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Abstract: Aquaculture is the fastest food-producing sector in the world, accounting for one-third
of global food production. As is the case with all intensive farming systems, increase in infectious
diseases has adversely impacted the growth of marine fish farming worldwide. Viral diseases
cause high economic losses in marine aquaculture. We provide an overview of the major challenges
limiting the control and prevention of viral diseases in marine fish farming, as well as highlight
potential solutions. The major challenges include increase in the number of emerging viral diseases,
wild reservoirs, migratory species, anthropogenic activities, limitations in diagnostic tools and
expertise, transportation of virus contaminated ballast water, and international trade. The proposed
solutions to these problems include developing biosecurity policies at global and national levels,
implementation of biosecurity measures, vaccine development, use of antiviral drugs and probiotics
to combat viral infections, selective breeding of disease-resistant fish, use of improved diagnostic tools,
disease surveillance, as well as promoting the use of good husbandry and management practices.
A multifaceted approach combining several control strategies would provide more effective long-
lasting solutions to reduction in viral infections in marine aquaculture than using a single disease
control approach like vaccination alone.
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1. Introduction

Aquaculture, also referred to as “underwater agriculture”, is the fastest growing
food-producing sector in the world. By 2013, it had already overtaken beef and poultry
production [1]. It contributes one-third of global food production, which includes more
than 200 farmed fish species [1]. Similar to other intensive farming systems, the impact of
infectious diseases in intensive fish farming has had serious repercussions. Among these are
viral diseases, most of which cause high economic losses [2—4]. In addition, viral diseases
reduce fish welfare by causing various conditions that adversely affect the wellbeing of
fish, such as reduced feed intake, abnormal swimming behavior, predation of diseased
fish, and negative social interactions [5-8]. As pointed out by several scientists [9-12],
viruses are the most abundant entity in marine ecosystems. Their abundance in oceans
range from 3 x 10 mL~! viral particles (VPs) in the deep sea to 1 x 108 mL~! VPs in
coastal waters, decreasing in abundance with distance from shore [9,13,14]. However, only
a few viruses cause diseases in farmed fish linked to high economic losses, rendering these
viruses noticeable in most countries. It should be noted, however, that most pathogenic
viruses of fish have been detected in areas around Europe, Americas, and Asia. Hence, it
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is likely that several pathogenic viruses remain unknown due to lack of surveillance. In
this review, we highlight some of the major challenges associated with viral diseases in
mariculture and suggest solutions to these problems.

2. Major Challenges Associated with Viral Diseases in Marine Aquaculture
2.1. Emerging Infectious Diseases

Krkosek [15] defined emerging infectious diseases (EID) as previously unknown
diseases or spread of an existing disease into a new host or geographic area. As shown
in Figure 1, factors associated with occurrence of EIDs include (i) viral factors such as the
emergence of a new virus in an area or viruses acquiring virulence through mutations,
(ii) anthropogenic activities such as the introduction of an exotic susceptible fish species or
virus in a new habitat, (iii) host factors such as fish becoming stressed and thus susceptible
to viral infection through intensive aquaculture, or (iv) environmental factors such as
changes in salinity, pH, CO;, and other factors that render fish susceptible to infection [16].
Krkosek [15] pointed out that freshwater and marine fish have the highest rates of EIDs
among vertebrates mainly because they are the most speciose group [17]. This could
also be attributed to the fact that aquatic environments used for fish farming have a high
population of unknown viruses, some of which could infect and cause disease in fish.
During the period of 1988 to 1992, Hetrick and Hedrick [18] identified more than 35 EIDs
that infect fish. Among these were new infectious agents, while others were isolates of
known agents but infecting new host species. They attributed this increase in EIDs to
an increase in surveillance accompanied by an expansion of aquaculture that included
new farmed fish species. Additionally, we reported close to 20 newly discovered viral
pathogens of fish using metagenomics analysis between 2010 and 2016 [19]. Overall, EIDs
pose a challenge to the expansion of aquaculture.

Fish host drivers

(B)

Anthropogenic drivers Environmental drivers

(C) (D)

Figure 1. Drivers of emerging infectious diseases in aquaculture. (A) Virus drivers include mutations
leading to virulent strains and the ability to infect different host species. (B) Fish host drivers include
susceptibility to infection due to low immunity. (C) Anthropogenic drivers include farming practices
that include high stocking density and poor feeding regimes that cause fish to become stressed
and increase susceptibility to infection. (D) Environmental drivers include adverse conditions such
as changes in alkalinity, reduced dissolved oxygen, and increase in nitrites that predispose fish to
viral infection.
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2.2. Migratory Species

Migratory fish species have been reported to spread viral pathogens over long dis-
tances. One of the factors that favor viral spread in aquatic environments is that ocean en-
vironments have fewer barriers, enabling ocean currents to carry both hosts and pathogens
over long distances [20]. In addition, behavioral factors such as the formation of schools
and shoals in migratory species facilitate viral transmission over long distances. These fac-
tors cause viral spread to be at a higher rate in oceans than on-land transmission in higher
vertebrates [20]. For example, the herpesvirus epidemic that caused massive mortalities
of pilchards (Sardinops sagax) along a 5000 km distance of the Australian and 500 km of
the New Zealand coastlines spread at a rate of approximately 30 km/day in relation to the
migration rate of pilchards supported by prevailing sea currents in 1995 [21-24]. Similarly,
herring off the Scotland coastal areas have been reported to carry Baltic strains of viral
hemorrhagic septicemia virus (VHSV) over long distances [25].

