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ABSTRACT: Significant inroads have been made using biocata-
lysts to perform new-to-nature reactions with high selectivity and
efficiency. Meanwhile, advances in organosilicon chemistry have led
to rich sets of reactions holding great synthetic value. Merging
biocatalysis and silicon chemistry could yield new methods for the
preparation of valuable organosilicon molecules as well as the
degradation and valorization of undesired ones. Despite silicon’s
importance in the biosphere for its role in plant and diatom
construction, it is not known to be incorporated into any primary
or secondary metabolites. Enzymes have been found that act on
silicon-containing molecules, but only a few are known to act
directly on silicon centers. Protein engineering and evolution has
and could continue to enable enzymes to catalyze useful
organosilicon transformations, complementing and expanding upon current synthetic methods. The role of silicon in biology and
the enzymes that act on silicon-containing molecules are reviewed to set the stage for a discussion of where biocatalysis and
organosilicon chemistry may intersect.

■ INTRODUCTION

Silicon is found in copious amounts on Earth, where it
comprises ∼28% of the lithosphere, is the second most
abundant element after oxygen, and is present in teramole
quantities in the oceans.1,2 It also holds a privileged position as
one of the key elements of human enterprise. Humans have
harnessed the unique properties of silicon for centuries, using
silica to make structural materials including concrete, brick,
and glass. More recent applications have propelled society to
capabilities unimaginable a century ago. Leveraging of its
electronic properties has laid the foundation for our modern
society and innumerable resultant innovations.3 Simultane-
ously, organosilicon compounds are deployed on the scale of
megatons/year for use in sealants and adjuvants for
construction, agriculture, cosmetic, automotive, and high-
performance aerospace applications.4

Silicon is also important in the biosphere where its role is
dictated by its chemical properties and the scope of reactions it
undergoes in the environment. Silicon appears just below
carbon in group 14 of the periodic table and shares some
similarities with the element that takes center stage throughout
the tree of life, but they differ in important ways.5,6 Silicon has
a larger covalent radius and a lower Pauling electronegativity
than carbon (Figure 1). This leads to Si−E bonds being more
polar in general than corresponding C−E bonds.7 Like carbon,
silicon generally has a valency of four, but lacks carbon’s ability
to form double or triple bonds under mild conditions.8 Silicon
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Figure 1. Diagram of the typical bond lengths and bond energies of
carbon and silicon.11 Silicon (covalent radius = 1.17 Å) can
coordinate up to six atoms, while carbon (covalent radius = 0.77
Å) is maximally tetravalent.
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can also form hypervalent species, bonding to fiveor even
sixother atoms. Perhaps the most important difference
between carbon and silicon is the ease with which the former
forms long chains of the same element, known as catenation.
Carbon, as is evident from the most rudimentary inspection of
organic molecules, is highly adept at catenation. The
predominant forms of silicon in nature contain Si−O bonds,
which are substantially more stable than Si−Si bonds and
explain the dearth of natural silicon catenation species (Figure
1).9 Polysilanes can be accessed synthetically10 but only under
conditions that are wholly inaccessible biologically.
That is not to say that silicon is absent in biochemistry.

Silicon is an important structural building block for the
skeletons of marine organisms such as diatoms, sponges, and
radiolarians, which take up silicic acid (H4SiO4) and
polymerize it to form a variety of intricate cell wall structures.2

In addition to modulating the flux of silicon in marine
environments,12 these organisms play a key role in the carbon
cycle via the “biological pump” through which photosyntheti-
cally fixed carbon from the surface ocean is transferred to the
deep ocean, where it either remains sequestered or is
eventually remineralized to CO2.

