over 90% is relatively
narrow. When two layers of patterned graphene act together, the bandwidth has an obvious
broadening. The simulated results indicate that a multilayer structure can broaden the
absorption range of the absorber.
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In order to further disclose the mechanism of the absorber, electric field distributions
of the absorber have been plotted. The frequencies corresponding to the absorption peaks
of the curves plotted in Figure 3a are listed in Table 2 to make browsing the information
more intuitive.

Table 2. Absorption peaks in broadband absorption.

µc and VO2 State Absorption Peaks and Corresponding Frequencies

0.8 eV Insulator
Peak I Peak II Peak III

4.91 THz 100% 6.86 THz 98.50% 9.85 THz 96.35%

In order to further discuss the mechanism of the broadband absorption mode of the
absorber, the electric field distributions from both an x-y perspective and y-z perspective
are given in Figure 4. In the left of Figure 4, the electric field distribution is observed
from an x-y perspective with different frequencies of 4.91 THz, 6.86 THz, and 9.85 THz,
respectively. The upper half represents the distribution of the top circle layer, while the
lower half represents the electric field distribution in the second graphene layer. In general,
we found that the electric field primarily concentrates near the edges of graphene with all
resonant frequencies, which indicates that local electric resonance occurs in these areas.
Electric dipole resonance is also activated at the edges of the graphene layer [44]. As shown
in the top graphene layer, when the simulation resonant frequency increases, edges with
the peak value electric field intensity are decreased while other parts of graphene tend to
have an increase in the electric field intensity. The electric field intensity becomes more
dispersed and covers the entire graphene, which can be explained as a result of the local
surface plasmon resonance of graphene being excited by the incident THz wave [45]. In the
second graphene layer, the electric field distribution has a trend of decreasing first and then
increasing with increasing simulated frequency. Similar to the results in the top layer, the
peak value of the electric field at the edge of graphene decreases and an increase occurs in
other parts of the graphene layer. The incident wave excites carriers and induces tangential
electric fields on both the top graphene layer and the second graphene layer.

Micromachines 2021, 12, 619 7 of 12 
 

 

 
Figure 4. The x-y perspective and y-z perspective of electric field distribution when μc = 0.8 eV and VO2 is in an insulator 
state at absorption peaks of 4.91 THz, 6.86 THz, and 9.85 THz. 

The electric field intensity distributions in the y-z plane of the absorber at each peak 
frequency are plotted in the right side of Figure 4. By comparing the electric field inten-
sity of different parts, the important part for incident wave absorption at each resonant 
frequency can be distinguished. In principle, the energy consumption and optical loss in 
materials can be represented by the following equation: 

2"( ) 2 lV

cA E dVλ π ε
λ

=   (9)

where ''ε  is the imaginary part of the dielectric permittivity, V  is the volume of the 
material, V  is the electric field inside the material, and c is the speed of light in a vac-
uum. The electric field is trapped in graphene layers, in the VO2 layer, and in the SiO2 
dielectric layers. However, the absorption effect of the dielectric layers is less effective 
than other parts, corresponding to electric distribution. This can be explained by Equa-
tion (9); the imaginary parts of graphene and VO2 permittivity are larger than the dielec-
tric layers within the THz range. In resonant frequencies of 4.91 THz and 6.86 THz, en-
ergy consumption mainly occurs in the top and second graphene layers. As the resonant 
frequency rises to 9.85 THz, the energy consumption of the VO2 layer is strengthened 
since the electric field intensity increased. 

The switchable function of the THz absorber is achieved by tuning both the Fermi 
energy level and the phase transition property of the VO2. The structure acts as a broad-
band THz absorber when μc is 0.8 eV and VO2 is in an insulator state and as a dual-band 
absorber when μc is 0.8 eV and VO2 is in a metallic state. Additionally, when the voltage 
applied to the graphene layers is set to 0, the device acts as a single-band absorber when 
the VO2 is in a metallic state and as a broadband reflector when the VO2 is in an insula-
tor state. The reflectivity is greater than 97% because the transmission coefficient of the 
absorber is 0 and the absorption is less than 0.03. As shown in Figure 5a, the dual-band 
absorption has absorption peaks of 4.16 THz and 7.3 THz and the single-band absorp-
tion has an absorption band of 4.81–5.65 (0.84 THz). The simulated results show that the 
switchable working characteristics of the structure can be controlled and changed sig-
nificantly. 