Another important factor associated with viral spread is the return of migratory
species to spawning sites. Ferguson et al. [26] noted that returning migrating steelhead
trout (Oncorhynchus mykiss) were a vital source of infectious hematopoietic necrosis (IHNV)
infections to farmed fish in the Columbian river basin in the USA, cases of which were high
during the spawning of wild trout. Similarly, Traxler et al. [27] reported the occurrence
of IHNV infections in sockeye salmon (O. nerka) during spawning migrations in British
Colombia in Canada, while Nylund et al. [28] observed an association between wild herring
(Chipea harengus) migration and ISAV outbreaks on fish farms in Norway and Canada. Hae-
nen et al. [29] observed that eels migrate over long distances to their spawning sites. The
European eel (Anguilla anguilla) travels over 5500 km to the Sargasso Sea [30-32], while the
American eel (A. rostrata) migrates over 4000 km to the Sargasso Sea [31,32]); the Australian
eel (A. australis) covers 5000 km to the Pacific Ocean [33], and the Japanese eel (A. japonica)
covers 4000 km to the Marianna Islands in the Philippines to spawn [34]. Viruses iso-
lated from migrating eels include herpesviruses [35], rhabdoviruses [36], and infectious
pancreatic necrosis virus (IPNV) [37] which could be transmitted over long distances.

2.3. Anthropogenic Activities

Human activities have been shown to play a vital role in the spread of viral diseases
of farmed fish. In Norway, expansion of the Atlantic salmon industry has been linked with
the spread of piscine orthoreovirus (PRV), piscine myocarditis virus (PMCV), IPNV, and
salmon anemia virus (SAV) into marine environments [38]. In Chile, Mardones et al. [39]
showed that anthropogenic activities contributed to the spread of ISAV during the 2007 to
2009 outbreaks. Major contributing factors included the movement of harvested live fish
or fish byproducts between farms. They observed that management factors such as the
coexistence of multiple fish generations contributed to an increase in ISAV cases on the
farms. They also noted that an increase in the number of ships entering a farm contributed
to an increase in ISAV outbreaks. Further, they observed that shorter distances between
farms were associated with reduced time to infection, while farms located further apart
had a longer time to infection.

Industrial activities such as mining and construction have been associated with the
spread of viral diseases in the oceans. For example, the construction of the Suez Canal led
to the introduction of close to 41 Indo-Pacific fish species into the Mediterranean Sea, which
contributed to the spread of viral disease in the area [40]. Lampert et al. [41] observed that
nervous necrosis virus (NNV) was significantly higher in Nemipterus randalli, which is a
relatively newly established invasive Suez Canal species in the Mediterranean Sea, than
in Sardinella aurita and Lithognathus mormyrus that are indigenous Mediterranean Sea
species. This finding shows that an exotic invasive fish species introduced in a new area
could play a vital role in amplifying and increasing the release of viruses in the environment
to higher levels than native species.

Detection of viruses such as ranavirus, lymphocystis virus (LCDV), VHSV, NNV,
SAV, ISAV, PMCYV, PRV, and IPNV [42-49] from wrasse (Labridae) species used for sea lice
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control suggests that human intervention using cleaner fish to control sea lice on Atlantic
salmon could be transmitting pathogenic viruses to farmed fish. The use of virus-infected
fish as a protein source for farmed fish is another human activity that poses a danger of
transmitting pathogenic viruses to farmed fish. For example, the use of marine fish as feed
is believed to have been responsible for introducing VSHV to rainbow trout in freshwater
in Europe [50], while imported frozen fish fed to tuna may have introduced pilchards’
herpesvirus to wild pilchards in Australia, resulting in mass mortalities [51]. Similarly, wet
feed produced from herring contaminated with ISAV could have transmitted the virus to
Atlantic salmon [28]. Altogether, these studies show that various anthropogenic activities
pose a danger, spreading viral diseases in aquaculture.

2.4. Wild Reservoirs of Marine Viruses

Giacopello et al. [52] detected NNV in healthy wild cardinal fish (Pterapogon kauderni),
spiny eel (Macrognathus aculeatus), and slimehead (Hoplostethus mediterraneus) at demer-
sal level below 300 m depth [52,53], pointing to the existence of VERV in the deep sea
below levels used for aquaculture. Similarly, Wallace et al. [41] identified several fish
species that included the common dab (Limanda limanda), plaice (Pleuronectes platessa),
lemon sole (Microstomus kitt), flounder (Platichthys flesus), and long rough dab (Hippoglos-
soides platessoides) as wild reservoirs of IPNV in Scottish marine water using demersal
trawling. Berzak et al. [54] detected NNV in different wild fish species sampled at different
trophic levels, including demersal levels in the Levantine Basin of the Mediterranean Sea.
They also detected NNV in farmed gilthead sea bream (Sparus aurata) after 120 days of
culture in the same area, pointing to the transmission of NNV from wild fish at demersal
levels to farmed fish. Altogether, these studies show the existence of wild reservoirs of
viral pathogens for farmed fish in deep-sea environments.

