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Abstract: Intestinal ischemia-reperfusion injury (i-IRI) is a rare disorder with a high mortality rate,
resulting from the loss of blood flow to an intestinal segment. Most of the damage is triggered
by the restoration of flow and the arrival of cytokines and reactive oxygen species (ROS), among
others. Inactivation of these molecules before tissue reperfusion could reduce intestinal damage. The
aim of this work was to analyze the preventive effect of allopurinol and nitroindazole on intestinal
mucosal damage after i-IRI. Wag/RijHsd rats were subjected to i-IRI by clamping the superior
mesenteric artery (for 1 or 2 h) followed by a 30 min period of reperfusion. Histopathological
intestinal damage (HID) was assessed by microscopic examination of histological sections obtained
from injured intestine. HID was increased by almost 20% by doubling the ischemia time (from 1 to
2 h). Nitroindazole reduced HID in both the 1 and 2 h period of ischemia by approximately 30%
and 60%, respectively (p < 0.001). Our preliminary results demonstrate that nitroindazole has a
preventive/protective effect against tissue damage in the early stages of i-IRI. However, to better
understand the molecular mechanisms underlying this phenomenon, further studies are needed.

Keywords: antioxidant treatment; intestinal ischemia-reperfusion injury; allopurinol; nitroindazole;
animal model

1. Introduction

Intestinal ischemia-reperfusion injury (i-IRI) is an uncommon disorder that affects 0.09
to 0.2% of hospitalized patients. It involves decreased intestinal blood flow followed by a
local inflammatory response that leads to necrosis of the intestinal wall, and in the absence
of correct and quick management, may lead to patient death (the mortality rate is reported
to be as high as 90%). The acute onset results from an abrupt and spontaneous interruption
of intestinal blood flow due to occlusion of a venous or arterial vessel, or to non-occlusive
causes (NOMI). NOMI comprises approximately 20% of cases of intestinal ischemia, which
are commonly related to superior mesenteric artery (SMA) vasoconstriction or poor cardiac
performance that triggers hypoperfusion of the intestine [1–4].

This blood deprivation hinders the aerobic metabolism of enterocytes, compromis-
ing mitochondrial oxidative phosphorylation, forcing the cells to perform anaerobic
metabolism for energy production [5]. Moreover, the inhibition of the Na+/K+-ATPase
pump activity alters the transmembrane potential and the electrolyte balance of the intra-
and extracellular media, generating edema that is of special interest at the time of reper-
fusion [6]. In addition, the different intermediate active metabolites generated during
the different cellular reactions cannot be secreted into the systemic circulation for renal
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excretion, thus, they accumulate inside the cells and contribute to cell damage and death [5].
However, the greatest damage during i-IRI does not occur in the ischemia period, but
rather, during reperfusion of the ischemic tissue with the arrival of oxygen and the action
of cytokines, the complement system, reactive oxygen species (ROS), neutrophils and the
alteration of capillary permeability, which, in addition to promoting expansion to the rest
of the organism, leads to bacterial translocation [7].

Damage at the systemic level as a consequence of i-IRI is mainly mediated by toxic
metabolites produced during the ischemia period and the affinity and high reactivity of ROS
for other tissues. These toxic metabolites generate an imbalance between the intracellular
and extracellular environment, which triggers fluid sequestration at the extracellular level,
the creation of a third-space and a decrease in effective circulating volume. This manifests
clinically as hypotension, shock, or even systemic inflammatory response syndrome (SIRS),
and multiple organ dysfunction syndrome (MODS), which also perpetuates the low cardiac
output situation [8] (Figure 1).
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The therapeutic management of NOMI-related i-IRI must be individualized, based
on the underlying precipitating cause. The main therapeutic approaches include fluid
resuscitation, optimization of cardiac output, and elimination of vasopressors; furthermore,
vasodilators or antispasmodics may also be used. In those patients in whom ischemia
has resulted in severe infarction of an intestinal segment, surgical resection of the affected
portion is necessary; however, when this resection involves an important segment of
intestine, it can trigger short bowel syndrome [4].

