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Abstract
Sub-Saharan Africa (SSA) is rapidly urbanizing, and ambient air pollution has emerged as a major
environmental health concern in growing cities. Yet, effective air quality management is hindered
by limited data. We deployed robust, low-cost and low-power devices in a large-scale measurement
campaign and characterized within-city variations in fine particulate matter (PM2.5) and black
carbon (BC) pollution in Accra, Ghana. Between April 2019 and June 2020, we measured weekly
gravimetric (filter-based) and minute-by-minute PM2.5 concentrations at 146 unique locations,
comprising of 10 fixed (∼1 year) and 136 rotating (7 day) sites covering a range of land-use and
source influences. Filters were weighed for mass, and light absorbance (10−5m−1) of the filters was
used as proxy for BC concentration. Year-long data at four fixed sites that were monitored in a
previous study (2006–2007) were compared to assess changes in PM2.5 concentrations. The mean
annual PM2.5 across the fixed sites ranged from 26 µg m−3 at a peri-urban site to 43 µg m−3 at a
commercial, business, and industrial (CBI) site. CBI areas had the highest PM2.5 levels (mean:
37 µg m−3), followed by high-density residential neighborhoods (mean: 36 µg m−3), while
peri-urban areas recorded the lowest (mean: 26 µg m−3). Both PM2.5 and BC levels were highest
during the dry dusty Harmattan period (mean PM2.5: 89 µg m−3) compared to non-Harmattan
season (mean PM2.5: 23 µg m−3). PM2.5 at all sites peaked at dawn and dusk, coinciding with
morning and evening heavy traffic. We found about a 50% reduction (71 vs 37 µg m−3) in mean
annual PM2.5 concentrations when compared to measurements in 2006–2007 in Accra. Ambient
PM2.5 concentrations in Accra may have plateaued at levels lower than those seen in large Asian
megacities. However, levels are still 2- to 4-fold higher than the WHO guideline. Effective and
equitable policies are needed to reduce pollution levels and protect public health.
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1. Introduction

Global PM2.5 exposures are gradually declining, but
there is little data from sub-Saharan Africa (SSA),
where there are increasing concerns about air pol-
lution in cities [1]. The urban population in SSA
has increased by over 400% since 1980 to about 450
million people in 2017, making it the world’s fastest
urbanizing region [2]. Urban residents in SSA have
access to increasing infrastructure, technology, and
services for improved quality of life [3, 4]. However,
the sprawl has been largely unplanned in terms of
land use factors. Environmental protection policies
have also not kept pace with urban growth [3, 5],
making air quality a growing public health concern
in cities [6–8]. Yet, cities in SSA lack ground-level
air quality monitoring as exists in North America,
Europe, and parts of Asia [9, 10]. This lack of system-
atic monitoring is an obstacle to understanding the
within-city patterns, sources and health impacts of air
pollution, which are essential for designing effective
air quality policies [7, 11, 12].

Exposure to elevated levels of fine particulate
matter (PM2.5) and black carbon (BC), a compon-
ent of PM, presents economic and health risks to
urban residents in SSA and elsewhere [13–15]. Evid-
ence suggests that BC is associated with higher health
effects per unit when compared to PM mass, and
is an indicator of the health risks related to emis-
sions from combustion sources [16]. As SSA urban-
izes, there is an urgent need for detailed air monit-
oring data in cities to inform interventions to protect
the health and wellbeing of the population. In partic-
ular, city-wide data on BC in SSA cities are limited
[14, 17, 18].

In Accra, Ghana’s largest city and capital, air pol-
lution emissions are characterized by diverse mixture
of combustion and non-combustion sources, includ-
ing biomass fuels, road dust and vehicle emissions
[17, 19, 20]. Like other cities in SSA, rapid urbaniza-
tion in Accra is intensifying industrial and economic
activities as well as increasing the demand for trans-
portation, new fleet of vehicles, and energy, all with
major implications for air quality, exposure patterns
and health inequalities [21, 22].