13

In addition to its role in the cell walls of marine microbes,
silicon plays important structural roles in plants. Silicon is
widespread in soil in crystalline forms, and in the form of silicic
acid, it is taken up by plants that then precipitate it to silicate
species. This pathway has been demonstrated to alleviate biotic
and abiotic stresses on plants, partly by structurally stabilizing
the plant cell wall.14 Highlighting the importance of silicon for
plant growth is the low concentration of silicic acid in soil,
which limits the availability of silicon for plant growth and has
become an agricultural challenge in certain regions.15 Besides
these structural uses of silicon, this element is elusive in the
biochemistry of most organisms.11

Myriad organosilicon compounds have been created in
laboratory settings, and silicon and silicates are highly
abundant and diverse on Earth, yet no organosilicon species
have been found in nature. Organosilicon compounds have
many uses in pharmaceuticals,9,16 asymmetric synthesis,17

polymers,18,19 and materials science.20 However, production of
these compounds is often not easily accomplished and more
facile synthetic methods are desirable. For example, most
organosilicon compounds are produced from methylchlor-
osilane monomers, necessitating the use of nucleophilic
substitution reactions or energy intensive reductions/direct
synthesis reactions for production of useful organosilicon
compounds.21 These reactions are stoichiometric in nature,
often rely on harsh conditions, have inefficiencies in product
yields, and can generate undesired byproducts.22,23 Biocatalysis
has many features that can complement more traditional

synthetic approaches,24,25 and recent advances in directed
evolution have led to enzymes capable of non-natural activities
including C−Si and C−B bond formation.26−28 The time is

ripe to use enzyme engineering to realize these potential
applications and extend the reactivity of enzymes toward
organosilicon chemistry.
Since silicon has received relatively little attention in the

biocatalysis literature, we begin with a review of the role of
silicon in biological systems to give a sense of the possibilities
that nature has explored for this element. We then review the
enzymes that act on silicon-containing molecules and how
biocatalysis has been used to perform organosilicon chemistry,
including using reactivities not found in Nature. We close with
a perspective on opportunities in the emerging field of silicon
biocatalysis with an eye toward a broad scope of applications in
organosilicon chemistry, materials, and synthetic biology.

■ BIOTRANSFORMATION OF SILICON
BiosilicificationSiliceous Marine Microorganisms

and Plants. To understand how and why silicon is used by
biological systems, consider the global biogeochemical cycle of
silicon. Teramoles of silicon per year are processed by
organisms as part of the silicon cycle, which mostly occurs in
the world’s oceans. Silicon is released from long-term storage
in the lithosphere to the oceans by weathering where it
dissolves in seawater as silicic acid (H4SiO4).

2 This soluble
compound is distributed widely throughout the oceans where

Myriad organosilicon compounds
have been created in laboratory
settings, and silicon and silicates
are highly abundant and diverse
on Earth, yet no organosilicon
species have been found in

nature.

Biocatalysis has many features
that can complement more tra-
ditional synthetic approaches,

and recent advances in directed
evolution have led to enzymes
capable of non-natural activities
including C−Si and C−B bond

formation.

Figure 2. Diatoms and other siliceous microorganisms precipitate dissolved silica to generate cell walls composed of biosilica.
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it is transferred from the hydrosphere to the biosphere. This
process is essential for the life cycle of radiolarians, some
flagellates, and diatoms, which use dissolved silicic acid to
construct their intricate biosilica cell walls (Figure 2).
The most abundant siliceous marine microorganisms are the

photosynthetic diatoms, which synthesize silicified cell walls to
provide mechanical protection against grazing. Global bio-
sphere studies have estimated that diatoms conduct as much as
20% of total primary productionthe amount of carbon
dioxide fixed via photosynthesison Earth.13 These quickly
growing organisms in turn strongly influence the global silicon
and carbon cycles.
Diatoms generate their own inorganic silicified cell walls via

a genetically encoded process that results in an array of unique
cell wall arrangements. These cell walls are composed of
nanopatterned silica with intricately arranged pores. The
biosilica mineralization process occurs in silica-deposition
vesicles and is directed by polypeptides known as silaffins that
are enmeshed in biosilica and precipitate silica. These silaffins
generate the regular patterns of silica observed in diatom cell
walls.29,30 In order to form patterns that resemble diatom
biosilica, extensive post-translational phosphorylation of
silaffins is required.31