Figure 4. The x-y perspective and y-z perspective of electric field distribution when µc = 0.8 eV and VO2 is in an insulator
state at absorption peaks of 4.91 THz, 6.86 THz, and 9.85 THz.

The electric field intensity distributions in the y-z plane of the absorber at each peak
frequency are plotted in the right side of Figure 4. By comparing the electric field intensity of
different parts, the important part for incident wave absorption at each resonant frequency
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can be distinguished. In principle, the energy consumption and optical loss in materials
can be represented by the following equation:

A(λ) = 2π
c
λ

ε”

∫
V
|El |

2
dV (9)

where ε′′ is the imaginary part of the dielectric permittivity, V is the volume of the material,
V is the electric field inside the material, and c is the speed of light in a vacuum. The electric
field is trapped in graphene layers, in the VO2 layer, and in the SiO2 dielectric layers.
However, the absorption effect of the dielectric layers is less effective than other parts,
corresponding to electric distribution. This can be explained by Equation (9); the imaginary
parts of graphene and VO2 permittivity are larger than the dielectric layers within the
THz range. In resonant frequencies of 4.91 THz and 6.86 THz, energy consumption
mainly occurs in the top and second graphene layers. As the resonant frequency rises to
9.85 THz, the energy consumption of the VO2 layer is strengthened since the electric field
intensity increased.

The switchable function of the THz absorber is achieved by tuning both the Fermi
energy level and the phase transition property of the VO2. The structure acts as a broadband
THz absorber when µc is 0.8 eV and VO2 is in an insulator state and as a dual-band absorber
when µc is 0.8 eV and VO2 is in a metallic state. Additionally, when the voltage applied
to the graphene layers is set to 0, the device acts as a single-band absorber when the VO2
is in a metallic state and as a broadband reflector when the VO2 is in an insulator state.
The reflectivity is greater than 97% because the transmission coefficient of the absorber is
0 and the absorption is less than 0.03. As shown in Figure 5a, the dual-band absorption
has absorption peaks of 4.16 THz and 7.3 THz and the single-band absorption has an
absorption band of 4.81–5.65 (0.84 THz). The simulated results show that the switchable
working characteristics of the structure can be controlled and changed significantly.
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It is of great importance to design absorbers equipped with polarization insensitivity
and tolerance within a wide incident angle (θ) range. In this section, absorptions of the
proposed absorber are plotted in contour maps to analyze their insensitivities in both the
incident angles and polarization angles. In Figure 6, three switchable absorption modes
of the absorber (broadband absorber, dual-band absorber, and single- and narrow-band
absorber) are discussed with respect to different polarization angles ϕ and incident angles
θ. In Figure 6a,d,g, the absorption spectra of the broadband, dual-band, and single narrow
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band are shown with different polarization ϕ. From our results, it can be concluded that
the absorber is polarization-insensitive. This can be ascribed to the asymmetrical design
of the structure. For broadband absorption, spectra with TE and TM polarized waves are
represented in Figure 6b,c, respectively. Three absorption peaks in this absorption mode
can keep the absorption over 80% up to a 55◦ incident angle for the TE mode and up to a
60◦ incident angle for the TM mode. As shown in Figure 6e,f, for the TE polarized incident
wave, the two absorption peaks of the dual-band absorber can keep absorption over 80%
up to an incident angle of 60◦. The dual-band absorber can maintain stable absorption
up to 65◦ for the TM mode, and the absorption peaks tend to have a blue shift with an
increasing incident angle. In Figure 6h,i, the absorption spectra of relatively narrow and
single-band absorbers with TE and TM modes are displayed, respectively. Both of these
absorbers can keep the absorption peak over 80% up to an incident angle of 65◦. Great
tolerance for incident angle is obtained by the subwavelength structure, which can facilitate
the match between the structure and the wave from free space. Overall, the switchable THz
absorber proposed in this work possesses an incident angle insensitivity and a polarization
insensitivity in different absorption modes.
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Figure 6. Absorption spectra with different polarization angles (ϕ) and incident angles (θ) and frequency of the incident
wave from 0 to 12 THz: (a–c) broadband absorption when µc = 0.8 eV and VO2 is in an insulator state; (d–f) dual-band
absorption when µc = 0.8 eV and VO2 is in a metallic state; (g–i) single-band and relatively narrow absorption when
µc = 0 eV and VO2 is in a metallic state.