These approaches are mainly aimed at restoring intestinal flow as soon as possible [3].
However, another interesting and complementary approach is the management of oxidative
stress damage by decreasing/inhibiting the action of the ROS. Xanthine oxidase (XO) and
nitric oxide synthase (NOS) play a key role in ROS production. There are compounds
such as allopurinol, which is used in the management of chronic gout that inhibit XO,
preventing the generation of ROS by this pathway. The prophylactically administration of
this compound in animal models or in clinical trials of cardiac, hepatic or renal ischemia-
reperfusion injury (IRI) has demonstrated its protective effect, acting at the level of vascular
permeability, polymorphonuclear cells infiltration, bacterial translocation, chemokine
signaling, motility and mortality derived from this situation [9–14]. On the other hand,
nitroindazole, a compound of the imidazole and indazole family, inhibits the neuronal
nitric oxide synthase isoform (nNOS), which induces a decrease in nitric oxide (NO)
synthesis during the early stages of reperfusion with no alterations observed during the
period of ischemia or late reperfusion [15,16]. Moreover, it has been shown that this
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molecule contributes to protein degradation and cell damage during IRI [17]. Therefore,
it is expected that blocking or decreasing the activity of XO and NOS could prevent or
minimize reperfusion-associated damage in the organism as a whole.

This study analyzes the individualized effect of the prophylactic administration of
these two compounds, due to their recognized antioxidant capacity, as therapeutic tools for
the treatment of i-IRI by analyzing the response at the anatomopathological level.

2. Materials and Methods

All procedures were carried out in accordance with current legislation and were ap-
proved by the Animal Experimentation Ethics Committee (CEEA) (reference M20/2019/207)
and the Biological Agents Research Ethics Committee (CEIAB) of the University of The
Basque Country (reference M30/2019/208).

Sixty male 3-months-old WAG/RijHsd rats were induced to develop i-IRI following a
1 or 2 h period of ischemia and 30 min of reperfusion, and were randomized into 10 groups
(Table 1). The animals were maintained in 12 h light/dark cycles with food and water ad
libitum. Another 6 animals were used as a control.

Table 1. Experimental groups.

Group Ischemia Reperfusion Treatment N◦ of Animals

0 no no no 6

1

1 h 30′

no 6
2 Saline 6
3 ClinOleic® 20% 1 6
4 Allopurinol 6
5 Nitroindazole 6

6

2 h 30′

no 6
7 Saline 6
8 ClinOleic® 20% 1 6
9 Allopurinol 6
10 Nitroindazole 6

1 ClinOleic® 20% (Baxter S.L., Valencia, Spain).

2.1. Surgical Procedure

Under isoflurane anesthesia (1.5%), a middle laparotomy was performed to locate
the SMA (Figure 2a). Briefly, part of the small intestine was pulled out over moistened
gauze and the superior mesenteric artery was dissected, and then clamped with a Yasargil
microvascular clamp (Figure 2b). Once the absence of arterial pulse in the mesenteric
region was observed, the bowel was reintroduced and the abdominal muscles were sutured
with a running suture and the skin was sutured with single stitches. Prior to the animal’s
recovery, a single dose of meloxicam (2 mg/kg, sc) was administered.

When the ischemia period was over (1 or 2 h), the animals were re-anesthetized, the
laparotomy was reopened, and the Yasargil clip was removed. The wound was closed as
previously described and 30 min of reperfusion time was allowed.

2.2. Experimental Treatment

Either vehicle (saline or ClinOleic® 20% (Baxter S.L., Valencia, Spain)) or experimental
drug treatment were administered through the femoral vein 30 min before the end of the
ischemia period. Allopurinol (50 mg/kg) was suspended in saline, and nitroindazole
(10 mg/kg) in absolute ethanol and then dissolved in ClinOleic®, at a ratio of 1:7.
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For this purpose, under 1.5% isoflurane anesthesia, an incision was made in the skin
of the inguinal area and the femoral vein was exposed, and the corresponding vehicle or
drug was administered using a 27G needle, in accordance with the experimental group
(Table 1). To avoid bleeding at the puncture site, direct hemostasis was performed for 1 to
2 min, using a cotton swab. Then, the incision was closed with single stitches.

2.3. Tissue Sample Collection and Histological Examination

At the end of the reperfusion period, the animals were anesthetized and 6 cm of
terminal ileum (measured from the ileocecal valve) was removed and immersed in tem-
pered saline to gently wash the specimen. Then, the piece was fixed to a plastic guide to
keep it stretched and immersed for 24 h in 4% formaldehyde. Each piece of intestine was
transversely split into 4 fragments (each 1 cm long), which were embedded in the same
paraffin mold. Three paraffin-embedded slices (5 µm) were obtained from each intestine
sample (12 sections of intestine from each animal) and stained with hematoxylin/eosin.