The siliceous marine sponge Tethya aurantia produces
siliceous spicules that comprise some 75% of the organism’s
dry mass.32 Embedded within the spicules are proteinaceous
filaments comprised of three “silica proteins” known as
silicateins α, β, and γ. Silicatein α is the most abundant of
these proteins, comprising roughly 70% of the total silicatein
mass and having approximately 50% sequence similarity to
cathepsin L cysteine proteases.32,33 Silicatein α is able to
hydrolyze the silicic acid surrogate tetraethyl orthosilicate in
vitro (Figure 3A).33,34 The catalytic triad of silicatein α is
composed of histidine and asparagine residues, similar to
cathepsin L, while the third residue is not the canonical
cysteine but rather a serine, which is the motif found in serine
proteases.35 To investigate whether silicatein α functions as a
catalyst, Morse and colleagues mutated residues Ser26 and
His165 to alanine and assayed the variants for hydrolysis of
tetraethyl orthosilicate. Mutation of either active site residue
nearly abolishes activity, highlighting the importance of both
residues and establishing that silicateins act as enzymes and

play a catalytic role in templating biosilica formation in T.
aurantia spicules.34

Recombinantly produced silicateins were demonstrated to
act as enzymes and catalyze Si−O bond hydrolysis and
condensation.37 The authors demonstrated that these enzymes
could catalyze condensation of silanols and alcohols to yield
silyl ethers. Silicatein α plays a catalytic role in silica
polymerization via a mechanism including nucleophilic attack
on the silicon atom, alcohol displacement, and siloxane bond
formation (Figure 3B).36

Despite the abundance of silicon on Earth and its critical
roles in plants and marine microbes, its known biochemistry
does not venture far beyond these roles. Highlighting this is
the lack of known natural enzymes that form Si−C bonds or
perform biological alkylation of silicon.38

Enzymes That Transform Silicon Species. Biocatalysis
has proven to be a useful platform for addressing challenges in
synthetic organic chemistry, yet biocatalytic approaches to the
formation of organosilicon compounds, including polymers
and small molecules, are rare. Reinhold Tacke and colleagues
were among the first to use microorganisms and enzymes to
mediate such transformations.39,40 Most of these reactions
were developed for the enantioselective reduction of silicon
compounds and have been summarized in detail in excellent
reviews by Frampton and Zelisko.41,42

A variety of enzymes, including lipases and proteases, have
been demonstrated to catalyze the formation and hydrolysis of
Si−O bonds.43−45 Siloxane bond formation under mild
conditions was reported using several lipases and phytases
expressed in Escherichia coli.44 Frampton and Zelisko, along
with others, have studied how proteases and lipases hydrolyze
alkoxysilanes, form siloxane bonds, and cleave Si−O
bonds.46−51 Their 2017 review details these efforts, which
have expanded the known scope of siloxane chemistry
accessible to enzymes.42

Silicones, which are comprised of siloxane units, are
generally engineered to be stable under most environmental
conditions. This stability means certain species are subject to
long-range transport and persist in aqueous systems for more
than a month while experiencing very little degradation.4 Thus,
they can serve as a model system with which to study the
activities of enzymes toward catalyzing transformations of

Figure 3. (A) Mechanism of tetraethyl orthosilicate hydrolysis by silicatein.33,34 (B) Proposed mechanism of silicic acid hydrolysis and subsequent
polymerization by silicatein.32,36
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silicon species. As long as organosilicon compounds have been
in production, they have been released into various environ-
mental compartments, and certain organisms may have either
evolved or possess latent methods to metabolize some of
them.4,52−54 The enzymes that act on these compounds can be
used as a case study for what reactivities toward silicon have
evolved in nature.
In addition to the enzymes that hydrolyze and condense Si−

O bonds in vitro, enzymes also likely cleave Si−O bonds in
living organisms.4 Studies claiming cleavage of Si−C bonds by
microorganisms exist, but these have largely not been
reproducible or have not unequivocally proven Si−C bond
cleavage.4,55 In contrast, Si−C cleavage has been demonstrated
to occur in higher organisms, including rats52,53,56,57 and
humans,58 but the enzymes responsible for these trans-
formations are unknown. Notably, C−H oxidation followed
by the Brook rearrangement59 could be responsible for the Si−
C cleavage exhibited in these studies.

