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Abstract: Hedgehog (HH) is a highly conserved secretory signalling protein family mainly involved
in embryonic development, homeostasis, and tumorigenesis. HH is generally synthesised as a
precursor, which subsequently undergoes autoproteolytic cleavage to generate an amino-terminal
fragment (HH-N), mediating signalling, and a carboxyl-terminal fragment (HH-C), catalysing the
auto-processing reaction. The N-terminal region of HH-N is required for HH multimer formation
to promote signal transduction, whilst the functions of the C-terminal region of HH-N remain
ambiguous. This study focused on Indian Hedgehog (IHH), a member of the HH family, to explore
the functions of the C-terminal region of the amino-terminal fragment of IHH (IHH-N) via protein
truncation, cell-based assays, and 3D structure prediction. The results revealed that three amino
acids, including S195, A196, and A197, were crucial for the multimer formation by inserting the
mutual binding of IHH-N proteins. K191, S192, E193, and H194 had an extremely remarkable effect
on IHH self-cleavage. In addition, A198, K199, and T200 evidently affected the stability of IHH-N.
This work suggested that the C-terminus of IHH-N played an important role in the physiological
function of IHH at multiple levels, thus deepening the understanding of HH biochemical properties.

Keywords: Indian Hedgehog; C-terminal region; autoproteolytic cleavage; protein stability; multimer
formation

1. Introduction

The Hedgehog (HH) family is well known for its essential role in the normal embry-
onic development of invertebrates and vertebrates and the maintenance of adult tissue
homeostasis [1,2]. Deregulation of its signalling pathway leads to the destruction of tissue
homeostasis and stem cell self-renewal, further resulting in the occurrence of cancer [3,4].
In higher vertebrates, the HH family mainly contains three homologous proteins: Sonic
Hedgehog (SHH), Indian Hedgehog (IHH), and Desert Hedgehog (DHH) [5]. Although
their expression patterns and physiological functions are different, their protein processing
and signal transduction exhibit high similarities.

HH is regularly synthesised as a precursor in the endoplasmic reticulum of the pro-
ducing cells, and it undergoes autoproteolysis to generate a functional HH-N, mediat-
ing signalling, and a HH-C, catalysing the auto-processing reaction [6,7]. A cholesterol
molecule attacks the self-cleavage site to promote the self-cleavage reaction, and binds
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to the C-terminus of HH-N after cleavage. Subsequently, palmitic acid attaches to the
N-terminal of HH-N to produce a mature signalling ligand, HHNp [8]. With the help
of Dispatched, a transmembrane protein, and heparan sulphate proteoglycans (HSPGs),
HHNp is released to the extracellular matrix and forms a soluble multimeric complex,
s-HHNp, to facilitate movement. After reaching the recipient cells, s-HHNp binds with the
receptor Patched (PTC), relieving the inhibition towards Smoothened (SMO) and further
activating the downstream transcription factors GLIs, which trigger the expression of target
genes, such as Ptch1 and Gli1 [9].

The N-terminus of HH-N is highly conserved in homologous proteins and various
species [10]. Moreover, the palmitic acid modification site [8], HSPG binding sites [11],
and PTC binding sites [12] are located at the N-terminus. Three regions, including amino
acids 27–34, amino acids 35–48, and the palmitate acceptor site C25 in the N-terminus of
SHH-N, are necessary for multimer formation [13]. The previous study depicted that G31R
in the N-terminus of SHH-N affects protein stability [14]. These results suggest that the
conserved N-terminus of HH-N plays an important role in signal transduction.

However, the function of the C-terminus of HH-N is poorly studied. By re-analysing
the previously reported IHH crystal structure [15], a 3D structural model of the self-
interaction of IHH was discovered. It showed that the S195, A196, and A197 located in the
C-terminus of IHH-N could bind to the interior of another IHH molecule. Interestingly, a
similar intermolecular interaction model was also found in SHH [16], although the function
of this intermolecular interaction remains unclear. In addition, by aligning the amino acid
sequences of IHH in different species, the homology of S195, A196, and A197 and the
adjacent amino acids were almost 100% (Figure S1), which also indicates the potential
conserved biological functions of such regions.