Estuaries, lagoons, fjords, and peninsulas that serve as transitional areas between fresh
and marine water serve as important nurseries and breeding areas that stock different wild
fish species sharing similar habitat properties [55]. These areas also serve as ideal places for
fish farming. As such, they are bound to serve as viral transmission sites between farmed
and wild fish. Snow et al. [56] detected SAV in wild common dab (Limanda limanda), long
rough dab (Hippoglossoides platessoides), and plaice (Pleuronectes platessa) in fish farming
areas in the Stonehaven Bay, Scotland. Similarly, the Skagerrak and Kattegat estuaries
used for salmon and cod farming are habitats for several wild fish species that include
herring, gobies (Rhinogobius duospilus), sprat (Sprattus sprattus), pipe fish (Syngnathinae),
and European eel [55], of which viruses such as VHSV and IPNV have been detected from
farmed and wild fish in the area [57]. The Gotland Gulf and Bothnian Bay in the Baltic
Sea, also used for intensive farming of Atlantic salmon and cod, is a natural habitat for
different wild fish species that include perch (Perca fluviatilis), burbot (Lota lota), herring
(Clupea harengus), Roach (Rutilus rutilus), wild salmon, and cod [58]. Viruses such as VHSV
and IPNV have been detected in wild and farmed fish in the area [58,59]. The Iberian
Peninsula in the Gulf of Cadiz in Spain is a habitat for several wild fish species that include
sardine (Sardina pilchardus), mackerel (Scomber spp.), common hake (Merluccius merluccius),
and blue whiting (Micromesistius poutassou) [60]. The area is also used for the culture of
various farmed fish species, such as sole (Solea solea) and Senegalese sole (S. senegalensis) [61].
Moreno et al. [62] detected IPNV and NNV in various wild and farmed fish species in
the Gulf of Cadiz. In summary, these studies show that ecosystems that equally support
the survival of farmed and wild fish can serve as spillover and spillback areas for viral
transmission between farmed and wild fish [63].

Mao et al. [64] isolated identical iridoviruses from three-spined stickleback (Gas-
terostelus aculeatus) and red-legged frog (Rana aurora), showing that iridoviruses naturally
infect animals belonging to different taxa. This finding was supported by Moody and
Owens [65], who showed that injection or bath immersion of barramundi fish (Lates calcar-
ifer Bloch) with Bohle iridovirus from the ornate burrowing frog (Lymmnodynastes ornatus)
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resulted in a severe disease with high mortality. Altogether, these studies suggest that frogs
may serve as a reservoir for fish viruses or vice versa.

2.5. Ballast Water

Ballast water has been regularly used in ships since the 1880s [66]. However, it
poses the threat of transporting viruses between biomes. Leichsenring and Lawrence [67]
estimated the viral particles (VPs) in ballast water during trans-Pacific voyages from
South Korea to Vancouver to be 1.8 x 107 VPs mL~!. They estimated the amount of
ballast water discharged at >52 million tons every year in Canada. Taken together with
Ruiz et al. [68], who estimated that each mL of ballast contains 7.4 x 10° VPs, this implies
that 3.9 x 10%° VPs are discharged in ballast water in Canada per annum. Drake et al. [69]
estimated 6.8 x 10! VPs discharged in ballast water in the Chesapeake Bay each year.
Therefore, it is likely that similar VPs levels are discharged in different ports in the world.

Murray et al. [70] observed that the spread of ISAV to several Atlantic salmon farms
across >850 km coastline in Scotland and the Orkney and Shetland islands in 1998-1999
was mainly associated with the movement of well boats that transported fish, and other
supplies. They found a strong relationship between well boat visits and ISAV infections.
Boats visiting an infected farm would fill up ISAV contaminated ballast water from areas
around salmon cages. The ballast water in the boats was transported to other salmon farms,
where it was discharged, releasing the virus in the environment. Similarly, it has been
pointed out by several scientists [71,72] that VHSV could have been introduced into the
Great lakes through ballast water, which resulted in mass mortalities of several fish species.
This is supported by Sieracki et al. [72], who showed that fish farmed in locations that
received ballast water from VHSV-infected sources in the Great Lakes were more likely
to become infected. They observed that fish at ports that had the highest number of visits
from VHSV-infected areas were more likely to be infected by VHSV, as shown in Montreal,
which received the largest amount of ship traffic into the Great Lakes and had the highest
rate of VHSV infection compared to other areas [73]. Altogether, these studies underscore
the importance of ballast water in the spread of viral pathogens in marine aquaculture.

2.6. Limitations in Diagnostic Tools

The traditional approach of isolating viruses from infected tissues by cell culture
followed by virus identification using different techniques is the most common approach
for the diagnosis of fish viral diseases. This approach is useful in determining the causal-
factor relationship between the disease and pathogen according to Koch’s postulates [74].
However, not all emerging viral pathogens have been cultured on cells. Some viruses
such as PRV and PMCV have proved challenging and are yet to be cultured on cells. This
hinders vaccine development by traditional approaches that require culturing, for example,
inactivated viral vaccines. It suffices to point out that PCR has become the most widely
used diagnostic tool for viral infections in marine aquaculture. One of the limitations with
this technique is that it detects nucleic acids from viable and nonviable viruses. Hence,
it has to be combined with other assays such as immunohistochemistry that link tissue
damage with viral presence in infected organs. Other factors that can lead to false results
using PCR include the use of degraded nucleic acids from poorly stored samples, presence
of amplification inhibitors in the samples, and insufficient amount of detectable nucleic
acids in the samples.