We aimed to collect detailed spatial and tem-
poral data and characterize within-city variations in
PM2.5 and BC in the Greater AccraMetropolitan Area
(GAMA) of Ghana. In a large-scale measurement
campaign, we collected year-long data on PM2.5 and
markers of BC from a network of diverse motoring
sites. The data and analysis provide comprehensive
and granular information on air pollution variations
in a sprawling SSA city. We also analyzed changes
in PM2.5 concentrations over a decade by comparing
annual data with those in a previous smaller study
(2006–2007) [23].

2. Methods

2.1. Study location
The GAMA is the industrial and administrative cen-
ter of Ghana and one of the fastest growing metro-
politan areas in SSA with ∼5 million residents and
an annual growth rate of 4.2% [24]. The GAMA con-
sists of Accra Metropolitan Area (AMA) at its core,
the port city of Tema to the east and 11 other adjoin-
ing districts [25, 26]. The GAMA is in a tropical cli-
mate zone with high average monthly temperatures
and relative humidity (RH) ranging between 25 ◦C
and 33 ◦C (77–90 ◦F) and 77%–85%, respectively
[25]. The GAMA has two major seasons: the rainy
(May–October) period, and the dry period compris-
ing the Harmattan (November–February) character-
ized by north-easterly trade winds from the Sahara
Desert [27].

2.2. Study design
This work was conducted within the multi-country
and multi-city ‘Pathways to Equitable Healthy Cities’
study (http://equitablehealthycities.org/), which aims
to provide scientific evidence on how urban develop-
ment and policies can be managed to enhance health
equity.

As previously described [27], we designed a year-
long campaign to examine the spatial (land-use fea-
tures) and temporal (daily, weekly, monthly and
seasonal) variations in ambient PM2.5 and BC by
sampling at a combination of fixed (∼1 year, n = 10
sites) and rotating (7 d, n = 136) sites. This design
allowed for detailed assessment of both the tem-
poral (using fixed site data) and spatial (using rotat-
ing site data) variability of PM2.5 and BC over the
study area. Further, this design allowed us to optim-
ally use a finite number of monitoring equipment to
capture data across the entire geographical extent of
the study area. We used a structured form to collect
information on land-use features at each monitoring
site [27]. The sites were subsequently grouped into
four land-use classes: commercial, business, indus-
trial (CBI); high-density residential; medium/low-
density residential; or peri-urban (see supplementary
text S1 for additional details). We originally planned
a 12 month field campaign to collect data at 150 sites
starting April 2019; however, the fieldwork was sus-
pended for six weeks (31st March–18th May 2020)
due to the COVID-19 pandemic lockdown in Accra
and self-isolation of field team members. After the
lockdown was lifted and daily activities returned to
pre-lockdown status, we conducted additional three
weeks of measurement (19th May–11th June 2020)
at all fixed sites along with 12 rotating sites, res-
ulting in close to 12 months of data from 10 fixed
and 136 rotating sites (see figure S2 (available online
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at stacks.iop.org/ERL/16/074013/mmedia) for meas-
urement timeline).

The 10 fixed sites were operated continuously,
collecting weekly and 1 min averages throughout
the measurement campaign at key locations selected
based on population density, road networks, neigh-
borhood socioeconomic status (SES) and household
biomass fuel use data from the national census [28].
To compare changes in annual mean PM2.5 levels
within the last decade, four of the 10 fixed sites were
placed at the exact locations monitored by Dionisio
and colleagues [23].We also collected 1-week samples
at each of the 136 rotating sites, which were selec-
ted with a stratified random sampling scheme based
on land-use, with more emphasis placed on AMA
where the majority of the population live [27]. The
sites were initially computer-generated and the actual
sampling locations that were as close as possible to
the computer-generated ones were identified by the
field team. The median distance (interquartile range,
IQR) between the original computer-generated loca-
tions versus the actual sites monitored was 181 (67–
407) m. During the field campaign, the rotating sites
were sampled in groups of five each measurement
week alongside the fixed sites.

