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Abstract: Due to the low frequency of circulating tumor cells (CTC), the standard CellSearch method
of enumeration and isolation using a single tube of blood is insufficient to measure treatment effects
consistently, or to steer personalized therapy. Using diagnostic leukapheresis this sample size can
be increased; however, this also calls for a suitable new method to process larger sample inputs. In
order to achieve this, we have optimized the immunomagnetic enrichment process using a flow-
through magnetophoretic system. An overview of the major forces involved in magnetophoretic
separation is provided and the model used for optimizing the magnetic configuration in flow
through immunomagnetic enrichment is presented. The optimal Halbach array element size was
calculated and both optimal and non-optimal arrays were built and tested using anti-EpCAM
ferrofluid in combination with cell lines of varying EpCAM antigen expression. Experimentally
measured distributions of the magnetic moment of the cell lines used for comparison were combined
with predicted recoveries and fit to the experimental data. Resulting predictions agree with measured
data within measurement uncertainty. The presented method can be used not only to optimize
magnetophoretic separation using a variety of flow configurations but could also be adapted to
optimize other (static) magnetic separation techniques.

Keywords: finite element model; magnetic; enrichment; circulating tumor cell; Halbach; flow

1. Introduction

The most commonly used technique to isolate circulating tumor cells (CTC) is positive
immunomagnetic enrichment. This methodology is simple and effective: Magnetic particles
bound to a marker that is present on tumor cells but not on other cells in the suspension
are used to label and magnetically separate labeled from unlabeled cell populations.

Due to the low frequency of CTC, the number of patients from which they can be
obtained is limited. In recent years, diagnostic leukapheresis (DLA) has been introduced
to overcome this limitation of sampling volume z [1,2]. Although small aliquots of DLA
product can be successfully processed on the CellSearch system [3–5], it is not optimized
for samples containing high concentrations of leukocytes without the abundant presence
of red blood cells. As a result, aliquots of only 2 × 108 leukocytes, representing ~5% of
a DLA product, are used in the standard workflow. To create a more flexible separation
system that is not limited by a fixed volume or concentration, several attempts have been
made to separate cells from a flow using various flow and magnetic configurations [6–11].
This type of separation is useful not only for the enrichment of CTC from blood or DLA
products, but also paves the way for systems designed to enrich CTC from blood in an
in vivo setting [12].
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The success of any magnetic separation is dependent on the sensitivity and specificity
with which the magnetic particles bind to the tumor cells, in combination with the ability
of the magnetic configuration to attract these particles. Whereas the former depends on
the particle characteristics as well as the amount of surface antigens present on the cells,
the latter is determined by the magnetic characteristics of the particles and the magnetic
configuration used. There are several reviews of magnetic particles [13,14] and descriptions
of their performance in different magnetophoretic (flow) setups [6–10]. In order to generate
a larger force at a distance in some cases a Halbach configuration is used for static [15] or
flow-through separation [11,16,17]. In most of these a general formulation for magnetic
force is reviewed, and in some an estimation of the force exerted by the used system
is calculated. However, even though the magnetic configuration determines the force
exerted on a cell with a given labeling, an optimization of the magnetic configuration is not
described.

In this article, we will examine which aspects to consider when optimizing magnet
configurations for maximal capture efficiency. We describe the equations involved in the
enrichment of immunomagnetically bound tumor cells and model a magnetophoretic flow
separation system using COMSOL Multiphysics 5.5 (COSMOL, Stockholm, Sweden). Using
this model, we optimize the magnetic configuration to maximize cell separation efficiency.
We compare our model results to an independently developed analytical solution pro-
grammed in Python and use the COMSOL model results in combination with experimental
cell distribution and recovery data to show the validity of this model approach.

2. Materials and Methods
2.1. Modeled System

The magnetic configurations and flow conditions were modeled and optimized for
immunomagnetic enrichment of CTC. This was done for an 800-µm-high, 5-mm-wide and
50-mm-long flow channel with a 200-µm-thick wall and a flow rate of 1 mL/min. An array
of magnets is placed against this channel extending out beyond the channel length. Under
the assumption that the flow profile and magnetic forces are constant over the width of the
channel, we used a 2D model in our approach. Figure 1 shows a schematic drawing of the
magnetophoretic principle and modeled setup.
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Figure 1. Schematic representation of the magnetophoretic flow separation setup comprised of a
flow channel with a Halbach array showing the magnetic (Fm), drag (Fd) and gravitational force (Fg).