In this research, the conserved region of the IHH-N C-terminus was studied by analysing
different truncations and point mutations to elucidate the functions of the C-terminus. The
results showed that three amino acids, namely, S195, A196, and A197, were crucial for IHH-N
multimerization. Meanwhile, K191, S192, E193, and H194 had an extremely substantial effect
on IHH self-cleavage. A198, K199, and T200 evidently affected the stability of IHH-N. Models
of IHH-N intermolecular interaction and the potential mechanism of full-length IHH self-
cleavage were also proposed on the basis of 3D structure, which is important for deepening
the understanding of IHH biochemical properties.

2. Materials and Methods
2.1. Construction of HH Mutants

Human IHH cDNA was cloned and inserted into the pIND (Sp1)-based inducible
expression vector (Invitrogen, Carlsbad, CA, USA) with double FLAG-tags were intro-
duced into the IHH-N as described previously [15], or the pCMV-based expression vector
(Promega, Madison, WI, USA) with double FLAG-tags were introduced into the IHH-C
(pCMV-C-2flags). The mutations were introduced through PCR, employing truncation
or single-nucleotide substitution primers. The cDNA of human SHH was amplified from
the pLNB-SHH plasmid which was provided by Dr. JM Mason from the Gene Therapy
Vector Laboratory (Manhasset, NY, USA). Then, the SHH cDNA was mutated and inserted
into the pcDNA3.0-6xMyc vector. In fusion expression protein constructs, the cDNA of
enhanced green fluorescent protein (EGFP) was cloned from the pEGFP-C3 vector and
inserted into the pCMV-C-2flags vector with IHH-C. All constructs were confirmed by
Sanger sequencing. The primers used in this study are listed in Table S1.

2.2. Construction of Stable Cell Line and Gel-Filtration Chromatography

The WT or SAA truncated (∆SAA) plasmid was transiently transfected into the EcR-
CHO (ECHO) cells (Invitrogen, Carlsbad, CA, USA) using Lipofectamine 3000 (Invitrogen).
Twenty-four hours (24 h) later, the cells were seeded in a six-well plate via limiting dilution
method and cultured in the screening medium (G418, 800 ng/µL, Sigma-Aldrich, St. Louis,
MO, USA). After 2–3 weeks, the monoclones were picked for cultivation and detection of
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IHH-N expression, then the best clone was selected to expand the culture. After filling in a
single-cell layer, ponasterone A (5 µg/mL, Santa Cruz Biotechnology, Santa Cruz, CA, USA)
was added for another 24 h cultivation. The supernatants were collected and concentrated
immediately with Amicon Centricon-4 centrifugal filter devices (Millipore, Bedford, MA,
USA) before addition of protease inhibitors (Yeasen, Shanghai, China). After automatic
chromatography (Superdex 200 column, GE Company, Boston, MA, USA), the collected
aliquots were concentrated by trichloroacetic acid and immunoblotted with anti-FLAG
antibody (Invitrogen, MA1-91878, 1:1000; Sigma-Aldrich, F3165, 1:4000) and goat anti-
mouse secondary antibody (ThermoFisher Scientific, Waltham, MA, USA, 31430, 1:5000).

2.3. IHH Activity Assay in C3H10T1/2 Cells

The C3H10T1/2 cells (ATCCs) were seeded in twenty-four-well plates with an appro-
priate density and cultured in a growth medium containing DMEM, 10% foetal bovine
serum, and 1% penicillin/streptomycin. The culture supernatants of WT or ∆SAA stable
cell line were added into the growth medium and continued to incubate at 37 ◦C for
4–5 days. Subsequently, the C3H10T1/2 cells were washed in cold PBS and the IHH-N
activity was measured using an alkaline phosphatase (AKP) substrate kit (Vector labs,
Burlingame, CA, USA, SK-5100). All induction assays were performed in triplicate.