2.3. PM2.5measurement and analytical methods
We measured both real-time (1 min interval) and
integrated gravimetric (weekly averages) PM2.5 con-
centrations using portable battery operated low-cost
and low-power monitors that were placed in protect-
ive cases fastened onmetal poles at about 4 m (±1m)
above ground [27]. We included in our analysis only
samples frommonitors that operated for⩾75%of the
measurement period (i.e. at least 5 out of 7 d to cap-
ture both weekdays and weekends) and had an aver-
age flow rate within 10% of the intended rate.

2.4. Integrated PM2.5

Weekly integrated PM2.5 was measured using the
Ultrasonic Personal Aerosol Sampler (UPAS) (Access
Sensor Technologies, Fort Collins, USA) [29] oper-
ated at 1 litre per minute (lpm). The UPAS has been
demonstrated to have a close agreement with ref-
erence monitors [29–31] over a wide range of con-
centrations (10–1600 µg m−3) in diverse settings.
However, a recent field evaluation suggested that
overloading could occur at filter masses above 650 µg
[32], an issue that could be avoided by using the
duty-cycle feature on the UPAS in highly polluted
environments. To avoid overloading filters and to
also conserve battery power, the UPAS was operated
at 50% duty cycle, drawing air 30 s every minute for a
total of 5040min over the 7 d sampling period. PM2.5

mass was collected on 2 µm pore size 37 mm bar-
coded Teflon membrane filters (https://mtlcorp.com/
filters/) and weighed pre- and post-sampling
using a MTL AH500 automated robotic scale
(www.mtlcorp.com/#/filter-weighing) maintained

in a temperature and RH controlled laboratory
(23 ± 2 ◦C, 35 ± 2% RH) at The University of
British Columbia. Further information on the UPAS
and filter handling can be found elsewhere [27, 33].
An additional 27 duplicate (20% of sites) integrated
samples and 28 field blanks were collected at rotat-
ing sites, including three post-COVID-19 lockdown
duplicates and blanks. The average of the duplicate
measurements was taken and final PM2.5 concentra-
tions were blank corrected. Quantitative information
on blanks and duplicates are in the supplementary
text (figure S3).

2.5. Continuous PM2.5

We deployed a low-cost Zefan real-time continuous
monitor (www.zfznkj.com/) to measure PM2.5 con-
centrations at 1 min intervals. The Zefan relies on
a light scattering technique to assess PM2.5 using
Plantower sensors (model PMS7003), which have
been evaluated with reference monitors (i.e. FDMS
8500 and TEOM 1400ab) over 6–12 month peri-
ods [34, 35]. While this technique provides accurate
temporal pattern in measured PM concentrations, its
magnitude is inexact as PM mass are only inferred
from particle characteristics (e.g. number, size and
refractive index), which can be affected by weather
conditions (e.g. RH and temperature) [34, 36].

Following previous studies [23, 37], we correc-
ted the minute-by-minute continuous PM measure-
ments by a correction factor (CF) calculated such that
the average of continuous PM2.5 measurements was
equal to the integrated gravimetric PM2.5 concentra-
tion at the same location over the same 7 d measure-
ment period. This was done to ensure that the aver-
age weekly continuous measurements were the same
as the gravimetric which has less error than optical
sensors. We calculated unique CFs per site for each
7 d period. The median (IQR) of the CFs were 0.84
(0.69–1.13), similar to CFs previously reported for a
different optical sensor in Accra [23, 37].

We tested minute-by-minute monitor-to-
monitor precision by running all monitors alongside
each other over a 24 h period prior to the commence-
ment of field campaign [27]. Further, we conducted
mid-campaign (in January 2020) monitor-monitor
precision by co-locating the instruments at one of
the fixed sites for a week to assess potential drift over
the course of the campaign. Finally, post-campaign,
we co-located two Zefan sensors with a U.S. fed-
eral reference monitor located at the U.S. embassy
in Accra. We did not see any within- or between-
monitor bias in the sensor performance pre-, mid-,
and post-campaign.

