Skip to main content
. 2021 Jun 8;26(12):3483. doi: 10.3390/molecules26123483

Table 5.

Antitumoral effects of curcumin in colorectal cancer.

Curcumin
Experimental
Models
Concentration Range Biological Response Pathway/Genes/Proteins Involved Refs.
Cells and Cell Lines
HCT-116 10–25 µM ↑ Apoptosis ↓ AP-1, ↓ NF-κB,
↓ MMP-9
[95]
20 µM with
5-FU (5 µM)
↑ Cell cycle arrest (S)
↑ Apoptosis
↓ Cell proliferation
↓ caspase-3, ↓ caspase-8, ↓ caspase-9, Bax, ↓ PARP, ↑ Bcl-2 [96]
↓ cyclin D1
25 µM with Piperine (7 µM) ↓ Cell proliferation
↑ Cell cycle arrest (G2/M
↑ Apoptosis
↓ cyclin D1, ↑ caspase-3 [97]
HT29 41 µM ↓ Oxydative stress
↓ Cell growth,
↓ Invasion,
↓ Metastasis
↓ NF-E2, ↓ Nrf2
↓ Bcl-2, ↓ Cyclin D1,
↓ IL6, ↓ Cox2
[17]
HCT-8/5-Fu 10 µM with
5-FU (10 mM)
↑ Apoptosis, ↑ Nrf2, ↑ Bcl-2, ↓ Bax [98]
Animal models
C57BL/6 300 mg/kg with DSS (5 mg/kg) I.P. ↓ Disease activity index,
↓ neoplasic lesions
↓ β-catenin, Cox2, iNOS [99]
↑ Apoptotosis ↓ cyclinD1, ↓ cyclinD3, ↑ caspase-3, ↑ caspase-7,
↑ caspase-9, ↑ PARP
[92]
Oxaliplatin-resistant
HCT116-xenograft
(1 g/kg) per os ↑ Radiosensitivity ↓ NF-κB, ↓ Ki-67,
↓ Notch-1
[100]
Orthopically implanted CRC tumors (HC116) (1 g/kg) per os ↓ Cell growth,
↓ Metastasis
↓ NF-κB [91]