2.4. Transfection and Analysis of HH Mutants

pIND-based plasmids were transfected into the ECHO cells by using Lipofectamine
3000 to study the expression of IHH protein. After 24 h, ponasterone A was added
to the cell culture medium. Another 24 h later, the cells were lysed using lysis buffer
(Beyotime Shanghai, China) with addition of a protease inhibitor. The cell homogenates
were cleared by centrifugation, then separated by 12% SDS-PAGE and immunoblotted
with anti-FLAG monoclonal antibody. Similarly, the pCMV-based IHH constructs were
transiently transfected into ECHO cells and 48 h later, the cells were lysed and detected
with the same antibodies. The pcDNA3.0-6xMyc plasmids were transfected into the
HEK293T (293T) cells (ATCCs) and detected using anti-SHH (Santa Cruz Biotechnology, sc-
365112, 1:500) and anti-Myc (Invitrogen, 13–2500, 1:500) monoclonal antibodies. The fusion
expression plasmids were transfected into the 293T cells, immunoblotted with anti-FLAG
monoclonal antibody and anti-EGFP polyclonal antibody (Abcam, Cambridge, MA, USA,
ab5450, 1:5000). Anti-GAPDH HRP-conjugated antibody (Proteintech, Rosemont, IL, USA,
HRP-60004, 1:5000) was chosen as the internal control for Western blot. The secondary
antibodies used in this experiment were goat anti-mouse IgG (H+L) and rabbit anti goat
IgG (H+L) (Invitrogen, A27014, 1:2000). The grey value of the protein bands was analysed
by Image J. The ratio of IHH-N (or IHH-C) to the total IHH protein, which is composed of
full-length protein and IHH-N (or IHH-C), was calculated with the WT as the standard.
Statistical analysis of relative expression was calculated by SPSS.

2.5. Prediction of IHH Protein Structure

The software I-TASSER server with default parameters was used for all structural
predictions [17]. The predicted structures of the mutated IHH-N and SHH-N were based
on the existing structure (PDB ID: 3K7G and 3N1R). The predicted structures of IHH-C and
SHH-C were aligned to the crystal structure of HH-C protein from Drosophila melanogaster
(PDB ID: 1AT0) by using PyMOL software. The raw and optimised Ca root-mean-square
deviations (RMSDs) were calculated by PyMOL. The structures of EGFP-IHH fusion
proteins with different mutations were predicted on the basis of the structure of the existing
EGFP (PDB ID: 2Y0G) and predicted IHH-C.

2.6. Cell Immunofluorescence of IHH Mutants

The WT, ∆SAA, KSEH truncation (∆KSEH), and cholesterol modification site mutation
C203* plasmids were transfected into ECHO cells as described above. Next, 24 h after
ponasterone A was added, anti-FLAG monoclonal antibody was incubated at 37 ◦C for 2 h
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to stain the IHHNp on the cell membrane surface. Then, cells were fixed with 80% cold
acetone for 30 min at 4 ◦C and labelled with goat anti-mouse Alex488 (Invitrogen, A32723,
1:1000) for 2 h at 37 ◦C. A Leica SP8 laser scanning microscope was used for detecting
immunofluorescence.

3. Results
3.1. S195, A196, and A197 Are Involved in Multimerization of IHH-N Protein by Maintaining
Intermolecular Interactions

In the previous research, the crystal structures of human WT and three brachydactyly
type A1 (BDA1)-related mutant IHH-N protein domains were resolved to further under-
stand the biochemical consequences of these mutations [15]. Re-analysis of the WT IHH-N
crystal structure revealed two interaction models between two symmetry-related molecules
of IHH-N: one was the C-terminal binding model where the S195, A196, and A197 located
in the C-terminus of molecule A were positioned at the zinc binding site of molecule B
(Figure 1A), and the other was the N-terminal binding model, where the amino terminus
(R39, P40, P41, R42, and K43) of molecule A was located at the zinc binding site of molecule
B (Figure S2). These two models have been reported in SHH-N [13,16] and the N-terminal
interaction model was considered to be required for multimeric complex formation [13].

However, whether C-terminus, especially S195, A196, and A197, is vital for the mul-
timer formation of IHH-N remains unclear. Gel filtration chromatography showed that
the ∆SAA had different elution profiles compared with the WT (Figure 1B,C), especially a
substantially reduced multimer in fractions 10–13 in ∆SAA. However, no apparent change
in monomer was found in fractions 17 and 18 (Figure 1C). This result indicated that S195,
A196, and A197 were crucial for the multimer formation of IHH-N proteins.