Forces

The trajectory of all cells in a magnetophoretic flow separation system are the result of
a combination of several forces, the most important of which are the magnetic-, drag- and
gravitational forces. Additional forces are hydrodynamic lift, electrostatic, Van der Waals
and Brownian motion [18]. As these latter forces are several orders of magnitude lower, we
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take only the magnetic, drag and gravitational forces into account and assume the other
forces to be negligible.

2.2. Magnetic Force

The magnetic force exerted onto a cell is dependent on the number of particles bound
to the cell, the size, material and crystalline structure of the individual particles, as well
as the magnetic flux and flux gradient resulting from the magnetic configuration used.
In general, the magnetic force Fm (N) on a small particle with uniform magnetization M
(A/m), volume Vp (m3) and moment m = MVp (Am2) in a magnetic field B (T) is given by:

Fm = (m·∇)B (1)

Equation (1) clearly indicates that in order to maximize the magnetic force, both the
magnetic moment and the magnetic field gradient are important.

2.3. Magnetic Moment

Under influence of the magnetic field, the magnetic domains in the magnetic nanopar-
ticles (MNP) will align themselves with the external field, causing the particles to become
magnetic. When the external magnetic field strength Hext (A/m) increases, the magnetiza-
tion M (A/m) also increases as more and more domains within the particle become aligned.
If the external magnetic field strength is increased further, there will be a certain point at
which all domains will align with the external field and the magnetization will plateau.
This maximal level of magnetization is known as the saturation magnetization Ms (A/m)
and is dependent on the material and crystalline structure of the MNP. This is graphically
depicted in Figure 2.
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external field. Top panel, alignment of magnetic domains in the magnetic particles. Middle panel,
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a CTC.
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Often the equations used to describe the magnetic forces involved in immunomagnetic
enrichment are either based on the assumption that the magnetic moment of the particles
is fully saturated [6,16,19], or a constant value for the particles magnetic susceptibility is
assumed [7,9–11,15,20]. Articles in which both domains are acknowledged are for instance
those by Furlani [21], Joshi [22], Hoyos [16] and Shevkoplyas [23]. The latter also takes into
account the remnant magnetization arising from their use of not fully superparamagnetic
particles and shows good agreement with experimental data.

The relation between magnetic field and magnetization for CellSearch ferrofluid, along
with the approximations used later on in this paper are shown in Figure 3.
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2.4. Magnetic Gradient

The magnetic force is determined by the magnetization of the particle in combination
with the magnetic field gradient. The gradient is determined by the change in magnetic
field strength over distance, which is why a pair of magnets with opposing orientations
is used in many magnetic separation systems. In particular in proximity to where the
alternatingly oriented poles meet, the magnetic field strength changes rapidly, resulting
in a high gradient. Generally, the more of these changes in orientation are realized on a
surface, the greater the force will be close to the surface. However, as a large gradient is
the result of a fast decrease in magnetic field strength, it also means that the force does not
extend very far from the surface.

The magnetic flux and flux gradient as a result of 4-mm, 2-mm and 1-mm-wide
magnets were calculated using COMSOL and are shown in Figure 4. It can be seen that a
decrease in magnet size leads to an increase in the magnetic gradient∇B in the region close
to the magnets. This large magnetic gradient is attained at the cost of a lower magnetic
field B in the top portion of the shown channel. By placing a magnet with a perpendicular
orientation between the alternating magnets, we force the magnetic field lines out of the
array more prominently on one side. This causes an increase of magnetic field strength and
gradient on one side of the array. This configuration is known as a Halbach array, and the
resulting field (gradient) for a 2-mm Halbach is shown in the right-hand panel of Figure 4.
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2.5. Magnetic Force Calculation

In order to calculate the magnetization of a particle and its resulting magnetic force
we make the following simplifications:

• The particle is a perfect sphere with a uniform magnetization parallel to the external
field.

• The surrounding liquid is non-magnetic.
• There are no unbound particles present.