The limitations of diagnostic capabilities in poor-resource countries are a serious
challenge because this derails the timely identification of causative agents of disease
outbreaks. In some cases, it leads to sending samples from poor-resource countries to
developed countries where appropriate diagnostic facilities are available. Maintaining the
cold chain during the shipment of samples is another challenge, often leading to failure in
isolating viruses from infected fish. Some countries do not have the appropriate resources
to ensure that the virus in infected material is viable during transportation. Moreover,
transportation of samples across different countries poses the danger of transboundary
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disease transmission. Further, the time lag between identification of the etiological agent
and implementation of appropriate disease control measures exacerbates the spread of
viral diseases. Other challenges include limitation in diagnostic tools able to determine
viral mutations and failure to carry out disease surveillance.

2.7. International Trade

Fish and shellfish are among the most traded agricultural products in the world [75].
The trade of eggs, fingerlings, and adult fish has been linked to the transmission of viral
disease across continents. In the 1950s, rainbow trout eggs were transported from the USA
to Japan [76]. By 1955, the first outbreak of a severe infectious disease occurred in rainbow
trout farms, but the pathogen was not identified until the 1960s [77]. Clinical signs and
severe necrosis seen in the pancreas of infected fish were similar to those observed in trout
in the USA [78]. The unknown disease was finally diagnosed as IPN by Sano [79]. Between
1967 and 1971, the Hokkaido Salmon Hatchery in Japan imported chinook salmon eggs
from the USA. During the period of 1971-1972, an outbreak of IHNV was reported in
sockeye salmon and kokanee salmon (O. nerka) hatched from eggs incubated together with
imported eggs [80]. The source of the outbreak was traced to eggs imported from the USA.

Introduction of exotic species through trade has contributed to the spread of viral
diseases to different continents. Vike et al. [81] noted that all salmonid species in the
southern hemisphere were introduced from Europe and North America, which could have
led to the spread of viral diseases accompanied with the introduction of salmonids in
the southern hemisphere. They noted that the close relationship between ISAV strains
from farmed Atlantic salmon in Chile and Norway points to a recent transmission of
ISAV from Norway to Chile. Similarly, IPNV strains in Chile share genetic similarities
with Norwegian strains [82], and detection of IPNV in Kenya [83] could be linked to
the introduction of rainbow trout from the northern hemisphere. Although VHSV had
been present in European waters for a long time, it is presumed that it did not cause
disease outbreaks until rainbow trout was introduced for farming from North America [84].
Mohr et al. [85] and Rimmer et al. [86] isolated infectious spleen and kidney necrosis virus
(ISKNV) from imported ornamental fish into Australia that led to ISKV outbreaks in farmed
Platy (Xiphophorus maculatus). Similarly, Gomez et al. [87] detected NNV from imported
fish into South Korea. In summary, these studies accentuate the role of international trade
in the global transmission of viral disease in aquaculture.

3. Solutions to the Challenges Associated with Marine Viral Infection in
Fish Aquaculture

3.1. Biosecurity

Moss et al. [88] defined biosecurity as the sum of all procedures put in place to protect
farmed organisms from contracting, carrying, and spreading diseases. Implementation of
biosecurity measures in aquaculture involves four management factors, namely, (i) fish,
(ii) pathogens, (iii) environment, and (iv) personnel management. Implementation of
biosecurity measures in fish management ensures that only healthy stocks are used for fish
farming. This includes the screening of eggs for different pathogens and disinfection of
eggs before incubation. Only eggs from hatcheries certified to be free of diseases should
be used. All brood stocks should be screened for various diseases. All fish coming from
outside should be sourced from certified disease-free farms and should be quarantined and
screened for diseases on arrival. Inspection for any abnormal conditions should be carried
out routinely. It is important to practice an all-in—all-out stocking to prevent introduction
of stock that might be carrying diseases. Appropriate sanitation and disinfection should be
practiced at all stages of the production cycle [89,90].

Implementation of biosecurity measures for pathogen management aims at prevent-
ing, reducing, or eliminating pathogens from stock, utensils, equipment, nets, tanks, cages,
and other materials used for handling fish. Nets, buckets, and other fish handling equip-
ment should be disinfected routinely. The efficacy of various disinfectants and antiseptics
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used in aquaculture has been reviewed by different scientists [91-93]. Environment biose-
curity measures should include sanitation practices aimed at eliminating or reducing the
existence of pathogens in places or facilities used for fish farming [91,94]. Implementation
of biosecurity measures based on personnel management is only effective when personnel
adhere to routine biosecurity practices and should start with management. Access should
be limited to staff working in the fish facilities. Personnel coming from other fish facilities
should be considered risk bearers. All staff should always put on protective clothing,
while hand washing using antiseptics or disinfectants should be done routinely. Each staff
member should be assigned to specific work areas. Health fish should be handled first
before handling sick fish or quarantined fish.