Given that HH signalling activity is associated with the multimer level, the influence
of ∆SAA on HH signalling activity was elucidated using cell differentiation assay in vitro.
The C3H10T1/2 cell line is one of the mesenchymal stem cells that could be differentiated
into diverse terminal cells under the stimulation of distinct biological molecules. After
responding to HH ligands, these cells are differentiated into mature osteoblasts, and express
the corresponding marker AKP. The culture supernatants of the WT or ∆SAA stable cell
line were collected and added into the medium of C3H10T1/2 cells, then the expression
of AKP was detected after 5 days. The results clearly showed that the AKP activity was
significantly impaired in ∆SAA (Figure 1D), suggesting a significant attenuation of the
IHH signalling activity. Therefore, all results indicated that S195, A196, and A197, which
were located in the C-terminus of IHH-N, were essential for multimerization to facilitate
signalling activity.

3.2. Conserved C-Terminus of IHH-N Fragment Affects Protein Self-Cleavage and Stability

The amino acid sequences of different species were aligned to further clarify the
potential functions of the IHH-N C-terminus. The results showed that the homology of
S195, A196, and A197 and adjacent amino acids were almost 100% (Figure S1A), indicating
the potential conserved biological functions of such region.

Ten amino acids (KSEHSAAAKT), including S195, A196, and A197, were initially
selected to construct different truncations, and the relevant expression of IHH-N and IHH-
C was studied (Figure 2A). The results showed that the IHH-N and IHH-C fragments were
slightly reduced in ∆SAA but remarkably less in SAAAKT truncation (∆SA . . . KT) than
that in the WT. In addition, neither IHH-N nor IHH-C was identified in KSEHSAAAKT
truncation (∆KS . . . KT, Figure 2B,C).
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Figure 1. S195, A196, and A197 are required for multimer formation of IHH-N. (A) The C-terminal binding model of IHH-N
showed that the S195, A196, and A197 of molecule A (pictured as backbone trace) were positioned at the zinc binding site of
molecule B (pictured with the molecular surface area coloured by electrostatic potential). (B) Schematic of WT and SAA
truncation. * truncated amino acids. (C) The multimeric form of IHH-N was analysed using gel-filtration chromatography.
The retention was the total protein collected in the cell culture supernatants. The amount of multimers in fractions 10–13 in
∆SAA were significantly reduced compared with that in the WT. (D) The results of C3H10T1/2 cell differentiation showed
that the AKP activity was significantly impaired in ∆SAA, suggesting a remarkable attenuation of the IHH signalling
activity. Data are mean ± s.e.m, n = 3, ** p < 0.01.

Once self-cleavage occurs, the IHH-N and IHH-C fragments are generated simultane-
ously, which means that the occurrence of self-cleavage could be manifested by detecting
either of these two fragments. When deleting S195, A196, and A197, the self-cleavage was
only slightly affected and IHH-N proteins were still stable. The deletion of six amino acids
(SAAAKT) exerted a modest effect on the self-cleavage according to the partial reduction
in IHH-C protein. However, the expression of IHH-N was significantly reduced compared
with that of IHH-C, indicating that the lack of A198, K199, and T200 may decrease protein
stability and aggravate protein degradation. Moreover, when all 10 amino acids were
deleted, neither IHH-N nor IHH-C could be detected, implying that amino acids K191,
S192, E193, and H194 were involved in the autoproteolytic cleavage reaction of full-length
IHH precursor. In total, the three regions had effects on protein self-cleavage or stability to
varying degrees. Further research was conducted on these regions to confirm this effect
in detail.
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truncations. * truncated amino acids. (B,C) Western blot and quantitative statistical analysis of the different truncations.
The grey value of the protein bands was analysed by Image J. The ratio of IHH-N (or IHH-C) to the total IHH protein,
which is composed of full-length protein and IHH-N (or IHH-C), was calculated with the WT as the standard. Data are
mean ± s.e.m, n = 3, ** p < 0.01, *** p < 0.001, **** p < 0.0001. The IHH-N and IHH-C fragments were slightly reduced in
∆SAA and remarkably less in ∆SA . . . KT than that in WT. IHH-N and IHH-C were not detected completely in ∆KS...KT.

3.3. K191, S192, E193, and H194 Synergistically Affect Self-Cleavage of IHH Precursor

The results of ∆KS . . . KT revealed that K191, S192, E193, and H194 may play a
decisive role in IHH precursor self-cleavage. IHH-N was expectedly absent and IHH-C
was substantially reduced in the corresponding KSEH truncation (Figure 3A–C). Then,
KSEH was replaced with AAAA (Figure 3A) to rule out the possibility that the destroyed
self-cleavage could be attributed to the drastic change in the spatial structure after KSEH
deletion. The result clearly proved that although the expression of IHH-C slightly increased,
it was still far lower than that of WT, indicating that self-cleavage was also considerably
inhibited. Thus, self-cleavage failure resulted from KSEH deficiency but not from severe
disruption in protein structure.