2.6. Black carbon
Black carbon (BC) aerosols are known indicators
of combustion-related constituents of PM emissions
and contribute to global warming [38, 39]. Recent
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epidemiological studies also indicate associations
between BC and adverse health outcomes [16, 40].
Thus, we used the absorption coefficient (light
absorbance) (10−5m−1) of the post-weighed PM2.5

filters, estimated by applying an image-based reflect-
ance method [41], as a marker for BC concentra-
tions [42, 43]. The image-based reflectance method
closely correlates (r2 = 0.98) to elemental carbon
(EC) concentrations by thermo-optical reflectance,
with 1 absorbance unit (1× 10−5m−1) equivalent to
1.67 µg m−3 EC [41].

3. Data analysis

We collected 99 313 h (10 fixed sites = 78 890 and
136 rotating sites= 20 423) of valid real-time and 654
(fixed sites = 518 and rotating sites = 136) weekly
integrated gravimetric PM2.5 samples. Of these, 21
(fixed) and 10 (rotating) integrated samples were
excluded from analysis either due to failure to meet
inclusion criteria or for quality control reasons (e.g.
blocked airflow and SD card malfunction), leaving a
total of 623 weekly (497 fixed and 126 rotating sites)
gravimetric samples for analysis.

3.1. Spatial analysis
We used data from the rotating sites to assess the spa-
tial patterns of PM2.5 and BC across the city by the
four site-types: CBI, high-, and medium/low-density
residential and peri-urban. To provide more detail on
influence of traffic related sources on PM2.5 pollution
in the GAMA, we grouped the samples collected at
rotating sites according to the type (major, secondary
and minor) and surface material (paved, mixed and
unpaved) of the road near the monitoring site. Since
monitoring at rotating sites occurred in groups of five
sites per week (i.e. samples were not collected simul-
taneously at all rotating sites, nor evenly by site-types
during each measurement week), we accounted for
potential influence of time trend/season on the spa-
tial patterns of the measured concentrations to allow
for comparison across sites. We adjusted for potential
time trends at the rotating sites by applying weekly
specific temporal adjustment factor (TAF) using data
from the ten fixed (year-long) sites. For each meas-
urement week, a TAF calculated as the ratio of the
mean PM2.5 or BC across all fixed sites for that week
to the mean annual PM2.5 or BC across all fixed sites
was used to adjust the samples collected at the rotating
sites in that particular week [44]. The season adjusted

concentration (Ci)
adjusted
j of the ith rotating site for the

jth measurement week was calculated as:

(Ci)
adjusted
j = (Ci)j/

[(
CFixed Site

)
j
/
(
CFixed Site

)]
(1)

where (Ci)j is the PM2.5 or BC concentration meas-
ured at the ith rotating site in the jth measurement

week; (CFixed Site)j and
(
CFixed Site

)
are the average

PM2.5 or BC in the corresponding jth measurement
week and annual average PM2.5 or BC at all fixed

sites respectively, and
[(
CFixed Site

)
j
/
(
CFixed Site

)]
is

the TAF.

3.2. Temporal analysis
We examined the temporal patterns in the data by
season (Harmattan vs non-Harmattan), days of the
week (plus weekday vs weekend), and time of day
(diurnal) using data from the fixed sites.We also eval-
uated changes in annual PM2.5 levels over a decade
(2006–2007 vs 2019–2020) by comparing fixed site
data obtained from the same four residential loca-
tions sampled in a previous study [23].

All analyseswere done using the statistical analysis
package R, version 3.6.1 [45], and an alpha of 0.05was
used as cut-off of significance.

4. Results

4.1. Spatial patterns in PM2.5 and BC
concentrations
The measurement locations and the measured con-
centrations relative to the World Health Organiz-
ation (WHO) air quality guideline are shown in
figure 1. The season adjusted mean (standard devi-
ation, SD) integrated PM2.5 and BC concentrations
across the rotating sites were 31 (10) µg m−3 and
5 (2) × 10−5m−1 respectively. PM2.5 concentration
at every rotating site was higher than the WHO
annual guideline of 10 ug m−3, while 99%, 71%
and 31% of the sites exceeded the interim target
3 (IT-3, 15 µg m−3), IT-2 (25 µg m−3) and IT-1
(35 µg m−3), respectively (figure 1). The mean
PM2.5 and BC levels at rotating sites varied by land-
use. The highest PM2.5 concentrations were in CBI
areas (mean: 37; range: 23–67 µg m−3) and high-
density residential neighborhoods (mean: 36, range:
21–67 µg m−3) (p < 0.01). Peri-urban sites had
the lowest concentrations (mean: 26, range: 16–
56 µg m−3) after medium/low-density neighbor-
hoods (mean: 28, range: 15–54 µg m−3) (figure 2).
Similarly, BC concentrations were two times higher
in CBI areas (mean: 7, range: 1–14 × 10−5m−1)
compared with peri-urban sites (mean: 3, range: 1–
6 × 10−5m−1) (table 1). In general, average PM2.5