Finally, we discuss the tunable function for the broadband absorber of Fermi energy
level of the graphene and the relaxation time τ. In practical situations, different energy
levels (µc) for two graphene layers are hard to implement. Therefore, the Fermi energy
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was set the same for each graphene layer. In Figure 7a, the values of µc are set to 0.2 eV,
0.5 eV, and 0.8 eV, respectively. Because the relaxation time is in direct proportion to the
chemical potential µc, the following expression is given: τ = µµc

ev2
F

. Here, µ is the electron

mobility decided by the quality of the graphene and is fixed on 1250 cm2/Vs. Therefore,
the relaxation time in Figure 7a is 0.025 ps, 0.0625 ps, and 0.1 ps for 0.2 eV, 0.5 eV, and
0.8 eV, respectively. Here, the VO2 is in an insulator state. The absorption curves of both
TE and TM polarized waves are then calculated. The results indicate that the structure
proposed can support different polarized incident waves. As µc increases, the absorption
increases gradually and absorption peaks start to appear. Additionally, the quantity of
the absorption peaks increases and the broadband absorption appears. The relationship
between the Fermi energy µc and the conductivity of graphene is introduced in Section 2.1.
The higher the value of µc, the greater the surface impedance of the graphene. This change
leads to an increase in absorption. Moreover, the relationship between central frequency
(f c) and consecutive Fermi energy levels varies within a range of 0.75 eV–0.85 eV. Tuning µc
in the range of 0.8 eV ± 0.05 eV, the f c of the broadband absorber can be tuned linearly. It
can be concluded that the graphene also plays an important role in controlling the structure.
The relaxation time (τ) of the patterned graphene is investigated because it can be changed
by the quality of the graphene [46].
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In order to compare our absorber with other absorbers in the references, we listed the
main properties of broadband absorbers in Table 3. Compared with other structures, the
hybrid absorber exhibits both a significantly larger bandwidth and a higher fractional band-
width with a small number of layers, showing great potential for miniaturized broadband
THz applications.

Table 3. Comparison of important properties of THz absorbers.

References Absorption
Bandwidth (THz) 1 Material Layers Stable Incident

Angle
Polarization
Insensitivity

[19] 2.76 (2.14–4.90) Graphene 1 Up to 60◦ Insensitive
[11] 3.7 (1.95–5.65) Gold 1 Up to 20◦ Insensitive
[1] 0.76 (4.80–5.56) Graphene 3 Up to 60◦ Insensitive

[18] 2.2 (0.6–2.8) Graphene 3 Up to 60◦ Insensitive
[22] 3.5 (6.98–9.1) Graphene 3 Up to 60◦ Insensitive
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Table 3. Cont.

References Absorption
Bandwidth (THz) 1 Material Layers Stable Incident

Angle
Polarization
Insensitivity

This work

6.11 (4.5–10.61) Graphene and VO2
(0.8 eV insulator state) 3 TE up to 55◦

TM up to 60◦ Insensitive

0.83 (3.78–4.61)
1.19 (6.75–7.94)

Graphene and VO2
(0.8 eV metallic state) 3 TE up to 60◦

TM up to 65◦ Insensitive

0.84 (4.81–5.65) Graphene and VO2 (0
eV metallic state) 3 TE up to 65◦

TM up to 65◦ Insensitive

1 Bandwidth of absorption over 90%.

4. Conclusions

In summary, a switchable, dual-tunable THz absorber based on patterned graphene
and phase-change VO2 was proposed and investigated. When VO2 was in an insulator
state, the device could be switched from near-total reflection (>97%) to high absorption
over a wide frequency range (4.5–10.61 THz) as the Fermi level of graphene changed from
0 to 0.8 eV. When VO2 was transmitted to a metal state, the device acted as a single-band
absorber with absorption band 0.84 THz (when the Fermi energy level of graphene is
0 eV). When VO2 was in a metal state and the Fermi energy level of graphene was tuned
to 0.8 eV, the device acted as a dual-band absorber with bands of 3.78–4.61 THz and
6.75–7.94 THz. The absorber was polarization-insensitive and could maintain a stable
high absorption performance within a 55◦ incidence angle. Moreover, the broadband
structure could maintain a stable absorption within a τ change of ±50%. With respect to
the large absorption bandwidth, flexible tunability, and switchable functionality, the device
is promising for various terahertz applications.
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