The histological injury degree (HID) score was assigned according to the scale sum-
marized in Table 2 (adapted from Chiu et al. [18]). Four quadrants were defined in each
histological section and the HID was assigned to each of them. Subsequently, the HID of
each section was calculated by summing the index assigned to each quadrant. The HID of
each animal was calculated as the mean of the 12 analyzed sections.

Table 2. Criteria to assess the corresponding histological injury degree (HID), according to Chiu et al. [18].

Grade Description

0 Normal mucosal villi; no histological changes

1
Epithelium of the villi is almost fully preserved; development of

Gruenhagen’s subepithelial spaces (normally located in the apex);
capillary congestion

2 Extension of the subepithelial spaces with moderate lifting of the epithelial layer
of the lamina propria

3 Preserved villous structure with almost complete loss of epithelium
(preservation > 50%); presence of intraluminal hemorrhage.

4 Destructuring of the villi, mostly denuded (preservation < 50%)
5 Loss of villi, disintegration of the lamina propria; hemorrhage and ulceration
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2.4. Statistical Analyses

All analyses were performed with the GraphPad Prism 6 (GraphPad Software, San
Diego, CA, USA), and the minimum significance level was set as p < 0.05. The quantitative
variables described in this piece of work were represented by the mean and standard devi-
ation. Statistical treatment of the data was performed by analysis of variance (ANOVA).
Additionally, once the significant differences between the groups were demonstrated, com-
parisons of the different groups were performed using Tukey’s multiple comparison test.

3. Results

The surgical model used to emulate i-IRI induced the development of i-IRI in 100% of
the animals, without resulting in the death of any animal. Overall, the procedure was well
tolerated.

Histological samples obtained from animals subjected to 1 and 2 h of ischemia showed
high intestinal mucosal damage. After 1 h of ischemia and 30 min of reperfusion there
was major destruction of the villi (Figure 3a) with the accumulation of inflammatory cells
and wide Gruenhagen’s spaces in those villi that had preserved their structure. When
doubling the ischemia period (Figure 3d), the damage was more pronounced with the
complete loss of the villus structure and fragments of detached villi appearing in the lumen
of the intestine. In addition, intraluminal hemorrhage was evidenced by the presence of
erythrocytes in the intestinal lumen.

Allopurinol treatment of those animals that underwent 1 h of ischemia resulted in a
slight reduction in tissue damage (Figure 3b). Nonetheless, there were evident signs of
mucosal injury, such as inflammation (edema of the lamina propria and submucosal layers
and presence of inflammatory cells), erythrocyte extravasation and loss of epithelial goblet
cells. In the case of 2 h of ischemia (Figure 3e), treatment with allopurinol also resulted in a
less severe tissue damage compared to the untreated animals, although extensive epithelial
lifting, inflammatory cells presence and edema were still evident.

When nitroindazole treatment was applied, we found a striking improvement in the
histological structure of the intestines subjected to ischemia. Thus, after 1 h of ischemia, the
structure of intestinal mucosa was almost totally preserved, and the only significant change
was the presence of small Gruenhagen’s spaces located at the tip of some villi (Figure 3c).
However, nitroindazole was not as effective when administered to animals in which the
arterial blood flow of the intestine was occluded for 2 h (Figure 3f). Even though the structure
of the villi was better preserved than in the non-treated animals, almost complete loss of the
epithelium at the tip of some villi was observed. In addition, evident signs of erythrocyte
starvation and inflammatory cell infiltration were found.

Regarding HID (Figure 4), we observed that the degree of injury after 1 h of ischemia
was 15 times higher than that of the control (not subjected to ischemia), 1.06 ± 0.65
vs. 16.3 ± 0.96, respectively (p < 0.001). When the ischemia time was doubled to 2 h,
although HID did not increase in the same order of magnitude, it was significantly higher
(19.10 ± 0.77; p < 0.001) than that observed after 1 h. Regarding the vehicles used for the
drugs (saline and ClinOleic®), neither of them modified the HID (p < 0.05; Table 2).
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Treatment with allopurinol did not have a beneficial effect on the histological damage
induced by 1 h or 2 h of ischemia (15.3 ± 1.64 and 17.49 ± 1.86, respectively; p > 0.05).
Nevertheless, treatment with nitroindazole did substantially modify the HID observed
in the intestinal mucosa. Following 1 h ischemia, HID was reduced by more than half
in animals treated with 10 mg/kg nitroindazole (16.3 ± 0.96 vs. 6.3 ± 1.4, p > 0.001). In
animals subjected to 2 h of ischemia, nitroindazole also induced a significant reduction in
HID, however the reduction observed was smaller, decreasing by 1.5-fold (19.10 ± 0.77 vs.
12.69 ± 1.52; p < 0.001) (Figure 4 and Table 3).