concentrations were slightly higher at sites along
major and secondary roads compared with sites near
minor roads, but not by road surface. We observed
similar patterns for BC. Overall, the relative differ-
ences in BC across land use factors were much lar-
ger than the relative differences in PM2.5 concen-
trations, suggesting that PM2.5 in the GAMA may
not be affected by community/local sources (such as
vehicle tailpipe emissions and trash burning) asmuch
as BC.
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Figure 1. Year-long (fixed) and week-long (rotating) monitoring locations. The colors indicate the integrated PM2.5 concentration
relative to the World Health Organization (WHO) Air Quality Guidelines (AQG) for PM2.5 (IT= interim target). The average
concentrations at the fixed sites represent the overall mean of 52 weeks, while the rotating sites represent seasonally-adjusted
values (also representing estimated annual means). Major and secondary/tertiary roads are from OpenStreetMap (downloaded
2019) and the GAMA boundary from Ghana Statistical Service.

Figure 2. Season-adjusted mean PM2.5 concentration at rotating sites by land-use categories. The solid and dashed horizontal
lines show WHO annual (10 µg m−3) and 24-h (25 µg m−3) AQG for PM2.5, respectively.

5. Temporal patterns

5.1. Annual and seasonal patterns in PM2.5

Mean (SD) annual PM2.5 concentrations across the
ten year-long (fixed) sites was 37 (40) µg m−3

and ranged from site-type specific annual means of
26 µg m−3 at the peri-urban site, 32–40 µg m−3 at
medium/low-density residential sites, 35–40 µg m−3

at high-density residential sites, and 37–43 µg m−3

at CBI areas (figure 3). Similarly, annual mean BC
concentrations were lowest at the peri-urban site and
highest at CBI sites (table 2).

By season, the mean PM2.5 and BC con-
centrations during the Harmattan (89 µg m−3

and 12 × 10−5m−1) were 4- and 2-fold higher
than the non-Harmattan period (23 µg m−3 and
6 × 10−5m−1), respectively (figure 4). The absolute
mean difference in PM2.5 concentrations between the
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Table 1. Season-adjusted PM2.5 and BC concentrations at rotating sites by land-use categories.

PM2.5 (µg m
−3) BC (1× 10−5m−1)

Site type (no. of sites) Mean (SD) Range Mean (SD) Range

All rotating sites (n= 126) 31 (10) 15–67 5 (2) 1–14
CBI (n= 23) 37 (10) 23–67 7 (3) 1–14
High-density (n= 28) 36 (10) 21–67 6 (2) 2–10
Medium/low-density (n= 47) 28 (7) 15–54 4 (1) 1–8
Peri-urban (n= 28) 26 (11) 16–56 3 (1) 1–6

Figure 3.Mean annual PM2.5 concentrations (bars; colored by site-type) and mean concentrations by season (Harmattan vs
non-Harmattan). The solid horizontal line shows the WHO annual AQG of 10 µg m−3. The dotted line represents the magnitude
of the difference between seasonal non-Harmattan and Harmattan mean concentrations. CBI: Commercial, business and
industrial areas. Sites: N1 West at Lapaz (N1W) and Tema Motorway (TMW) are at the west and east ends of the multi-lane N1
motorway; Asylum Down (AD) is on the Ring Road Central; Jamestown (JT) and Nima (NM) are low-income, densely populated
and high biomass use neighborhoods in south and middle of AMA; Taifa (TF) is an emerging neighborhood north of the city;
Labadi (LA) is an indigenous Ga community along on the Coast; East Legon (EL) is a high-income neighborhood next to the
University of Ghana Campus. Previously residential streets in EL now host large corporate, commercial and small business
ventures; Ashaiman (ASH) is an emerging neighborhood next to the port city of Tema; and University of Ghana Hill (UGH) is
located on top of the quiet Legon Hill.