3.2. Improved Diagnostic and Research Technologies

Diagnostic methods have evolved differently in various countries depending on the
availability of reagents, cell lines for virus culture, laboratory equipment, and expertise
to perform the diagnostic tests. Although traditional methods based on virus isolation
using cell culture, histopathology, and in situ immunostaining of viral antigens account for
the majority of diagnostics methods used in aquaculture, recent developments show that
these methods are being taken over by molecular-biology-based techniques. As the cost of
PCR-based detection methods becomes increasingly affordable in most countries, these
methods are becoming routine diagnostic tools for viruses in aquaculture [95,96]. PCR-
based assays have the advantage of producing rapid results. Other developments include
the use of in situ hybridization (ISH) [97,98], which has the unique ability of detecting viral
nucleic acid sequences in infected cells without altering cell morphology. This technique
has contributed to elucidating cell tropism and localization of viral nucleic acids in different
tissues [97,98]. On the other hand, quantitative PCR assays are widely used to quantify
viral loads in infected tissues [99,100]. Combined application of these diagnostic tools has
contributed to increasing our knowledge of host-pathogen interaction in viral infections
of fish.

The major limitation of PCR-based diagnostic methods is that the design of primers
used is based on prior knowledge of sequences of the virus under detection. Hence,
PCR-based techniques lack the ability to detect unknown novel pathogens. However,
the emergence of high-throughput sequencing (HTS) technologies such as metagenomics
analysis having the ability to detect all nucleic acids present in a sample without prior
knowledge of existing sequences has become a useful tool for the discovery of novel
viruses infecting fish [101,102]. Metagenomics can be used to generate new sequences
that do not share homology with sequences deposited in reference databases, thereby
serving as a vital tool for novel viral discoveries [103,104]. In aquaculture, it has been
used for the discovery of several novel viruses infecting fish and other aquatic organisms,
antigenic variants, quasipecies, and viromes found in different ecosystems [105]. Moreover,
several studies show that the duration between the first report of clinical disease and
identification of the etiological agent is shorter using metagenomics analysis [19,106,107],
unlike traditional diagnostic methods in which the duration from first report of clinical
disease to identification of the etiological agent is longer. Therefore, metagenomics analysis
is bound to expedite the discovery of novel pathogens in aquaculture. Moreover, it can
be used to determine the viral community present in aquatic environments used for fish
farming [108].

3.3. Surveillance

To determine the drivers of disease occurrence and to work toward designing effec-
tive control strategies, there is a need to identify pathogens that are endemic in various
aquatic ecosystems used for fish farming. Surveillance is useful for the early detection
of etiological agents of disease as well as for determining existing pathogens and their
prevalence in farmed fish and wild reservoirs. Surveillance is also useful in determining
the epidemiological patterns of endemic viral diseases in different ecosystems. It is also
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useful in identifying endemic hotspots and antigenic variants needed to guide vaccine de-
sign [3,109-113]. Moreover, a good understanding of pathogens endemic in each ecosystem
is useful for the design of protective vaccines against prevailing diseases in the area. Where
possible, the application of surveillance guidelines established by the Aquatic Animal
Health Code of the World Organization of Animal Health (OIE) [114] should be used.
For transboundary diseases, transborder surveillance programs can be established using
common standard diagnostic tools across different countries.

3.4. Eradication of Fish Diseases in Aquaculture

Eradication refers to eliminating the infectious agent from a given area or reducing
its presence to insignificantly low levels [115]. Disease elimination involves reducing the
reproductive number (Rp) of the pathogen to zero. Major factors to be considered in the
initial assessment of the disease status before embarking on an eradication program include
determining the incidence, transmission index, and existing control measures [115]. For
an eradication program to be successful, elimination measures should aim at reducing
the incidence and transmissibility (Ry) to zero. In marine aquaculture, only a few reports
of disease eradication by total elimination have been documented [116,117]. During the
period of 1998-1999, the ISAV epidemic in Scotland was controlled by eradication [116].
Even though measures were established to prevent the resurgence of ISAV in the area, the
disease re-emerged in 2008 and 2009, though it was limited to the Shetland Islands [117].
Another example is the elimination of VHSV in Denmark. During the period between 1960
and 2010, Denmark embarked on an eradication program that resulted in the elimination
of VHSV from Danish farms [118]. The major threat to eradication approaches is that
wild reservoirs of the disease may not be easily eliminated. Despite this, eradication is an
effective disease control strategy in places where pathogens can be eliminated from areas
used for aquaculture.

3.5. Selective Breeding for Genetic Resistance

The outcome of infections is influenced, among others, by host factors. Inherent
resistance to infection has been documented in some fish species, which has given direction
in scientific research to determine genetic markers associated with disease resistance. One
of the methods commonly used for identifying disease-resistant traits in fish is the use of
marker-assisted selection (MAS) based on detecting the quantitative trait loci (QTL) for
disease resistance [119]. A successful example of QTL analyses applied to selective breeding
is the case of IPNV resistance in Atlantic salmon, in which a major QTL has contributed
to a significant reduction in IPNV cases in the salmon industry in Norway [120-122].
This shows that QTL-based selection of disease-resistant fish can be useful in reducing
the occurrence of viral diseases in aquaculture. Several studies have been carried out to
determine the QTLs for major viral diseases of farmed fish (Table 1).

Table 1. Disease resistance traits determined by quantitative trait loci.