■ ENGINEERING ENZYMES FOR NON-NATURAL
SILICON BIOCATALYSIS

The enzymes described above act on Si−O bonds, not Si−C
bonds. No enzyme in nature is known that can form Si−C
bonds or natively synthesize organosilicon compounds from
available precursors. Biocatalysts have been engineered to
conduct a myriad of new-to-nature reactions, which inspired
Arnold and colleagues to engineer an enzyme that can
construct Si−C bonds via carbene insertion into Si−H
bonds.26,60

Si−C bond-formation strategies in chemical synthesis can
achieve high selectivity but are limited in scope due to lengthy
or energy-intensive routes, use of harsh reagents, and poor
catalyst total turnover number (TTN).26 Previous demon-
strations that enzymes can selectively catalyze non-natural
carbene transfer reactions under aqueous conditions led to the
hypothesis that heme enzymes might catalyze carbene
insertion into Si−H bonds.26,61,62 Since iron was not known
to catalyze Si−H carbene insertion, the authors tested whether
free heme could catalyze the reaction between phenyl-
dimethylsilane and ethyl 2-diazopropanoate (Me-EDA) and
observed the formation of racemic product in aqueous buffer.
A panel of cytochromes P450, cytochromes c, and myoglobins
catalyzed the reaction with higher turnover number than free
heme but generally poor enantioselectivity.
The electron-transfer protein Rhodothermus marinus cyto-

chrome c (Rma cyt c), however, catalyzed the reaction with
∼40 TTN and 97% ee. Three rounds of directed evolution led
to variant Rma cyt c V75T M100D M103E that catalyzed the
reaction with >1500 TTN and >99% ee. The new enzyme was
shown to selectively accept a variety of electronically diverse
substituted silanes. It was also highly chemoselective: when
challenged with 4-(dimethylsilyl)aniline, a substrate having two
possible carbene insertion handles, it catalyzed Si−H insertion
preferentially over N−H insertion (Figure 4). Interestingly,
over the course of evolution, each variant showed improved
chemoselectivity even though the screen only assessed Si−H
insertion activity. When tested in a whole-cell reaction, the
final variant furnished the Si−H insertion product with 3410
TTN, 70% isolated yield, and 98% ee. These reactions
represent the first examples of in vitro and in vivo enzymatic
Si−C bond formation and far outperform existing synthetic
routes.

In a further demonstration that enzymes can be engineered
to directly functionalize silicon centers, the Arnold group
demonstrated that cytochrome P450BM3 variants can hydrox-
ylate silanes to make silanols. Silanols are important
compounds for chemical transformations,63,64 polymer syn-
thesis,65 catalysis,66 and synthesis,67 as functional groups in
drugs,16 and as antimicrobial agents.68 The primary routes for
silanol synthesis involve the oxidation of hydridosilanes, which
rely on precious metal catalysts or toxic and commercially
unavailable oxidation agents.69−73 Synthetic methods involving
the hydrolysis of chlorosilane or alkoxysilane precursors
encounter process challenges that include the formation of
disiloxane byproducts.74 For the latter approach, extra care
must be taken to select suitable reaction conditions (such as
pH) and to control reaction byproducts (such as salts) which
can affect product stability.75−77

Aiming to develop a biocatalytic route to selectively
synthesize silanols, Baḧr and colleagues hypothesized that
cytochrome P450BM3 could be repurposed to hydroxylate Si−
H bonds.74 They found that the wild type enzyme accepted
dimethylphenylsilane and formed product with 210 TTN
(Figure 5A) in whole-cell reactions. Site-saturation muta-
genesis of residue F87which lies proximal to the heme
cofactor and has been demonstrated to control substrate
specificityresulted in the identification of mutation F87G,
which improved activity 1.5-fold. Further rounds of muta-
genesis and screening identified additional activating mutations
A328L, L181D, and A184H.
The final variant bearing these mutations catalyzes the

formation of the silanol product with 1200 TTN. Using the
enzyme in lysate boosted the TTN to 3620, an increase
attributed to increased availability of NADPH. The authors
then modified the reaction conditions to use higher protein

Figure 4. Rma cytochrome c catalyzes Si−H insertion between 4-
(dimethylsilyl)aniline and Me-EDA with 29:1 chemoselectivity over
N−H insertion, 6080 TTN, and >99% ee.26 The same reaction can
also proceed in whole E. coli cells. TTN = total turnover number.