Table 3. Histological injury degree (HID) following a period of ischemia of 1 or 2 h and 30 min of
reperfusion in control- or treated-animals (vehicles, allopurinol or nitroindazole). The statistical
significance shown corresponds to the HID of non-treated animals subjected to i-IRI.

Group Control Saline Allopurinol ClinOleic® Nitroindazole

Ischemia 1 h 16.3 ± 0.96 15.2 ± 1.91
ns 1

15.3 ± 1.64
ns 1

14.4 ± 0.98
ns 1

6.3 ± 1.4
p < 0.001

Ischemia 2 h 19.10 ± 0.77 18.1 ± 0.9
ns 1

17.49 ± 1.86
ns 1

17.9 ± 0.67
ns 1

12.69 ± 1.52
p < 0.001

1 ns: not significant (p > 0.05).

4. Discussion

The effectiveness of antioxidant treatments on IRI has been demonstrated by a large
number of previous studies [19–24]. Our results are in accordance with this and show that
nitroindazole reduces intestinal mucosal damage after i-IRI. SMA clamping is a simple,
reproducible procedure with low mortality that allows the simulation of i-IRI for a low
output situation (NOMI). In our study, 100% of the animals survived, and we were always
able to induce comparable intestinal damage.

We analyzed the relationship between ischemia time and HID, and in contrast to the
study by Da Costa et al. [25] where no direct proportionality between both factors was
observed, our study shows a significant increase in intestinal mucosal damage as the period
of blood flow deprivation increases. These different results could be explained by the type
of ischemia induction model that was used; our model recreates a low flow condition when
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the SMA is clamped, which allows minimal flow because the collateral circulation remains
intact. However, in the previously cited model of Da Costa, the aorta is clamped prior
to the birth of the renal arteries; in the absence of collateral supply, such a lot of damage
occurs in the first minutes of ischemia that it does not change significantly when this period
is increased.

As for the relationship between HID and reperfusion time, some studies have shown
that the greatest damage, from a biochemical point of view, occurs in the first moments of
reperfusion (even in the first 15 min) when those molecules involved in the pathophysiology
of i-IRI reach the area deprived of blood flow [24,26–28]. In addition, Clark et al. [11] have
shown that two 15 min periods of ischemia are more harmful than a period of half an hour.
This is explained by the fact that there is a physiological adaptation to time-limited and
not very long periods of oxidative stress, which endogenous defense mechanisms are able
to cope with [29]. However, if the damage is too severe and prolonged over time, this
endogenous system loses its capacity to cope with the oxidative agents [30].

The analysis of the effect of the antioxidant agents tested in this piece of work shows
that the prophylactic use of allopurinol during the ischemia period does not achieve a
statistically significant reduction in local intestinal damage, regardless of the ischemia time.
The literature reviewed showed that several authors have reported results in agreement
with those described here. They conclude that when allopurinol is administered, the
effect on the prevention of IRI is only significant in those cases in which this treatment
is associated with ischemic postconditioning, that is, periods of arterial reocclusion of
a few minutes duration applied at the beginning of tissue reperfusion and which have
shown a decrease in the damage associated with ROS [31,32]. In contrast, there are also
studies in which its oral administration prior to ischemia instauration does demonstrate an
antioxidant effect, as evidenced by a reduction in HID and a decrease in the production of
oxidative stress markers such as malondialdehyde (MDA) [33]. Other studies performed
in a renal IRI mode have shown the beneficial effect of XO inhibition [34–38]. After
prophylactic administration of allopurinol, a decrease of up to 75% in the damage was
noticed, both biochemical and anatomopathological. In addition to renal IRI models, in
studies of this syndrome in upper limbs, allopurinol demonstrated an increase of up to
70% in muscle viability after 6 h of reperfusion [39]. In any case, the pathophysiological
mechanism of XO-mediated damage found in rodents and felines, but absent in humans,
casts doubt on the already questionable beneficial effect of allopurinol in the management
of i-IRI [7].