Disease/Pathogen ABRREV Fish Species (Scientific Name) References

Infectious salmon anemia ISAV Atlantic salmon (Salmo salar L.) [123]
Salmonid alphavirus SAV Atlantic salmon (Salmo salar L.) [124]
Viral hemorrhagic septicemia virus VHSV Rainbow trout (Oncorhynchus mykiss) [125]
Viral hemorrhagic septicemia virus VHSV Turbot (Scophthalmus maximus) [126]

Infectious pancreatic necrosis virus IPNV Atlantic salmon (Salmo salar L.) [120,127]

Infectious pancreatic necrosis virus IPNV Rainbow trout (Oncorhynchus mykiss) [128,129]
Lymphocystis disease LCDV Japanese flounder (Paralichthys olivaceus) [130]

Salmon alphavirus SAV Atlantic salmon (Salmo salar L.) [131,132]
Red sea bream iridovirus disease RSBIV Sea Bream (Pagrus major) [133]
Nervous necrosis virus NNV Asian sea bass (Lates calcarifer) [134]
Infectious hematopoietic necrosis virus IHNV Rainbow trout (Oncorhynchus mykiss) [135]
Piscine cardiomyopathy syndrome virus PCMSV Atlantic salmon (Salmo salar L.) [136]
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Apart from QTL analysis, genetic variability in different immune genes has been used
as a molecular marker associated with polymorphism and resistance/susceptibility to
disease in different vertebrate species [137]. In fish, specific MHC alleles of class I and II

genes have been linked to disease resistance in different fish species (Table 2).

Table 2. Immune markers of disease resistance in different fish species.

Gene Disease/Pathogen ABBR Fish Species (Scientific Name) Ref.
MHC-T and IT Infectious anemia virus ISAV Atlantic salmon (Salmo salar L.) [123]
MHC-I and IT Infectious anemia virus ISAV Atlantic salmon (Salmo salar L.) [123]

MHC-II Infectious hematopoietic necrosis virus THNV Rainbow trout (Oncorhynchus mykiss) [138]
MHC-Ia Infectious hematopoietic necrosis virus THNV Rainbow trout (Oncorhynchus mykiss) [139]
MHC-II Infectious hematopoietic necrosis virus THNV Cutthroat trout (Oncorhynchus clarkii) [140]
IL-10B Cyprinid herpesvirus CyHV-3 Common carp (Cyprinus carpio) [141]
TLRs Cyprinid herpesvirus CyHV-3 Common carp (Cyprinus carpio) [142]
TLR3 Grass carp reovirus GCRV Grass carp (Ctenopharyngodon idella) [143]
TLR22 Grass carp reovirus GCRV Grass carp (Ctenopharyngodon idella) [144]
MDAS5 Grass carp reovirus GCRV Grass carp (Ctenopharyngodon idella) [145]
RIG-I Grass carp reovirus GCRV Grass carp (Ctenopharyngodon idella) [145]
LGP2 Grass carp reovirus GCRV Grass carp (Ctenopharyngodon idella) [146]

Other genes associated with disease resistance in fish include toll-like receptors (TLRs),

melanoma differentiation-associated protein 5 (MDADS), IL-10f3, retinoic-acid-inducible
gene I (RIG-I), laboratory of genetics and physiology 2 (LGP2), and cadherin-1 (CDH1)
(Table 2). The selection of disease-resistant fish has the potential to reduce viral infections

in aquaculture.

3.6. Antiviral Compounds

Since 1963, when idoxuridine was approved as the first antiviral drug, several other
antiviral drugs have been approved for the treatment of viral diseases in higher verte-
brates [147]. By 2016, 90 antiviral drugs [147] had been approved for human clinical use.
Studies carried out using different fish species and cell lines show that several antiviral
compounds have the potential to serve as therapeutic drugs against different viruses

infecting fish (Table 3).

Table 3. Antiviral compounds and probiotics tested against viruses infecting marine fish.

Antiviral Compounds Viral Pathogens Abbrev Ref.
Flavonoids Viral hemorrhagic septicemia virus VHSV [148]
Flavonoids Infectious hematopoietic necrosis virus THNV [148]
Amantadine Infectious hematopoietic necrosis virus IHNV [149]
Dextran Infectious pancreatic necrosis virus IPNV [150]
Dextran Infectious hematopoietic necrosis virus THNV [150]
Gymnemagenol Nervous necrosis virus NNV [151]
Dasyscyphin C Grouper iridovirus GIV [152]
Casein Infectious hematopoietic necrosis virus IHNV [153]
Acyclovir Herpesvirus salmonis HPV [154]
Brivudin (BVDU) Herpesvirus salmonis HPV [155]
Coumarin Spring viremia of carp virus SVCV [156]
Saikosaponin D Spring viremia of carp virus SVCv [157]
Arctigenin derivatives Spring viremia of carp virus SVCV [158]
Arctigenin derivatives Infectious hematopoietic necrosis virus IHNV [159]
Dasyscyphin C Nervous necrosis virus NNV [160]
Surfactant Viral hemorrhagic septicemia virus VHSV [161]
Honokiol and moroxydine hydrochloride Grass carp reovirus GCRV [162,163]
Lipophilic thiazolidine derivatives (LJ001, JL118, JL122) Viral hemorrhagic septicemia virus VHSV [164]
Lipophilic thiazolidine derivatives (LJ001, JL118, JL122) Infectious hematopoietic necrosis virus THNV [164]
Lipophilic thiazolidine derivatives (LJ001, JL118, JL122) Spring viremia of carp virus SVCV [164]
furan-2-yl acetate Nodavirus NNV [165]
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There is a potential for some of these drugs to reduce viral infections in farmed fish,
but the approval process will be a challenge. Another approach is the use of probiotics
having antiviral properties. Probiotics are microorganisms with variable properties, such
as enhancing growth and increasing host immunity against various pathogens. Recent
developments have shown that some probiotics have antiviral properties. For example,
Bacillus subtilis produces surfactin, an antiviral compound against various mammalian and
avian viruses, such as porcine parvovirus (PPV), pseudorabies virus (PRV), and infectious
bursal disease virus (IBDV) [166]. It also has antiviral properties against fish viruses such
as VHSV [161]. Other probiotics shown to have antiviral properties against fish viruses are
shown in Table 4. Altogether, antiviral drugs and probiotics have the potential to reduce
the occurrence of viral diseases in aquaculture.