These reactions represent the
first examples of in vitro and in
vivo enzymatic Si−C bond for-

mation and far outperform exist-
ing synthetic routes.
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concentration (8.1−9.0 μM) and lower substrate concen-
tration (5 mM), which led to >99% analytical yield and 76%
isolated yield of the silanol formed from dimethylphenylsilane
(Figure 5B). Under these reaction conditions, the enzyme
hydroxylates a variety of silane Si−H bonds (Figure 5B). The
P450BM3 variants developed in this study can oxidize silanes in
both cellular and in vitro contexts.
These engineering approaches have endowed naturally

occurring enzymes with activities that were previously confined
to the world of synthetic chemistry; the enzymes provide proof
of principle and a platform from which to expand the
application of enzymes to organosilicon chemistry. Although
the repertoire of enzymes that act on silicon compounds is
limited, these few examples suggest the potential for more
activities on silicon species to be discovered and optimized by
directed evolution.

■ OPPORTUNITIES FOR BIOCATALYSIS TO IMPACT
ORGANOSILICON CHEMISTRY

Expanding the ability of enzymes to directly functionalize and
transform silicon species may enable more facile syntheses of
organosilicon compounds. These molecules are of high value
as pharmaceuticals and agrochemicals,9,16 and biocatalytic
approaches to their production would complement existing
synthetic methods. Traditional methods to form Si−C bonds
in silicones rely on energy-intensive processes or require
coinage metal catalysts, often making these molecules more
expensive to produce than traditional organic polymers. In
addition to being potentially more environmentally friendly
and less costly than established methods, biocatalysts are
exceptional at promoting reactions with high selectivity.28

Engineering proteins to act on organosilicon compounds
would lead to new routes to their production and modification
and could even expand the realm of accessible organosilicon
compounds, resulting in previously unrealized applications.
Using Silicon as a Bioisostere of Carbon in Bioactive

Compounds. Although both silicon and carbon often display
tetrahedral geometries, the longer Si−C bond length and

silicon’s lower electronegativity and greater lipophilicity make
swapping these elements a powerful way to modulate the
properties of molecules.16 Silicon’s use as a bioisostere for
carbon can endow molecules with convenient properties,
particularly for use in biological systems (Figure 6A). Silicon is

not inherently toxic, and its increased lipophilicity can improve
its potency in pharmaceuticals.78 Drugs containing silicon are
also metabolized differently than their exclusively carbon
analogues, making this substitution an attractive tool to
influence pharmacokinetics. For example, the antipsychotic
drug haloperidol, a treatment for schizophrenia, is known to
form a neurotoxic pyridinium metabolite.9,79 On the other
hand, the silicon analogue sila-haloperidol, which is formed by
sila-substitution of the quaternary carbon atom, is processed

Figure 5. (A) Cytochrome P450BM3 variants can hydroxylate the
silicon center of dimethylphenylsilane in whole cells and lysate. (B)
Variant SiOx3 oxidized dimethylphenylsilane with quantitative yield
and can oxidize a variety of substituted, bulky, and aliphatic silanes, as
well as one siloxane.74 TTN = total turnover number.

Figure 6. Some opportunities for biocatalysis in organosilicon
chemistry. (A) Silicon is a bioisostere for carbon, and substituting
Si for C can be a powerful strategy for modulating the properties of
pharmaceuticals and other molecules. SiAAs are a key example. (B)
Molecules chiral at Si can have important biological properties but can
be difficult to synthesize. The SSi epimer of silacyclopentanetriol binds
the serotonin receptor 5-HT2B tightly, while the RSi epimer is
inactive.85 (C) No methods for the asymmetric synthesis of
hypervalent Si complexes, like silatranes, are known despite their
unique properties. (D) Dimethyldichlorosilane, the key feedstock for
the silicone industry, relies on energy-intensive synthetic routes.21,22

Biomethylation of silicon would present an alternative route to
methylated feedstocks. (E) Silsesquioxane materials have numerous
emerging applications. Enzymes may complement existing function-
alization strategies.
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via an alternative metabolic pathway that does not include
formation of the pyridinium metabolite due to the instability of
the SiC bond.79