Using the first simplification of a parallel magnetization, one can show that Equa-
tion (1) simplifies to:

Fm = m ∇(B) = 1
2

Vp
M
B
∇
(

B2
)

(2)

where we use the vector identity B·∇(B) = 1
2 ∇

(
B2).

The relationship between the magnetization of a spherical particle and the applied
field is given by Equation (3), where the dimensionless variable χp denotes the particles’
magnetic susceptibility and µ0 (=1.26 µN/A2) the vacuum permeability.

M =
3χp

µ0
(
3 + χp

)B (3)

Even though not used here, it is worth noting that, in biologically oriented papers,
Equation (4) is used to describe the magnetic force. It is based on a simplification by stating
that, when considering the cell and attached magnetic particles as a single magnetic entity,
the average χp becomes very small (χp � 1). Using this reasoning one can state that
3 + χp ≈ 3, leading to:

Fm =
1
2

Vp
χp

µ0
∇
(

B2
)

(4)

This simplification is not needed here. By introducing the relative permeability of the
particle µp = χp + 1 and combining Equations (2) and (3) we obtain:

Fm =
1
2

Vp
3
(
µp − 1

)
µ0(µp + 2)

∇
(

B2
)

(5)

for the magnetic force on a particle. This is under the assumption of a non-magnetic fluid
(µf = 1) and using the particle radius R (m) and magnetic field intensity H = B

µ0
(A/m)

equal to the expression COMSOL uses to calculate the magnetic force:

Fm = 2πR3µ0µf
µp − µf

µp + 2µf
∇
(

H2
)

(6)

The magnetic field and its gradient are calculated based on the magnetization of the
magnets, leaving the last unknown to be the magnetization of the particles.
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The cell and bound particles are modeled as a single magnetic entity which is subjected
to the described forces. Due to COMSOL using the same particle radius for the magnetic
and drag force, we will have to use an effective magnetization that in combination with
the cell radius results in a total magnetic moment equal to that of the particles. As the
magnetization is dependent on the magnetic field B, we introduce an approximation
function for the effective magnetization of the cell using an arctangent function:

Meff =
2
π

Ms,eff tan−1
(

B
Bs

)
(7)

where Ms,eff (A/m) is the effective saturation magnetization of the cell and Bs = 22 mT is
a fitting parameter based on the measured magnetization curve of CellSearch ferrofluid
(Figure 2).

Using the approximation function (7) we can express the effective permeability of the
cell as a function of the B-field in order to be able to implement this in COMSOL.

µp,eff =
3B + 2µ0Meff(B)
3B− µ0Meff(B)

(8)

2.6. Drag Force

The other major force involved is the drag force, which is a result of the fluid flow
around the particle. As high magnetic gradients are known to extend only a very limited
distance from the magnetic material a shallow flow channel is used in the form of an
Ibidi µ-channel slide (Ibidi, Gräfelfing, Germany). These channels are 50 mm in length,
5 mm in width and available with channel heights of 200, 400, 600 or 800 µm. For this
optimization we modeled the 800-µm channel. Together with their commercial availability,
the advantage of these flow slides in this context is their thin (0.18 mm) bottom, which
allows the magnetic configuration to be placed in close proximity to the fluid flow.

As these channels are quite shallow, we expect a laminar flow pattern. The drag force
on a spherical object such as a cell in a laminar liquid is described by Stokes’ law using the
viscosity η (Pa·s), particle radius r (m) and velocity of the particle vp and fluid vf (m/s) as
follows:

Fd = 6πηr(vp − vf) (9)

To estimate the validity of this assumption of laminar flow, we calculate the Reynolds
number as follows:

Re =
QD
ηA

ρ (10)

where Q is the fluid flow (m3/s), A is the cross-sectional area of the channel (m2) and ρ

the fluid density (kg/m3). The characteristic length D is for a rectangular channel given
by 2∗height∗width

height+width .

For the 800-µm channels, using Q = 1 mL/min, ρ = 1000 kg/m3 and η = 0.89 mPa·s
results in a Reynolds number of 6.5, well within the laminar flow domain.