Harmattan and non-Harmattan periods at each site
were between 56 and 71 µg m−3 (figure 3). While
the absolute levels were higher during the Harmat-
tan, both periods showed substantial relative spatial
variability. The peri-urban site recorded the highest
seasonal mean difference in PM2.5 concentrations
while sites in high-density residential neighborhoods
recorded the lowest. For each measurement month,
the peri-urban site consistently registered the low-
est PM2.5 and BC levels (figure 4). Like PM2.5, BC
levels also increased during the Harmattan months
(figure 4(b)), and both showed higher variability
in the Harmattan as indicated by the sample SD.
The overall observed doubling of BC levels in the

Harmattan period is noteworthy as it indicates that
meteorological conditions likely magnify local emis-
sions and lead to higher concentrations.

5.2. Day of the week pattern
Using the minute-by-minute continuous data, we
found no differences in mean PM2.5 concentra-
tions between day of the week (Monday–Sunday)
nor between weekdays and weekends in the GAMA,
regardless of whether the data were from the fixed or
rotating sites or both (p > 0.05). Although Sundays
showed slightly lower mean PM2.5 overall, the mean
difference (3 µg m−3) was not significant (p= 0.57).
The absence of between-day of the week variation in

6
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Table 2. Annual and seasonal PM2.5 and BC concentrations at fixed (yearlong) sites by land-use categories.

PM2.5 (µg m
−3) BC (1× 10−5m−1)

Site type (no. of sites) Season Mean (SD) Range Mean (SD) Range

Fixed sites (n= 10) Annual 37 (40) 6–266 7 (4) 1–25
Harmattan 89 (64) 24–266 12 (5) 3–25
Non-Harmattan 23 (7) 6–52 6 (3) 1–18

CBI (n= 3) Annual 40 (41) 17–266 11 (4) 3–25
Harmattan 94 (67) 28–266 16 (5) 5–25
Non-Harmattan 26 (5) 17–52 10 (3) 3–17

High-density (n= 2) Annual 38 (37) 16–231 7 (3) 3–21
Harmattan 87 (63) 26–231 12 (4) 5–21
Non-Harmattan 26 (6) 16–41 6 (2) 3–12

Medium/low-density (n= 4) Annual 36 (41) 11–245 6 (4) 1–22
Harmattan 88 (64) 24–245 10 (4) 3–22
Non-Harmattan 21 (7) 11–51 5 (2) 1–18

Peri-urban (n= 1) Annual 26 (41) 6–217 3 (3) 1–14
Harmattan 81 (71) 25–217 7 (4) 3–14
Non-Harmattan 12 (4) 6–26 2 (1) 1–4

Figure 4.Weekly integrated PM2.5 (A) and BC (B) concentrations at the fixed sites averaged by site-types across measurement
months. Bars are standard deviations of the weekly measurements in that month. The horizontal line in (A) shows the WHO
annual AQG of 10 µg m−3.

PM2.5 in the GAMAwas consistent across all land-use
categories (figure S4).

5.3. Diurnal patterns
PM2.5 concentrations from all sites showed strong
bimodal variability across time of day, and was con-
sistent over land-use areas and by season (figure 5).