Biomolecules 2021, 11, 792 7 of 14Biomolecules 2021, 11, x FOR PEER REVIEW 7 of 14 
 

 
Figure 3. K191, S192, E193, and H194 are required for IHH self-cleavage. (A) Schematic of ΔKSEH and 4A constructs. Red 
letters indicate replaced amino acids; * truncated amino acids. (B,C) Western blot and statistical analysis showed that IHH-
N was absent in ΔKSEH and 4A compared with WT, whereas IHH-C was remarkably reduced, indicating that IHH self-
cleavage was considerably affected. Data are mean ± s.e.m, n = 3, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. 

Subsequently, four-point mutations were constructed to determine which amino acid 
plays a decisive role in K191, S192, E193, and H194 (Figure 4A). The results showed that 
IHH-N and IHH-C were present in these mutants (Figure 4B,D) and all expression levels 
of IHH-C were similar to those of the WT (Figure 4E), suggesting that KSEH worked to-
gether for IHH self-cleavage instead of being only dependent on a single amino acid. Un-
expectedly, the IHH-N protein was obviously reduced in K191A mutation and slightly 
reduced in S192A and E193A mutations (Figure 4B,C), indicating that these three amino 
acids may not only be involved in autoproteolytic cleavage but also in protein stability 
maintenance. This conclusion further explained the phenotype of the complete disappear-
ance of the IHH-N fragment but a weak expression of the IHH-C fragment in KSEH trun-
cation and KSEH/AAAA replacement assays (Figure 3B). 

The occurrence of self-cleavage typically depends on the attack of cholesterol on the 
thioester bond at the cleavage site [18]. Naturally, the cleavage site must be properly pre-
sent on the protein surface to facilitate the attack (Figure 4F). The 3D structures of full-
length IHH with ΔKSEH and KSEH/AAAA mutations were predicted using I-TASSER 
software, which was also used for the following SHH protein predictions, to determine 
whether KSEH affects the presentation of the self-cleavage site. The structures of IHH-N 
and SHH-N came from the existing structure (PDB ID: 3K7G and 3N1R). Meanwhile, the 
robustness of the predicted human IHH-C and SHH-C structures with the published 
structure of drosophila HH-C [19] (PDB 1AT0) were calculated using PyMOL to ensure 
the reliability of modelling. The raw Ca RMSDs for IHH-C and SHH-C were 1.549 and 
2.585 Å, respectively, whilst the optimised Ca RMSDs were 0.453 and 0.823 Å, respec-
tively, indicating that their structures were similar (Figure S3A). 

As expected, the cleavage site, especially the cholesterol-modified amino acid G202, 
was trapped inside the spherical IHH-C in ΔKSEH and KSEH/AAAA mutations (Figure 
4F). This finding indicated that the probability of cholesterol collision and self-cleavage 

Figure 3. K191, S192, E193, and H194 are required for IHH self-cleavage. (A) Schematic of ∆KSEH and 4A constructs.
Red letters indicate replaced amino acids; * truncated amino acids. (B,C) Western blot and statistical analysis showed that
IHH-N was absent in ∆KSEH and 4A compared with WT, whereas IHH-C was remarkably reduced, indicating that IHH
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Subsequently, four-point mutations were constructed to determine which amino acid
plays a decisive role in K191, S192, E193, and H194 (Figure 4A). The results showed that
IHH-N and IHH-C were present in these mutants (Figure 4B,D) and all expression levels of
IHH-C were similar to those of the WT (Figure 4E), suggesting that KSEH worked together
for IHH self-cleavage instead of being only dependent on a single amino acid. Unexpect-
edly, the IHH-N protein was obviously reduced in K191A mutation and slightly reduced
in S192A and E193A mutations (Figure 4B,C), indicating that these three amino acids may
not only be involved in autoproteolytic cleavage but also in protein stability maintenance.
This conclusion further explained the phenotype of the complete disappearance of the
IHH-N fragment but a weak expression of the IHH-C fragment in KSEH truncation and
KSEH/AAAA replacement assays (Figure 3B).