2.7. Gravitational Force

The gravitational force is a result of the difference in density between the cell and the
surrounding media. This difference causes the gravitational force exerted onto the cell to
differ from the buoyancy force exerted by the surrounding liquid. In the literature, these
forces are sometimes described separately or taken together as either the gravitational or
buoyancy force. Here we use the following definition:

Fg = g∗Vp(ρc − ρf) (11)

where g = 9.81 m/s2 and, ρc = 1070 kg/m3 and ρf = 1000 kg/m3 are the density of the
particle and fluid.
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2.8. COMSOL Model

For the COMSOL simulations we used the Laminar Flow interface of the Computa-
tional Fluid Dynamics module to simulate the fluid flow. The material was set to water as
defined by the COMSOL default. For the flow inlet we used a mass flow rate of 1 g/min
while the outlet was set to prevent back-flow. The boundary condition on the channel walls
was set to no slip.

The magnetic fields were computed using the AC/DC modules’ “Magnetic fields, No
currents” interface. The model is enclosed by a magnetic insulation boundary at 45 mm
distance in the vertical direction and 85 times the simulated magnet width in the horizontal
direction. The flow-channel and surrounding air were set to a relative permeability of 1.

For the simulation of particle trajectories, we used the Fluid Flow interface of the
Particle Tracing module. The particle distribution as well as the initial particle velocity
was set to reflect the fluid flow profile. An accumulator was used to count the number of
particles reaching the channel surface. Wall conditions were set to freeze.

Meshing was done using a maximal mesh element size for the boundary mesh on the
flow channel walls of 0.05 mm together with corner refinement and a boundary layer for no
slip walls. Remaining geometries were meshed using element size parameters calibrated
for finer general physics.

2.9. Model Validation

Even though the COMSOL program is easy to use, it also has the capability to generate
results based on unintentional assumptions or presumed conditions. We checked the
COMSOL model with an analytical model in which we assumed that the particles are
always saturated, and that the flow profile in the channel is parabolic. The magnetic
field gradient is calculated by integrating over the charge densities. Particle trajectories
were calculated using the solve_ivp routine of the Python scipy.integrate package. The
COMSOL results were accurately reproduced, with differences smaller than 2% around the
50% recovery points (See Table A1 in Appendix A). The COMSOL model is available as
Supplementary Material (S1), the Python source code can be downloaded from GitHub
(https://github.com/LeonAbelmann/Trajectory.git).

2.10. Experimental Validation

To validate the approach experimentally, we tested the following configurations.

1. The optimized Halbach array with 12-mm-long, 1-mm-wide, N52 magnets with
a height of 2 mm (horizonal magnetization) and 2.75 mm (vertical magnetization)
(Risheng Magnets, Ningbo, China).

2. A Halbach array consisting of three rows of commercially available 5 × 1 × 1.5 mm
N45 stock magnets, (Supermagnete, Gottmadingen, Germany).

3. A Halbach array consisting of commercially available 15 × 4 × 4 mm N45 stock
magnets, (Supermagnete, Gottmadingen, Germany).

All arrays were assembled on soft magnetic sheets after which a 3D-printed plastic
support was glued to the backside of the array. The soft magnetic material was subsequently
removed, allowing the flow channel to be placed directly against the magnet surface. The
three magnetic arrays used in our experiments are shown in Figure 5.

https://github.com/LeonAbelmann/Trajectory.git
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To test the different configurations, we used cells obtained from three different prostate
cancer cell lines: PC3, PC3-9 and LNCaP. Cells were cultured in RPMI1640 (Lonza, Basel,
Switzerland) supplemented with 10% FBS (Sigma-Aldrich, St. Louis, MO, USA) and 1%
penicillin/streptomycin (Lonza, Basel, Switzerland). Upon reaching 70–80% confluence
they were trypsinized using 0.05% trypsin-EDTA (Gibco, Waltham, MA, USA) and fixated
using 1% formaldehyde.

The recovery of each cell type is expected to be dependent on the number of magnetic
particles bound to the cells. This level of particle binding is determined in turn by the
amount of target antigens present on the cell surface. For this reason, we first measured the
level of EpCAM expression of these cell lines by staining the cells with anti-EpCAM(Vu1d9)-
PE (Sigma-Aldrich, St. Louis, MO, USA). The PE intensity was measured and quantified
by flowcytometry (BD FACS Aria II) using BD Quantibrite™ Beads PE Fluorescence
Quantitation Kit (BD, Franklin Lakes, NJ, USA).