PM2.5 concentrations at all sites rose around 03:00
daily, peaking at about 06:00, followed by a gradual
decline to their lowest values around 10:00. Levels
remained fairly stable between 10:00 and 15:00, after
which the concentration slowly increased with a rel-
atively smaller peak around 18:00–19:00. There was
about an hour delay in the timing of the peaks
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Figure 5. Diurnal patterns of PM2.5 concentration across land-use categories. The minute-by minute measurements from all 4592
site-days over the measurement period were averaged. The solid and dashed lines represent Non-Harmattan and Harmattan
seasons, respectively. The horizontal line represents the WHO 24 h AQG of 25 µg m−3.

during the Harmattan and the smaller early even-
ing peak was less pronounced compared to the non-
Harmattan period. In general, average PM2.5 con-
centrations at nighttime (18:00–05:59) were slightly
higher than daytime levels (37 vs 34 µg m−3). Dur-
ing these periods, biomass is burned in some neigh-
borhoods for residential and small-scale commercial
purposes, such as cooking street food and bakery
operation.

5.4. Change in PM2.5 concentration since 2006/2007
In 2006/2007, Dionisio and colleagues [23] recor-
ded large variability (with wide SDs) in mean annual
PM2.5 in four residential neighborhoods of varying
SES and biomass use within the AMA, with values
ranging from28µgm−3 in the affluent neighborhood
of East Legon (EL), and 57 µg m−3 in middle-income
Asylum Down (AD), to >70 µg m−3 in low-income,
densely populated Nima (NM) and Jamestown (JT)
(figure 6). In the current study (2019/2020), themean
annual PM2.5 concentrations were lower at the same
locations, and ranged from 34 µg m−3 at EL to
40 µg m−3 in JT. This suggests a reduction (and
more uniformity/plateau) in PM pollution in the city.
The largest reductions were observed in high-density

residential neighborhoods of JT and NM, where
PM2.5 levels decreased on average by ∼60%. We
observed a smaller reduction (35%) in the middle-
income AD, but slight increase (21%) in high-income
EL where there are a mix of residences and corpor-
ate, commercial and small businesses. The observed
increase in high-income EL could also come from an
overall increase in local commercial activities.

6. Discussion

We conducted a large-scale measurement campaign,
and a detailed analysis of the spatial and temporal
patterns of ambient PM2.5 and BC pollution in the
SSA city of Accra (1500 km2). We found a reduc-
tion in PM2.5 pollution when compared with a dec-
ade ago, but the present levels exceed local and inter-
national public health guidelines by ∼2–4 folds. Our
data show that PM2.5 pollution in Accra is becom-
ing more uniform across communities, similar to cit-
ies in Europe and North America where PM2.5 is a
regional pollutant and not as affected by community
sources as in the past. Nonetheless, there remain some
disparities in PM2.5 and BC concentrations within
the city with significant seasonal variations. The CBI
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Figure 6. Comparison of mean annual PM2.5 concentrations between 2006/2007 (sample range: 12–1292 µg m−3) and 2019/2020
(sample range: 13–245 µg m−3) measurement campaigns. Bars are standard deviation of all measurements in that study period,
including Harmattan. The horizontal line shows the WHO annual AQG (10 µg m−3).

(mostly influenced by traffic) and high-density res-
idential (mostly influenced by traffic and biomass
use) areas were 35%–50% more polluted relative to
peri-urban sites, which typically experience relatively
lower traffic, commercial and industrial activities.
Within-year changes in local meteorology produced
distinct seasonality in PM2.5 and BC pollution, with
concentrations during the Harmattan about twice
that of the non-Harmattan period. Diurnal concen-
trations of PM2.5 peaked at dawn and dusk at times
that coincided with the morning/evening traffic rush
and biomass use hours.

In this city-wide analysis, our findings are con-
sistent with previous smaller studies conducted in the
AMA that also reported higher PM2.5 and BC concen-
trations at locations with persistent road-traffic and
in densely populated neighborhoods [17, 23]. Sim-
ilar to our results, studies in other large SSA cities
have reported higher PM2.5 concentrations in loca-
tions with high road-traffic volumes in the CBI areas
of Nairobi, Kenya [46] and Kampala, Uganda [47];