The occurrence of self-cleavage typically depends on the attack of cholesterol on the
thioester bond at the cleavage site [18]. Naturally, the cleavage site must be properly
present on the protein surface to facilitate the attack (Figure 4F). The 3D structures of
full-length IHH with ∆KSEH and KSEH/AAAA mutations were predicted using I-TASSER
software, which was also used for the following SHH protein predictions, to determine
whether KSEH affects the presentation of the self-cleavage site. The structures of IHH-N
and SHH-N came from the existing structure (PDB ID: 3K7G and 3N1R). Meanwhile,
the robustness of the predicted human IHH-C and SHH-C structures with the published
structure of drosophila HH-C [19] (PDB 1AT0) were calculated using PyMOL to ensure
the reliability of modelling. The raw Ca RMSDs for IHH-C and SHH-C were 1.549 and
2.585 Å, respectively, whilst the optimised Ca RMSDs were 0.453 and 0.823 Å, respectively,
indicating that their structures were similar (Figure S3A).

As expected, the cleavage site, especially the cholesterol-modified amino acid G202,
was trapped inside the spherical IHH-C in ∆KSEH and KSEH/AAAA mutations (Figure 4F).
This finding indicated that the probability of cholesterol collision and self-cleavage were
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substantially reduced. Instead, the cleavage site was normally presented on the surface of
the predicted structure of WT, ∆SAA, and AKT truncation (∆AKT) (Figure S3B).
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but covered and changed to an aperiodical coil in KSEH truncation and KSEH/AAAA replacement. This finding indicated
that KSEH was critical for the surface presentation of the self-cleavage site on IHH protein.

In order to further confirm whether KSEH is decisive for the presentation of the
cholesterol modification site, IHH-N was directly replaced with EGFP and the highly
conserved C-terminus was retained to construct different fusion proteins (Figure S4A).
Contrary to the expectation, deleting K191, S192, E193, and H194 did not affect the self-
cleavage of EGFP-IHH fusion precursor at all, even though the 10 conservative amino
acids were deleted simultaneously (Figure S4B–D), and this finding was identical with
that in a previous EGFP-SHH fusion protein study [20]. The predicted structures of
fusion proteins indicated that IHH-N and EGFP presented relatively independent and
intact spatial structures, with the self-cleavage site exposed on the surface all the time
(Figure S4E), regardless of whether KSEH was truncated or even if 10 amino acids were
knocked out. This result demonstrated that the normal presentation of the cholesterol
modification site depended not only on the KSEH region but also on the whole spatial
structure of the IHH protein.

3.4. K186, A187, E188, and N189 Also Severely Affect SHH Self-Cleavage by Obstructing the
Presentation of the Cholesterol Modification Site

SHH, another member of the HH family, also has a conserved SHH-N C-terminal
sequence (Figure S1) and a highly conserved domain consisting of K186, A187, E188, and
N189 corresponding to K191, S192, E193, and H194 at the same position in IHH. A KAEN
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truncation (∆KAEN) was constructed (Figure 5A) to find out whether KAEN affected the
self-cleavage as KSEH did. SHH-N almost disappeared, whilst SHH-C decreased to a
certain degree, which was similar to that of IHH (Figure 5B,C). The structure of SHH was
subsequently predicted, and the results revealed that deleting KAEN or replacing KAEN
with AAAA could similarly disrupt the presentation of the self-cleavage site (Figure 5D).
Overall, these results indicated that even though this region was not completely conserved
in the HH family, it affected self-cleavage in an analogical manner.
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expression of SHH-C decreased remarkably when KAEN was knocked out. Data are mean ± s.e.m, n = 3, * p < 0.05,
**** p < 0.0001. (D) Structural simulation of SHH protein showed that the C-terminal region, including self-cleavage site
between G200 and C201 (blue, KAEN; pink, SVAAKS; red, GGCF) was presented on the surface as α-helices in WT but
covered and changed to an aperiodical coil in KAEN truncation and KAEN/AAAA replacement. This finding indicated
that the KAEN region was critical for the surface presentation of the cholesterol modification site, similar to that of IHH.