Additionally, we measured the (relative) ferrofluid labeling of these three cell lines.
To do so we labeled the cells by incubating them with CellSearch ferrofluid (Menarini,
Bologna, Italy). We subsequently centrifuged and washed the cells to remove unbound
ferrofluid. The bound ferrofluid was then stained using anti-mouse IgG PE (Sigma-Aldrich,
St. Louis, MO, USA), which binds to the mouse-based anti-EpCAM on the ferrofluid
surface. The fluorescence intensity arising from the ferrofluid labeling was measured
using flow cytometry. To evaluate recovery, the cell lines were pre-stained using either
CellTracker Orange, CellTracker Green or CellTracker Deep-Red (Thermo Fisher Scientific,
Waltham, MA, USA).

Approximately 40,000 cells of each type were incubated with CellSearch ferrofluid
(Menarini, Bologna, Italy), at a concentration of 15 µL of ferrofluid per ml of sample for
three times ten minutes in a BD iMag Cell Separation magnet (BD, Franklin Lakes, NJ,
USA). Samples were mixed in-between. Cells were subsequently centrifuged to remove
unbound ferrofluid particles and resuspended in casein buffer. We split the sample into
four portions. For each of the three configurations one portion was flowed through an
800-µm high Ibidi flow channel positioned directly against the magnetic array, at a flow
speed of 1 mL/min. The fourth portion was used to determine the concentration. After the
samples passed, the channel was rinsed using 2 mL of PBS at 2 mL/min. The magnetic
array was removed and the enriched fraction was flushed out into a TruCount tube (BD,
Franklin Lakes, NJ, USA). The recovery of each cell population was counted using flow
cytometry (BD FACS Aria II).

3. Results
3.1. Magnet Width Optimization

Simulated cells were defined as spheres with a diameter of 10 µm and a density of
1077 kg/m3. The magnets were modeled as 1.5-mm-high N52 grade permanent magnets,
and the magnetophoretic force was simulated based on a presumed total magnetic moment
of 10 fAm2 per cell. The cells were distributed over the inlet based on the simulated flow
profile. Recovery was determined as the percentage of cells reaching the surface of the
channel at which the magnet array is positioned. To examine the difference between our
approximation and the assumption of a saturated magnetic moment or fixed permeability
we determined the recovery as a function of the magnet width for all three options at
0.05 mm intervals in the range of 0.4 to 2.0 mm (Figure 6). It can be seen that the assumption
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of a saturated magnetic moment seems to be a usable simplification when optimizing a
magnetic configuration because the found optima are almost identical.
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optimum when assuming a constant permeability.

As cells starting at the very top of the channel are not captured when a configuration
with a maximal recovery of <100% is modeled, the optimum size will also be dependent on
the height of the channel from which a cell can be captured. For instance, when a magnetic
moment is modeled that results in a maximal recovery of 50%, the optimization will result
in a configuration that is optimal for only this portion of the channel. For this reason, one
must optimize using a modeled magnetization which results in a maximal recovery close
to 100%.

To test whether a relation similar to the often used rule that the size of magnet should
be the same as the distance at which a force is to be generated can be used when a Halbach
array element width, we calculated the optimal magnet width for different channel heights.
Figure 7 shows that within the calculated range, there is a linear relation between the
optimal magnet width and the flow channel height when using 1.5-mm-high magnets and
a 200-µm wall thickness.
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3.2. Magnet Height

The magnetic force increases with magnet height as more magnetic material is added.
However, as the additional magnetic material is at a greater distance its benefit quickly
diminishes for both the vertically and horizontally oriented magnets. We calculated the
recovery for magnets heights of 0.5 to 3.0 mm at 0.25 mm intervals to see the influence of
the magnet height (Appendix B, Table A2). To have sufficient magnet surface available for
strong adherence to the substrate we chose to use different magnet heights. Considering
that the array becomes more difficult to assemble when using larger magnet heights we
chose to construct the optimized array using vertically oriented magnets with a height of
2.75 mm and horizontally oriented magnets with a height of 2 mm.

As magnet height can have an influence on the optimal width of the array we sim-
ulated the recovery for different magnet widths using the chosen magnet heights. This
increase in magnet height resulted in a shift of the optimal width from 0.9 mm to 1.0 mm
(Appendix C, Figure A1).