Table 4. Probiotics tested against viruses infecting marine fish.

Probiotics Viral Pathogens Abbrev Ref.
Aeromonas species Infectious hematopoietic necrosis virus IHNV [167]
Pseudomonas spp. Infectious hematopoietic necrosis virus IHNV [167]

Corynebacterium species Infectious hematopoietic necrosis virus IHNV [167]
Bacillus subtilis Viral hemorrhagic septicemia virus VHSV [161]
Lactobacillus Lymphocystis disease virus LCDV [168]
Aeromonas hydrophila strains M-26 and M-38 Infectious hematopoietic necrosis virus THNV [169]
V. alginolyticus strain V-23 Herpesvirus salmonis HPV [169]
Bacillus subtilis E20 Singapore grouper iridovirus SGIV [170]
Lactobacillus plantarum Singapore grouper iridovirus SGIV [171]
Saccharomyces cerevisiae P13 Singapore grouper iridovirus SGIV [172]
B. subtilis 7K Singapore grouper iridovirus SGIV [173]
Shiwanella spp. strain 0409 Betanodvirus NNV [174]
Clostridium butyricum (Cb) Gibel carp herpesvirus CaHV [175]

3.7. Vaccine Development and Immunization Strategies

Fish vaccination is the most important environmentally friendly disease control strat-
egy that has not only contributed to the prevention and control of viral diseases but has
also contributed to a reduction in the use of antibiotics in aquaculture. Various reviews
have reported the status and progress in vaccine development in aquaculture in recent
decades [176-185]. These studies have brought to light several shortcomings that have
paved the way to current research in fish vaccinology. Although inactivated whole viral
vaccines account for the largest proportion of vaccines used in aquaculture (Table 5), the

level of protection attained by these vaccines is equivocal [186].

Table 5. Licensed vaccines developed for marine fish species.

Disease Major Fish Host Vaccine Type Delivery Country Reference
Infectious hematopoietic necrosis Salmonids DNA M Canada [176,187]
Salmonids, sea bass, Inactivated P Norway, Chile, UK [176,187]
Infectious pancreatic necrosis sea bream, turbot, Subunit Oral Canada, USA [176,187]
Pacific cod Subunit P Canada, Chile, Norway [176,187]
Infectious salmon anemia Atlantic salmon Inactivated i Norway, Chile, Ireland, [176,187]
Canada
Infectious salmon anemia Atlantic salmon Subunit P Norway, Chile, Ireland, [176,187]
Canada
Infectious spleen‘and kidney Asian seabass, grouper, Inactivated P Singapore [176]
necrosis Japanese yellowtail
Red seabream iridovirus Red seabream Inactivated 1P Japan/South Korea [188]
Viral hemorrhagic septicemia virus Olive flounder Inactivated IP South Korea [188]
Nervous necrosis virus Grouper Inactivated 1P Japan [189,190]
Pancreas disease virus Salmon DNA M Norway, Chile, UK [176,187]
Pancreas disease virus Salmon Inactivated 1P Ireland [191]
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Therefore, the challenge has been to develop replicative vaccines as alternatives. How-
ever, efforts to produce live attenuated vaccines have been marred by the fear of reversion
to virulence [192]. Moreover, concerns that live vaccines could be pathogenic to other
organisms found in aquatic environments used for fish farming hinder efforts to develop
them. As an alternative approach, some studies have focused on developing DNA vac-
cines [193-195]. To date, two DNA vaccines have been licensed for use in aquaculture,
one against IHN in Canada [194,196], while the other is against pancreas disease (PD) in
Norway [197]. Most fish vaccines are administered by injection, which is labor intensive if
done by human vaccinators, or alternatively, the use of automated vaccination machines,
which requires considerable investment. Injection vaccination of fish induces stress that
may result in temporary immunosuppression. Oral vaccination, on the other hand, where
vaccines are administered through feed, is more preferred as vaccines can be adminis-
tered without stressing the fish. However, there are few examples of oral vaccines being
efficacious, although some have been licensed for use in aquaculture [187].

Other efforts have focused on identifying correlates of protective immunity for use
as benchmarks in vaccine development [99,198,199], optimizing antigen dose used in
vaccine formulations [99], selection of highly immunogenic antigens [200], optimizing
challenge models for vaccine efficacy trials [201-203], developing multivalent vaccines
against multipathogens [187], optimizing prime-boost vaccination regimes [204,205], and
identifying potent adjuvants with few side effects [206-208]. These efforts have contributed
to improving the quality of current commercial vaccines used in aquaculture, ultimately
contributing to a reduction in the prevalence of viral diseases in mariculture.