3.5. A198, K199, and T200 Evidently Affect the Stability of IHH-N

Point mutations and truncation were developed in the AKT region (Figure 6A), and
the expression of IHH-N and IHH-C were characterized to further clarify the effect of A198,
K199, and T200 on protein stability and self-cleavage. The point mutations K199A and
T200A showed almost similar expression levels of IHH-N and IHH-C compared to that of
WT (Figure 6B,C), indicating that mutating a single amino acid did not affect the stability
of IHH-N. However, when three amino acids were deleted altogether, the expression of
IHH-C was normal but that of IHH-N remarkably decreased, thereby revealing that A198,
K199, and T200 acted as a combination to affect protein stability.
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4. Discussion

IHH is one of the secreted ligands in the HH signalling pathway, and it plays an
important role in regulating cartilage formation and development [5]. Missense mutations
in IHH lead to skeletal developmental defects, such as BDA1 [21] and acrocapitofemoral
dysplasia (ACFD) [22]. The N-terminus of HH-N plays a vital role in multimer formation,
whilst the physiological functions of the C-terminus of HH-N have not been elucidated.

The structure of SHH-N was first reported in 1995 [16], and the C-terminus of one
SHH-N (A194 and K195) was revealed to be positioned at the zinc-binding region of another
SHH-N. This interaction might contribute to maintaining zinc binding and the potential
hydrolytic activity of SHH-N [16], although the hydrolase activity is not required for Hh
signalling transduction [23]. However, zinc is indeed essential for HH protein stability
and signalling activity [23,24]. Moreover, zinc makes a vital contribution to the binding
between HH and Hhip, which is a highly conserved and vertebrate-specific inhibitor of Hh
signalling [25]. A recent study revealed that the cholesteryl moiety associated with seven
amino acids (191VAAKSGG197) in the C-terminus of SHH-N is embedded in a cavity of
receptor PTC1 to relieve the inhibition of SMO by PTC1 and stimulate the Hh signalling
pathway [26]. All the above studies implied that the C-terminus of HH may exert multiple
vital functions to regulate protein stability, partner binding, and signalling activity.

In this study, the highly conserved C-terminus of IHH-N was divided into three
regions to analyse their functions in self-cleavage, protein stability and multimer formation.
The functions of these three regions overlap one another but have their own emphasis. For
example, K191, S192, E193, and H194 significantly affected the autoproteolytic cleavage
reaction by obstructing the presentation of the cholesterol modification site. A198, K199,
and T200 mainly affected the stability of IHH-N. In addition, inserting S195, A196, and
A197 in another adjacent IHH-N molecule contributed to IHH-N multimer formation.
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Under physiological conditions, the IHH protein is attacked by a cholesterol molecule
to promote the self-cleavage reaction and form two different fragments. The relatively
stable IHH-C was normal in the ∆AKT but slightly reduced in the ∆SAA. A more drastic
decrease occurred in the ∆KSEH, indicating that the autoproteolytic cleavage reaction
was obstructed to a great extent, which demonstrated that the KSEH region was the most
critical region for self-cleavage. Similar discoveries were found in SHH. Subsequently, the
possible mechanism was clarified through structural prediction and the results showed that
the cholesterol modification site could not be normally presented on the protein surface in
∆KSEH, which then reduced the probability of cholesterol colliding with the self-cleavage
site and caused the self-cleavage reaction unsuccessfully. However, it cannot be ruled out
the possibility that the KSEH deletion or substitution changes the IHH structure, causing
self-cleavage to be affected; thus, further study is needed.

However, the EGFP replacement assay illustrated that the KSEH region was not
decisive to the self-cleavage, and the overall structure of the IHH-N had a considerable
effect. In addition, the self-cleavage was slightly affected in ∆SAA and ∆SA . . . KT,
possibly due to the mild changes of the polypeptide chain surrounding the cholesterol
modification site. All results strongly indicate that the presentation of the self-cleavage site
was dependent on the KSEH region and 3D structure of the whole IHH-N protein.

This mechanism expands the understanding of the factors that influence protein self-
cleavage. Two types of factors affecting autoproteolytic cleavage have been proposed
prior to this study. One factor is cleavage site mutations, such as C203A, which affect the
formation of thioester bonds and prevent self-cleavage from occurring [27]. The other one
is HH-C active centre mutations, such as H329Y, which destroy the activity of HH-C as a
cholesterol transferase; thus, the HH protein could not be self-cleaved [6]. Another study
has shown that mutations or deletions of certain amino acids in the N-terminus of SHH-N
also affect the self-cleavage [13], but the reason remains unclear. This, we predicted that
these amino acids may also be involved in maintaining the correct presentation of the
self-cleavage site or the complete 3D structure of IHH-N.