3.3. Halbach versus Converntional Alternating Array

To check that the Halbach array is an improvement over the conventional alternating
array, we also performed the optimization for alternating arrays using 2.375-mm-high
magnets, thereby using the same magnet volume as used in the optimized Halbach array.
This resulted in an optimal magnet width of 2.0 mm (Appendix C, Figure A1). As the
magnetic moment of the cells is unknown, we calculated recoveries as a function of
magnetic moment. The recovery calculated for the optimized alternating array shows a
minimal magnetic moment needed for 100% recovery of 15 fAm2 compared to 11 fAm2

for the optimized Halbach array, see Figure 8. The higher gradient of the alternating array
close to the surface does results in a slightly higher capture for very low magnetic moments,
when only the cells in the bottom part of the channel can be captured.
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Figure 8. Comparison of recovery dependence on magnetic moment between the optimized alternat-
ing array (2.0 mm width) and the optimized Halbach array (1.0 mm width) showing a decrease in
magnetic moment needed to achieve 100% recovery. For very low magnetic moments, where only
the cells close to the surface are captured, the alternating array outperforms the Halbach array due to
its higher gradient close to the surface.

3.4. Halbach Array Comparison

We calculated recoveries as a function of magnetic moment for the three different
magnetic configurations (see Figure 9). Here the optimized Halbach array is predicted to
increase recovery for cells with a magnetic moment up to 15 fAm2 when compared to the
1 × 1.5-mm array and up to 24 fAm2 when compared to the 4 × 4-mm Halbach array. At
higher magnetic moments all arrays are predicted to capture 100% of the cells.
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Figure 9. Calculated recoveries using different magnetic arrays showing a decrease in the magnetic
moment needed to achieve 100% recovery when magnet elements with a smaller width are used. The
optimized Halbach configuration has vertically oriented magnets with a width of 1 mm, a height of
2.75 mm, whereas horizontally oriented magnets have a width of 1 mm and height of 2 mm.
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3.5. Experimental Validation

The average intensity of EpCAM staining for PC3, PC3-9 and LNCaP was determined
to be 7100, 19,700 and 628,400, respectively. The recoveries obtained using the different
magnetic configurations are shown in Figure 10. For the PC3 and PC3-9 cells it is clear that
there is an increase in recovery when moving towards the optimal array, in agreement with
calculations. For the LNCaP cells the recovery is already at 90% for the 4 × 4 mm array,
leaving little room for improvement.
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Figure 10. Recoveries (mean and SD) of the three cell lines (N = 4) for all three magnet arrays show a clear increase in
recovery for the PC3 and PC3-9 cells when using an improved array. As almost all of the LNCaP cells are already maximally
captured using the 4 × 4 mm array there is little further improvement possible.

As the magnetic moment is not the same for each cell in the population, the total
capture efficiency must be calculated using the distribution of magnetic moments of the cells
together with the modeled capture efficiency as a function of that moment (Figure 9). We
obtained an estimate of the distribution of magnetic moment by fluorescently labeling the
bound particles. The resulting histograms showing the fluorescence intensity distributions
for PC3 and PC3-9 cells together with the corresponding controls (stained using anti-
mouse IgG-PE but containing no ferrofluid particles) are shown in Figure 11A,B. The mean
intensity for LNCaP was more than 30 times higher than that of PC3-9, making it likely
that its magnetic moment is high enough to ensure efficient capture using all arrays, which
agrees with the measured recovery. We therefore only considered PC3 and PC3-9.
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We assume that fluorescence intensity scales linearly with the magnetic moment. We
therefore multiplied each element in the scaled distributions of PC3 and PC3-9 with the
corresponding calculated recovery (Figure 11C) and fitted the values to the experimental
data shown in Figure 10. We obtain the best fit when using a scaling factor of 120 units
of fluorescence intensity per fAm2 and an offset of −12 and −6.5 fAm2 for PC3 and
PC3-9, respectively. The need for an offset is expected to be a result of the non-specific
binding of anti-mouse-IgG-PE to the cells, causing a background intensity. This agrees
with the observation that the offsets to obtain the best fit are approximately equal to the
peak intensities of the negative control samples. To calculate cell recoveries the obtained
negative magnetic moments are set to zero.

The resulting calculated recoveries, as shown in Figure 11D, agree within measurement
uncertainty with the observed values of both cell lines and all three arrays.