Biocatalysts that can selectively synthesize Si−C or Si−
heteroatom bonds could lead to convenient routes to bioactive
silicon compounds. As has been reported previously, a key
challenge to using silicon in pharmaceuticals is the synthesis of
target molecules.9 Entirely different routes are often needed to
incorporate Si into druggable small molecules, even in
compounds where silicon is used as a simple bioisostere to
substitute carbon atoms. The most common route for the
formation of Si−C bonds in small molecule synthesis is
through the Pt-catalyzed hydrosilylation reaction of hydrido-
silanes with olefins or through organometallic/Grignard
chemistrytwo reactions not commonly used in pharmaceut-
ical synthesis and that may present chemoselectivity issues with
the polar functionalities commonly found on drugs.80 Addi-
tionally, Si is typically limited to being incorporated in place of
a quaternary carbon or ketone (as a silane diol). Si−H and
other Si−heteroatom bonds are much more reactive than the
corresponding C−H or C−heteroatom bonds and thus are not
amenable to incorporation into pharmaceuticals.9 The
availability of protein biocatalysts capable of synthesizing
organosilicon compounds26,74 would open up new areas of
medicinal silicon chemistry.
Silicon-Containing Amino Acids (SiAAs). Noncanonical

amino acids have a variety of applications in the life sciences
and adjacent industries. In particular, SiAAs are useful for
synthesizing bioactive peptides with altered properties (Figure
6A).81 These peptides are, like other peptides containing
noncanonical amino acids, more resistant to proteolysis than
natural peptides, but SiAAs can endow them with other
beneficial effects as well. For instance, replacing a single Pro
with γ-(dimethylsila)proline in Pro-rich cell-penetrating
peptides was found to dramatically improve cellular uptake.82

β-TMS-Ala has been used as an effective substitute for β-t-
butyl-alanine as well as phenylalanine. β-TMS-Ala and β-t-
butyl-alanine are identical except for a single C-to-Si
substitution, while β-TMS-Ala and Phe have similar lip-
ophilicities.16 Examples of bioactive silicon-containing peptides
are described in a recent review.81

Despite the utility of SiAAs, methods for the enantioselective
preparation of SiAAs remain difficult.81 Their construction
may be facilitated by the exquisite selectivity of enzymes.
Indeed, biocatalysts have been used extensively to construct
noncanonical amino acids, with tryptophan synthase being a
prominent example.83,84 Traditional methods to prepare chiral
SiAAs require chiral auxiliaries, which could be avoided with a
biocatalytic route.
Chiral Silicon Centers. Silicon often adopts a tetrahedral

geometry and thus can be a chiral center. The preparation of
molecules chiral at silicon has been reviewed extensively.86

Critically, asymmetric syntheses of these compounds are
particularly challenging because sp2 silicon species are
exceptionally labile.87,88 Unlike carbon, which readily forms
double bonds with many other elements, SiE bonds (E = Si,
C, N, P, and others) are highly reactive; these compounds,
when they exist at all, typically require low temperatures, large
substituents, and air- and water-free conditions to persist. This
is due to the π bonds between Si and other atoms being very
weak. As a result, desymmetrization of silicon cannot be
achieved by going through an sp2 intermediate, unlike with
carbon, where desymmetrization of aldehydes, olefins, and

other sp2 carbon atoms is a powerful strategy for creating chiral
carbon centers. Biocatalytic methods complementing existing
synthetic tools would be invaluable for expanding the chemical
space available to researchers.
Examples of bioactive chiral silicon molecules are limited,

presumably due to difficulties with their construction. One
recent example is a silacyclopentanetriol (Figure 6B). One
epimer of this molecule binds tightly to the serotonin receptor
5-HT2B (IC50 = 6.4 μM), while the other epimer does not
display significant binding (IC50 > 100 μM).85 This example
underscores how effective methods to prepare molecules chiral
at silicon could open up an underexplored chemical space for
pharmaceuticals. There are no known natural molecules
exhibiting chirality at silicon, and no natural enzymes are
known to be capable of constructing these compounds.
The “sila-substitution” of drugs is not a new strategy.89