Regarding the use of nitroindazole in reperfusion injury, most studies have been
performed in experimental models of cerebral ischemia. It has been shown that various
markers of damage due to oxidative stress, such as MDA, glutathione (GSH) or lipid
peroxidation, are greatly reduced with nitroindazole, and reached levels close to those
of control groups [27,40,41]. It has been proposed that the prophylactic effect of this
compound involves more than its action as an NOS inhibitor, since it is also involved in
other enzymatic pathways. Hirabayashi et al. aimed to study the effect of nitroindazole
administration on the role of nNOS, in the early phase of cerebral ischemia-reperfusion
in mice [42]. Following a 2 h ischemia period and 30 min of reperfusion, they found that
nitrotyrosine (NO2-Tyr) formation, a well-known marker for NO-related cytotoxicity, was
reduced by 45% and 100% after 25 mg/kg or 50 mg/kg of nitroindazole, respectively.
These findings are in accordance to those previously reported by Sorrenti et al. [43] and
Liu [44], where nitroindazole increased c-fos mRNA levels, which is related to the recovery
of cellular function after cerebral injury. In a murine model of retinal IRI, San Cristobal et al.
also reported that prophylactic administration of nitroindazole (10 mg/k) reduced retinal
histological damage, the effect being nearly as strong as that achieved by folic acid [45].

It has been proven that the solvent used in the preparation of the nitroindazole
solution, ClinOleic® modulates excessive inflammatory reactions [46]. However, in our
study we did not found any significant effect in those animals that received ClinOleic®

as a transporter for nitroindazole. This emulsion contains 80% refined olive oil and 20%
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refined soybean oil, and is rich in a large variety of monounsaturated fatty acids (MUFAs)
(up to 65%), mainly in the form of oleic acid (C18:1n-9) (found in the olive oil), and lower
amounts of polyunsaturated fatty acids (PUFAs) (20%) and triglycerides [47]. According to
the United States Food and Drug Administration (FDA), the total amount of both refined
olive and soybean oil in ClinOleic® is around 200 g/L [48].

Huang et al. [46] have reported the protective effect of ClinOleic®, by decreasing the
intensity of the cytokine storm and apoptosis in an acute lung injury model. These results
may seem opposed to those found in our work, however, we must take into account that
in their study ClinOleic doses of 6 g/kg/day were administered for 7 consecutive days
before the induction of lung damage (total dosage over 10 mL), while we administered a
single dose of 0.43 mL of ClinOleic®.

Furthermore, the concentration of the antioxidants included in ClinOleic® are quite
different from those used in therapeutic studies. For example, Farías et al. [49] used
225 g rats that received daily doses of 135 mg of PUFAs over 8 weeks, while our animals
received just one dose of 13.76 mg of PUFAs. A similar disparity can be observed with the
experiments of Sukhotnik et al. [50].

ClinOleic® also has tiny quantities of α-tocopherol, an active isomer of vitamin E
with high antioxidant capacity [47]. Its presence could explain the better results obtained
in animals treated with nitroindazole since it acts at different levels and in a synergistic
manner. However, the total amount of α-tocopherol administered to each animal was below
0.04 mg/kg. This amount is more than 500 times lower than the dose of this compound
administered when used for therapeutic purposes [51–53], so the effect of the α-tocopherol
contained in ClinOleic® would be minimal. In any case, no benefit was observed when
it was administered alone, without nitroindazole. Moreover, when α-tocopherol was
tested in several models of IRI, it was shown that it has an enhancing effect over other
treatments, such as allopurinol [54], vitamin C [28], or ischemic preconditioning [55].
However, Catilayan et al. [19] studied its isolated effect on i-IRI and found no statistically
significant differences compared to the non-treated groups.

5. Conclusions

In our i-IRI experimental setting, we observed that the duration of the ischemia period
has a directly proportional effect on intestinal mucosa damage. The use of allopurinol
achieved a discrete but not significant reduction in intestinal damage, ruling out its applica-
bility in this model of i-IRI. On the other hand, nitroindazole administered prophylactically
during ischemia significantly reduced the histological injury, with its effect being more
striking when ischemia was limited to 1 h.
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