In this research, it was found that ∆AKT did not affect the self-cleavage but signifi-
cantly affected the protein stability. Unfortunately, the potential mechanism could not be
predicted due to the lack of AKT in the existing SHH and IHH protein structures because of
AKT hydrolysis in crystallisation [15,16]. In fact, a large number of studies have found that
mutations in different regions of the HH-N would reduce protein stability. For example,
G31R in the N-terminus of SHH-N [14], BDA1-related mutations in the middle of IHH-
N [15], and ∆AKT in the C-terminus of IHH-N in this study. In addition, we also found
that ACFD-associated mutation V190A [22], which is closed to the KSEH in the C-terminus
of IHH-N, affected the self-cleavage slightly but reduced protein stability obviously (Figure
S5), further supporting the significance of the IHH-N C-terminus and also implying that
V190A mutation may cause disease in part by reducing the IHH-N protein level.

Several studies tried to clarify the potential mechanism of the decrease in protein
stability. Traiffort et al. found that the eight mutations on SHH, located near the narrow
gap bound to zinc, cause a significant decrease in SHH-N [14]. Three of the eight amino
acids are located in the zinc-binding region, indicating that the mutations of these three
amino acids affect zinc binding and reduce the stability of SHH-N. Although the other five
amino acids are not in this region, reducing the stability by affecting zinc binding indirectly
is possible. The other two studies found that E95K and D100E mutations decrease the
stability of IHH-N [15] and verified that these two mutations affect calcium binding because
they are close to the calcium-binding groove and are involved in the interaction with the
receptor and binding partners [28]. Therefore, A198, K199, T200, and even K191, which is
also close to the zinc/calcium-binding groove, may affect protein stability by directly or
indirectly binding with zinc or calcium or both. However, this hypothesis requires further
in-depth research.

The HH family consists of secretory signal proteins, whose long-range signalling
is mainly controlled by the formation of soluble multimers. Therefore, multimerization
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is crucial for the normal biological function of HH proteins. In view of the C-terminal
binding model, S195, A196, and A197 promote multimerization by binding to another
IHH-N molecule at the zinc-binding site. This study proved that SAA was pivotal for
multimer formation and signal activity by using gel-filtration chromatography and cell-
based AKP assay.

Cholesterol and palmitic acid modifications were identified to be essential for mul-
timer formation. The absence of palmitic acid or cholesterol modification prevents the
multimer formation of HH-N proteins [9,29]. In our study, gel-filtration chromatography
results showed that a small amount of multimers could still be detected in tubes 13–15
in SAA truncation, indicating that SAA truncation has normal lipid modification. Cell
immunofluorescence results also confirmed this point as ∆SAA could be anchored on the
cell membrane, similar to WT, as shown in Figure S6 [30,31]. These results implied that the
multimer decrease in ∆SAA was not related to lipid deficiency.

Based on the 3D structure, the essential function of the SHH-N N-terminus in mul-
timerization [13] has given new indication that not only lipid modifications but also the
interaction between two symmetry-related IHH-N affect multimer formation. Our data
show that the highly conserved C-terminus of IHH-N was also crucial for multimer for-
mation, thus providing a new standpoint for the study of multimerization. Furthermore,
given the published SHH crystal structure [16], A194 and K195 might be involved in SHH
multimerization as two key amino acids for the interaction between two symmetry-related
SHH-N molecules.

IHH is a secreted protein of the HH family that mainly plays an important regula-
tory role in cartilage formation and development. IHH is highly conserved in different
species, especially the N-terminal signal fragment, which is 98% conserved in mice and
humans. The highly conserved C-terminus of IHH-N, which is located near the cleavage
and cholesterol-modifying sites, has sparked the research interest of the authors. This study
clearly described the important role of the C-terminus in self-cleavage, protein stability, and
multimer formation in accordance with the crystal structure of the IHH-N protein, thereby
providing an important basis for further elaboration of the mechanism of self-cleavage and
multimer formation.
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in this study.
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