as well as higher PM2.5 and BC concentrations at
industrial and high-density residential sites in Ibadan,
Nigeria [48]. Within the sub-region, mean annual
PM2.5 concentrations in our study are higher than
annual averages observed for equally sprawling cities
like Ibadan, Nigeria (24–33 µg m−3) [48]. In global
comparisons, mean annual PM2.5 in the GAMA were
substantially higher than those found in large cities
of high-income countries such as New York, USA (5–
11 µg m−3) [49] and London, UK (5–15 µg m−3)
[50], but lower than annual averages in Asian cities
such as Beijing, China (53–112 µg m−3) [51] and
Delhi, India (122–148µgm−3) [52]. Althoughwe did
not study the composition and relative contribution
of different sources to PM2.5 pollution, the high
BC levels observed at CBI and high-density areas
suggest that vehicle emissions and biomass burning
are important determinants of PM2.5 pollution in
the GAMA. Our observed city-wide spatial patterns
aligns with the work of Zhou et al, 2013, which doc-
umented major contributions from traffic, road dust,
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and biomass burning to PM2.5 and BC pollution in
the Accra city core.

Elevated PM2.5 during the Harmattan season
is expected across West Africa given the influ-
ence of transported mineral dust from Sahara
desert [5, 17, 23, 48, 53–55]. However, the observed
increase in BC concentrations, a product of incom-
plete combustion, in the Harmattan season also sug-
gests that changes to local meteorological conditions
during this period (e.g. high temperature, low wind-
speed and absence of precipitation) may produce
stagnant conditions that substantially amplify local
anthropogenic emissions [56]. The daily PM2.5 cycle
of bimodal pattern with peaks in the mornings and
evenings, provides further support for the influence
of rush hour traffic, biomass combustion as well as
pollution build-up due to temperature inversion and
variations in meteorological conditions between day
and nighttime hours and seasons [23, 57]. It is likely
that the observed improvements in PM2.5 pollution,
especially in high-density neighborhoods that also
tended to have high-biomass use, was due to gradual
reductions in biomass use. Both behavioral and
policy changes accompanying economic improve-
ments might have brought about reduction in local
community emissions. For instance, there is evidence
of downward trend in the proportion of households
utilizing biomass fuel for cooking, with a significant
switch from predominantly wood (more polluting)
to charcoal and gas, which are less polluting [58]. In
terms of policy, Ghana currently has in place penalties
on the importation of used and old vehicles to curb
traffic emissions in general [20]. Therefore, incentiv-
izing transition to cleaner fuels could further improve
air quality in the GAMA [6, 59, 60]. With sustained
economic and urban expansion, vehicle ownership
in Ghana is increasing by 10% annually [61] and
the GAMA accounts for 60% of the total num-
ber of registered vehicles [21, 22]. Without invest-
ments in infrastructure (e.g. improved road net-
works) and environmental management programs,
this growth could lead to higher vehicular emissions
than observed previously [17], which will worsen air
quality over time. Attaining cleaner air in Accra (i.e.
meeting WHO guideline levels) is likely to require
implementation of Ghana’s proposed traffic-related
air pollution reduction strategies such as the bus-
rapid transit system, development of vehicle emission
standards, and maintaining the current penalties on
importation of old vehicles while providing incent-
ives and rebates on new cars [21, 22]. Given that
PM2.5 and BC pollution are worse during Harmat-
tan, there is a specific need for additional air quality
management plans in this period. Land stabilization
interventions (such as covering road surfaces with
dust suppressants, and sweeping/ washing roads) and
building extensive green walls of forest to act as pro-
tective barrier around the city can reduce dust particle
load [62].

7. Conclusion

As urbanization in SSA continues and cities are faced
with the challenge of managing air quality from
diverse sources [8], data on local air pollution and
sources are urgently needed to enable evidence-based
policy efforts to protect public health. To avoid sim-
ilar poor air quality challenges seen in Asian cities,
systematic air quality management plans are needed
to further reduce current air pollution levels. Success-
ful air pollution mitigation efforts will require atten-
tion to land-use planning and accounting for season-
ality. Besides the direct impact of Harmattan on PM
pollution, changes in the local meteorology during
this period suggests almost no room for worsening
emissions from local sources during this period. Our
study provides compelling evidence for systematic air
pollution monitoring as well as implementation of
Ghana’s air quality policy initiatives aimed at protect-
ing health and improving air quality in the GAMA.
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