3.8. Management and Husbandry Practices

Good management practices are critical to minimize stress and reduce disease occur-
rence. Intensive fish farming systems often lead to high stocking densities, which induce
stress in fish and increase the disease transmission index (>Rg) due to high contact between
fish [15]. Therefore, it is vital that optimal stocking densities are used. Other stressors such
as poor feeding regimes and the use of feed with a negative impact on feed conversion
should be avoided. Apart from good management practices on individual fish farms, the
adoption of “area-based management plans” has proved to be effective in reducing disease
occurrences in most countries [209-211]. Key elements of “area-based management” in-
clude the use of agreed, good husbandry practices, synchronous fallowing, separation of
generations, and harvesting protocols for all facilities within the managed area [211]. Other
factors include adherence to official disease control policies, carrying out routine inspection
on health status of stock, use of the same vaccines and vaccination regimes, use of common
biosecurity plans, adherence to agreed fallowing timelines and protocols, adherence to
agreed stocking densities, as well as use of agreed protocols on the disposal of dead fish.

Other management practices contributing to the control of viral diseases in marine
aquaculture include zoning and the use of standard siting distances between fish farms,
shown to be useful in reducing the transmission of viruses such as ISAV, SAV, and IPNV in
Chile, Scotland, and Norway [212-217]. Jarp and Karlson [218] and McClure et al. [216]
noted that distances >5 km between farm sites were effective in reducing ISAV transmission
in Norway and Canada, respectively. The Norwegian Food Safety Authority enforces a
5 km restriction zone and a 10 km observation zone around ISAV-infected farms [219].
Demarcating the Norwegian coastline into the north and south administrative units has
proved to be an efficient barrier separating the endemic south region from the disease-free
north region of SAV [220].

An upcoming technology having the potential to reduce the transmission of marine
viruses is the recirculation aquaculture system (RAS). This technology is based on the
culture of marine fish species using an in-land controlled RAS environment. Given that
there is no direct interaction between farmed and wild fish, the risk of infection from wild
to farmed fish is prevented. Additionally, the chances of disease spillover from farmed
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fish into the environment are also minimal. Although expensive, this technology has the
potential to reduce disease transmission in aquaculture.

3.9. Disease Control Polices

Disease control policies are principles, plans, or courses of action pursued by govern-
ments, organizations, and individual fish farmers aimed at preventing or reducing disease
occurrence [221]. Several documents have been developed by different international or-
ganizations and countries to deal with disease control policies [221]. Figure 2 shows a
structure involving global agencies, multinational, national, and farm-level organizations
involved in the implementation of disease control policies. At global level, the OIE is an
intergovernmental body responsible for the implementation of fish disease control policies.
It has developed two international standards, namely, the aquatic animal health code that
enlists all major diseases and the manual of diagnostic tests for aquatic animals [222]. It is
mandatory to report all occurrences of diseases listed in the aquatic animal health code
by member countries to the OIE [222]. Apart from the OIE, multinational unions develop
fish health policies aimed at ensuring that all member states use the same disease control
strategies. For example, the European Union (EU) has a fish health code through which EU
member states agree on the list of pathogens to control using agreed prevention and control
measures [223]. In some cases, multinational unions form intercountry teams responsible
for disease monitoring and research. Such undertakings allow the exchange of information
and technical expertise.

Global Policies
(e.g. OIE manual)

Multinational Policies
(e.g EU Fish health policy)

National Policies
(e.g. Fish health policies)

Local fish farmers management policies

Figure 2. Disease control policies showing different levels namely, global policies involving institutions such as the OIE,

multinational polices such as the European Union (EU), national polices, and local farmers” management plans. Arrows

show that policies developed at local fish farmer level can be adopted to become part of the national fish health policy.

Similarly, national fish health policies can be adopted and included in multinational and global policies by organizations such

as the OIE. The converse also applies: policies developed at global level can be disseminated for inclusion at multinational,

national, and local fish famer levels.

National disease control policies must include preventing the introduction of exotic
pathogens, early disease detection, monitoring health status, certification of export of live
fish and fish products, movement restriction, and zoning [223]. All health certificates must
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be signed by authorized experts. In addition, national policies should include statutory
regulations on the inspection of fish farms, sampling and testing programs, outbreak
investigations, and enforcement of disease control measures. National policies are also
responsible for ensuring that all relevant records are kept for stipulated durations. For
example, for a disease traceback system to be effective, movement records of live fish
and fish products must be kept for several years for accessibility by fish health inspectors.
Similarly, fish health and mortality records should be kept for several years.

4. Conclusions

Marine fish farming has great potential for improving human livelihood as well as
making a significant contribution to the success of the Sustainable Development Goals
(SDGs) of the United Nations. To achieve this, there is a need to overcome several chal-
lenges hindering success in the control and prevention of viral infections causing high
economic losses in farmed fish. As shown in this synopsis, a multifaceted approach in-
volving several strategies, such as vaccine development and immunization, potential use
of antiviral drugs, selective breeding for disease resistance, surveillance, policy formu-
lation, and implementation of biosecurity measures is bound to offer a more effective
long-lasting solution.
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