Silicon has long been used as a bioisostere of carbon, and
syntheses of sila-substituted compounds go back over 50
years.90 One recent study compared loperamide, an antidiar-
rheal, with sila-loperamide, a sila-substituted analogue.91 A
comparison of these compounds’ pharmacokinetic and
pharmacodynamic properties revealed that, despite major
differences in their in vitro properties (including clearance
and permeability), their in vivo pharmacokinetic profiles are
nearly identical. Thorough studies like this example underscore
how the ability to access sila-substituted compounds can lead
to novel molecules with unique pharmaceutical properties.
Critically, the vast majority of sila-substituted drug analogues
studied have been achiral at silicon.16 Methods to access
molecules chiral at silicon would enable sila-substitutions at
other carbons in pharmaceuticals.
Outside of biology, chiral polysilanes are of interest to

polymer chemists.92 Polysilanes are polymers containing solely
silicon backbones, and this σ-conjugated backbone endows
these molecules with unique electronic and optical properties.
When their backbone Si atoms are connected to chiral side
groups, the resulting chiral polysilanes form helical struc-
tures.93 These features make polysilanes of potential use in
applications that range from enantioselective separations and
molecular recognition to nonlinear optics and chiroptical
switches. However, their synthesis from dialkyldichlorosilanes
involves a Wurtz reductive coupling and can be challenging to
control, limiting the types of chiral polysilanes that can be
produced. Methods to construct these molecules more cheaply
and with greater selectivity would be invaluable for realizing
these applications and more.

Enzymatic Synthesis of Hypervalent Silicon Species.
Silicon can form hypervalent species with coordination
numbers greater than 4.9,94 Methods to generate penta- and
hexavalent silicon species from silica are well established but
often require harsh conditions and a stoichiometric strong
base. Even more problematic is that no asymmetric syntheses
are known: all chiral hypervalent silicon species have been
prepared via resolution (Figure 6C). Enzymatic catalysis
presents a potential tool to construct chiral species in an
asymmetric fashion under milder conditions.
Pentavalent silicon species such as silatranes exhibit valuable

biological activities, including antimicrobial, antiviral, and
anticancer properties.95 Asymmetric methods to construct
these compounds would not only lower production costs but
would enable the production of previously inaccessible chiral
compounds. Notably, silatranes are reasonably stable to
hydrolysis and can be synthesized under mild conditions

ACS Central Science http://pubs.acs.org/journal/acscii Outlook

https://doi.org/10.1021/acscentsci.1c00182
ACS Cent. Sci. 2021, 7, 944−953

949

http://pubs.acs.org/journal/acscii?ref=pdf
https://doi.org/10.1021/acscentsci.1c00182?rel=cite-as&ref=PDF&jav=VoR


with (substituted) triethanolamines and alkoxysilanes. The lack
of natural enzymes capable of forming these non-natural
compounds should not discourage the biocatalysis community
from taking on this challenge.
Hydrolytically stable hexacoordinate silicon complexes have

been shown to serve as nontoxic DNA intercalators.9,96 Silicon
is less toxic and costly than transition metals, and thus, there is
value in developing biologically active coordination complexes
using Si rather than other metals. However, syntheses of
hexavalent Si typically rely on intermediates unstable in
water,97 and new chemical strategies would need to be
developed to construct these molecules biocatalytically.
Silicon−Carbon Bond Construction. Si−C motifs are of

importance to chemical synthesis, pharmaceuticals, and
materials. Most methods to prepare these compounds rely
on precious metals or start with reduced forms of silicon.
Expanding the capability of enzymes to form Si−C motifs may
enable more efficient and cost-effective preparations of these
compounds.17,98

Biological methylation of many metals and metalloids is
performed by organisms using methyltransferases. Of the
primordial group 14 elements, Si is the only element that is not
known to be methylated (or alkylated) in nature.38,99,100 The
lack of enzymatically produced alkylsilanes can probably be
attributed to silicon’s form in the biosphere. Silicon is found
largely as silica and silicic acid, which are highly stable and of
low toxicity. Organisms have little need to evolve enzymes and
expend energy to metabolize these compounds, and such
pathways have not been found. Alkylsilanes, however, are
tremendously valuable industrially. Methyl groups are the most
ubiquitous Si−C motifs and are typically installed via the
Rochow−Müller “Direct Process” reaction.21,101 In this
reaction, elemental Si is reacted with methyl chloride at
elevated temperatures (300−320 °C) in the presence of a
copper catalyst (Figure 6D). The production of elemental Si
itself requires an energy-intensive carbothermic reduction of
silica at temperatures above 2000 °C. Biomethylation of Si
presents a milder, redox-neutral route to Me−Si bonds, and
directed evolution of known methyltransferases may be an
approach to access these compounds.
Hydridosilanes have been shown to undergo reactions with