4. Discussion

Leukapheresis is frequently used to harvest hematopoietic stem cells from peripheral
blood for stem cell transplantation. These hematopoietic stem cells are contained within
the cell population expressing the CD34 antigen present in < 1% of the leukocytes and
can be harvested by flow-through immunomagnetic cell separation for peripheral blood
stem cell separation [24]. In leukapheresis products collected for autologous stem cell
transplantation, circulating tumor cells have been observed, raising the concern that they
might be seeds for metastasis [25–27]. On the one hand, these observations have led
to efforts to further purify the hematopoetic stem cells [28]. On the other hand, to the
development of technologies to detect rare cancer cells in blood and leukapheresis products
for diagnostic purposes [29–32]. For diagnostic purposes the percentage of patients in
which ten or more CTC can be detected in a tube of blood for real-time characterization of
cancer is too low [1], leukapheresis provides the opportunity to overcome this limitation [2].
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Flow-through immunomagnetic separation is an attractive means to process not only blood
but also the larger volumes obtained through leukapheresis, and several approaches for
flow-through magnetic enrichment have been introduced [8,9,33–35]. We opted to develop
a COMSOL model to guide us to design, build and test flow through immunomagnetic
separation of cancer cells using commercially available flow channels, an external magnetic
array and magnetic particles directed against the EpCAM antigen.

The COMSOL model is simplified because no unbound ferrofluid particles are as-
sumed to be present, even though the vast majority of particles is unbound in a regular
magnetic separation. These particles will attract each other and thereby increase the num-
ber of particles attached to the cell during the separation. We assume that this effect takes
place as soon as the particles are in reach of the field and that the effective number of
particles bound to the cell will include these magnetically loaded particles.

The results show that by improving the magnetic Halbach array recovery is increased
for the PC3 and PC3-9 cell lines expressing low levels of EpCAM antigens, whereas there
is little benefit for the recovery of LNCaP cells with relatively high levels of antigen.
However, as the EpCAM expression of patient CTC has been shown to be similar to that
of PC3-9 cells [36], this is also the range of interest when evaluating an EpCAM-based
CTC enrichment.

The resulting scaled distribution of magnetic moments of PC3 and PC3-9 cells that best
fits the measured recovery indicates that there is substantial population with no or very
little magnetic particles attached. This would mean that for these populations a further
optimization of magnetic separation must focus on the increase of magnetic labeling,
because 24% of the PC3 cells are modeled to have a negative magnetic moment. For
instance, an increase could be obtained by using the controlled aggregation of ferrofluid that
is normally used in the CellSearch system [37]. Ideally, one would know the distribution
of magnetic moment for the patient CTC, allowing the array to be optimized using this
information. We show an increase in recovery as a result of the described optimization
using cells in buffer, whereas the goal of this setup is to enrich rare CTC from highly
concentrated DLA samples. Due to the large background of unlabeled cells, it will be more
difficult for the cell to reach the wall of the channel in these samples. Even though this
effect will probably reduce the overall recovery, this optimization shown here is expected
to have a similar impact on the recovery in these samples.

Using the optimized configuration described it is possible to process an entire DLA
sample because the flow-based configuration does not impose a limit on sample volume.
Once all sample has been flowed through the channel, the magnet array is removed and
captured cells simply washed out. In case of these large samples, which will also contain
unbound ferrofluid, accumulation of ferrofluid will occur. As the separation progresses it
is likely that this accumulated ferrofluid will have a shielding effect on the magnetic field,
thereby decreasing the force exerted as more sample is processed. In this case it will be
necessary to rinse the collected cells and ferrofluid out of the channel at regular intervals,
thereby allowing the processing of a complete DLA sample.

5. Conclusions

We used a finite element model to calculate the recovery of cells with bound magnetic
particles in a flow channel. The magnetic force was calculated using an approximation of
the measured magnetization curve of the particles. We show that a high field approximation
assuming magnetic saturation predicts optimization results within 5% of the magnetization
curve model. However, there is no noticeable improvement in computation time as a
result of the simplification, making it useful only in cases where the magnetization curve is
unknown. A low field approximation assuming a linear permeability however results in a
perceived optimum at a ~30% larger element size and should be avoided.