engineered enzymes to form Si−C bonds. Hydrosilylation, the
reaction of an Si−H bond with an unsaturated C−C bond or
carbonyl, is typically catalyzed by Pt or other expensive
metals.80 The reaction is also known with more abundant first-
row transition metals but is much less robust. It may be
possible to generate enzymes that perform this reaction using
more earth-abundant metals and access regio- and chemo-
selectivity for hydrosilylation currently not accessible using
traditional homogeneous catalysis. Si−H bonds may also
provide access to silylium ions or highly reactive Si−E bonds
(E = S, transition metals) under enzymatic catalysis. Such
approaches have been demonstrated in homogeneous catalysis
using metal complexes approximating [NiFe] hydrogenases.
These intermediates could form a number of Si−heteroatom
bonds. Interception with arenes in a Friedel−Crafts reaction
would produce arylsilanes, which have applications in
pharmaceuticals, agrochemicals, and materials. Interception
with oxygen nucleophiles would generate silyl ethers or
siloxane bonds. Nitrogen nucleophiles would afford silazanes,
another common class of silicon compounds. Directed
evolution of enzymes may allow access to chemoselectivities
not possible under standard reaction conditions.

Biologically Templated Inorganic Materials. Silicatein
enzymes are responsible for the formation of vast quantities of
inorganic silica structures in nature. Engineering silicateins or
enzymes with similar mechanisms may enable the construction
of an array of small molecule organosilicon species bearing
complex functionalities and may also be employed to
synthesize inorganic materials.32,37,102

Recent work has shown that the post-translational
modifications that decorate diatom silaffins can be modulated
to generate diverse silica morphologies.103 A suite of enzymes
was used to decorate the R5 silaffin with modifications
including the native phosphorylation as well as methylation,
acetylation, and myristoylation. These modifying enzymes and
the R5 silaffin, when co-expressed in E. coli, were able to
precipitate silica and form nanostructured silica with diverse,
controlled physicochemical characteristics and morphologies.
Silsesquioxanes are a class of organosilicon compounds that

adopt three-dimensional cage-like conformations via a
repeating motif wherein each silicon atom is bonded to three
oxygen atoms and a functional group (RSiO3/2).

104 Of
particular relevance for materials applications are polyoctahe-
dral silsesquioxanes (POSSs) which form cubic cages that can
be used as precursors to polymers. The inorganic Si−O−Si
backbone of silsesquioxanes is stable, enabling the construction
of polymeric compounds, while the functional groups allow
installation of potentially diverse reactivities to meet
applications in nanocomposites, optoelectronics, catalysis,
high-temperature composites, and biomaterials (Figure
6E).104 Controlling the functional substituents on silsesquiox-
anes remains an outstanding challenge and is an area where the
chemo- and regioselectivity of enzymes may aid in precisely
functionalizing silicon centers en route to designer silsesquiox-
anes.

■ SUMMARY AND OUTLOOK
Advances in molecular biology and protein engineering
techniques combined with the ever-increasing diversity of
known protein sequences have expanded the ability to access
biocatalysts with new-to-nature reactivities. Simultaneously,
synthetic chemists have accessed organosilicon compounds
exhibiting rich structural and functional diversity. The
developed molecules and polymers are useful as synthetic
reagents, pharmaceuticals, and materials.

The common refrain has been that organosilicon species are
inaccessible to enzymes. However, recent studies have
highlighted natural enzymes that act on silicon species and
have demonstrated the adaptability of engineered enzymes to
perform reactions on silicon species. With the proof-of-
principle that enzymes can perform catalytic transformations
of silicon species, the doors to merging biocatalysis and
organosilicon chemistry have been opened. We encourage
researchers in biocatalysis and organosilicon chemistry to use
biocatalysis as another tool to access organosilicon trans-

With the proof-of-principle that
enzymes can perform catalytic

transformations of silicon species,
the doors to merging biocatalysis
and organosilicon chemistry have

been opened.
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formations with the sustainability and selectivity inherent to
biocatalytic platforms.
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