When using a Halbach array, there is an optimum in capture efficiency with respect to
the dimensions of the magnets. The optimal magnet width increases linearly with increas-
ing channel height. For an 800-µm-high, 5-mm-wide channel with a flow of 1 mL/min our
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model predicts a minimum magnetic moment of 15 fAm2 needed to obtain 100% recovery
when using an array made of 1.0 × 1.5 mm stock magnets. By optimizing the magnet
width and using custom 1-mm-wide and 2/2.75-mm-high elements the minimum magnetic
moment needed for 100% recovery is lowered to 11 fAm2.

We compared our model predictions to experimental results using three cell lines with
different EpCAM expressions. As predicted, the optimization increased recovery when
cells with a low EpCAM expression are used. We show that the distribution of magnetic
moments between cells must be considered. We obtain a distribution of the magnetic
moments of the cells by scaling the fluorescence intensity of labeled cells and show that the
model predicts capture efficiencies within measurement uncertainty.

By optimizing the capture efficiency of a flow-based enrichment system capable of
processing a complete DLA sample, we are one step closer to unlocking the potential of
DLA as a means to capture sufficient CTC for therapy monitoring, guidance and tumor
characterization in all cancer patients.
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Appendix A

Table A1. Capture efficiencies estimated by the COMSOL finite element method compared to
analytical calculations (Python). Magnetic moment of the cells was chosen such that capture was
around 50%, where the designs show the highest sensitivities to variation. The difference is less
than 3%.

Array (mm) Moment (fAm2) COMSOL (%) Python (%)

1.0 × 2.8, 1.0 × 2.0 4 47 47
1.0 × 1.5, 1.0 × 1.5 6 52 50
4.0 × 4.0, 4.0 × 4.0 12 54 51

Appendix B

Table A2. Calculated recovery for different magnet heights showing that the addition of additional magnetic material has
a decreasing impact as the magnet size increases. Additionally, it can be seen that there is no difference in the increase
dependent on which magnet height is increased.

Vertically oriented
magnet height (mm)

Horizontally Oriented Magnet Height (mm)

mm 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3
0.5 62% 69% 73% 76% 79% 80% 81% 81% 82% 82% 83%
0.75 69% 75% 80% 83% 85% 86% 87% 88% 88% 88% 88%

1 73% 80% 84% 87% 89% 90% 91% 91% 92% 92% 92%
1.25 77% 83% 87% 90% 91% 92% 93% 94% 94% 94% 95%
1.5 79% 85% 89% 91% 93% 94% 95% 95% 96% 96% 96%
1.75 80% 86% 90% 92% 94% 95% 96% 96% 97% 97% 97%

2 81% 87% 91% 93% 95% 96% 97% 97% 97% 98% 98%
2.25 81% 88% 91% 94% 95% 97% 97% 98% 98% 98% 98%
2.5 82% 88% 92% 94% 96% 97% 97% 98% 98% 99% 99%
2.75 82% 88% 92% 94% 96% 97% 98% 98% 99% 99% 99%

3 82% 88% 92% 95% 96% 97% 98% 98% 99% 99% 99%

https://www.mdpi.com/article/10.3390/diagnostics11061020/s1
https://www.mdpi.com/article/10.3390/diagnostics11061020/s1
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1.25 77% 83% 87% 90% 91% 92% 93% 94% 94% 94% 95% 
1.5 79% 85% 89% 91% 93% 94% 95% 95% 96% 96% 96% 

1.75 80% 86% 90% 92% 94% 95% 96% 96% 97% 97% 97% 
2 81% 87% 91% 93% 95% 96% 97% 97% 97% 98% 98% 

2.25 81% 88% 91% 94% 95% 97% 97% 98% 98% 98% 98% 
2.5 82% 88% 92% 94% 96% 97% 97% 98% 98% 99% 99% 

2.75 82% 88% 92% 94% 96% 97% 98% 98% 99% 99% 99% 
3 82% 88% 92% 95% 96% 97% 98% 98% 99% 99% 99% 

Appendix C 

 
Figure A1. Optimization of magnet width for the Halbach and alternating orientation arrays using 
a magnet height of 2/2.75 mm and 2.375 mm, respectively. The optimum for the Halbach array is at 
1.0 mm while the optimal width for the alternating array is found at 2.0 mm. 
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