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Abstract: Metabolic heterogeneity is a hallmark of cancer and can distinguish a normal phenotype
from a cancer phenotype. In the systems biology domain, context-specific models facilitate extracting
physiologically relevant information from high-quality data. Here, to utilize the heterogeneity of
metabolic patterns to discover biomarkers of all cancers, we benchmarked thousands of context-
specific models using well-established algorithms for the integration of omics data into the generic
human metabolic model Recon3D. By analyzing the active reactions capable of carrying flux and
their magnitude through flux balance analysis, we proved that the metabolic pattern of each cancer is
unique and could act as a cancer metabolic fingerprint. Subsequently, we searched for proper feature
selection methods to cluster the flux states characterizing each cancer. We employed PCA-based
dimensionality reduction and a random forest learning algorithm to reveal reactions containing the
most relevant information in order to effectively identify the most influential fluxes. Conclusively,
we discovered different pathways that are probably the main sources for metabolic heterogeneity
in cancers. We designed the GEMbench website to interactively present the data, methods, and
analysis results.

Keywords: genome-scale metabolic model; data integration; Warburg effect; metabolic pattern;
FBA-based feature; cancer metabolism

1. Introduction

The cornerstone of metabolic research in oncology was laid by Otto Warburg in the
1920s when he discovered the main metabolic hallmark of cancer, aerobic glycolysis [1].
Aerobic glycolysis (the Warburg effect) refers to a common feature of cancer cell metabolism
(although this is not a universal feature of proliferating cancer cells [2]) in which cancer
cells take up glucose at high rates and break it down into lactate in the presence or absence
of oxygen. Since then, a large quantity of high-throughput data have unveiled other
metabolic hallmarks of cancer (Figure 1) [3], however, the metabolic patterns of different
cancers are still the subject of inquiry [4]. A specific metabolic pattern can be defined
as a downstream informative layer (rather than upstream data and transcriptome and
proteome data) of a biological system [5] that is experimentally obtained by metabolomics
analyses or theoretically by flux balance analyses (FBAs). Various experimental studies
showed that studying the heterogeneity in the metabolic pattern of cancers contributes to
better stratification of the disease and its treatment, which can also be correlated with drug
sensitivity [6,7]. However, the metabolic patterns of cancers could not be fully elucidated
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by recent metabolomics studies due to complexity and limitations of the techniques and
analysis [8].
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uptake of glucose and essential amino acids, (4) use of high glycolysis/tricarboxylic acid (TCA) cycle 
intermediates for biosynthesis, (5) alterations in metabolite-driven gene regulation, and (6) micro-
environment. 

Aided by metabolic modeling approaches, in particular a genome-scale metabolic 
model (GEM), studies on cancer cell metabolism have expanded our understanding of the 
underlying mechanisms of cancer development as well as the identification of diagnostic 
biomarkers, potential drug targets, and prognostic biomarkers [9]. The GEM can also be 
tailored to generate the context-specific GEM, using omics data integration approaches 
[10]. These context-specific models facilitate the unveiling of the genotype–phenotype re-
lationship by calculating the flux states and extracting physiologically relevant infor-
mation from high-quality data [11]. 

Omics data integration approaches are often developed to build cancer-specific 
GEMs (CGEMs) (Table 1). These types of studies highlight the importance of understand-
ing the evolution of cancer metabolism and metabolic phenotypes [9] to discover cancers’ 
vulnerabilities, leading to novel prognostic biomarkers and therapeutics [12]. Increasing 
interest in GEM and CGEM approaches has induced a line of new publications focusing 
on the benchmarking of the tools used to generate context-specific models. All agree that 

Figure 1. Metabolic hallmarks of cancer. Here, we depict six main metabolic hallmarks of cancer;
(1) use of opportunistic modes of nutrient acquisition, (2) high demand for nitrogen, (3) deregu-
lated uptake of glucose and essential amino acids, (4) use of high glycolysis/tricarboxylic acid
(TCA) cycle intermediates for biosynthesis, (5) alterations in metabolite-driven gene regulation, and
(6) microenvironment.

Aided by metabolic modeling approaches, in particular a genome-scale metabolic
model (GEM), studies on cancer cell metabolism have expanded our understanding of the
underlying mechanisms of cancer development as well as the identification of diagnostic
biomarkers, potential drug targets, and prognostic biomarkers [9]. The GEM can also be
tailored to generate the context-specific GEM, using omics data integration approaches [10].
These context-specific models facilitate the unveiling of the genotype–phenotype relation-
ship by calculating the flux states and extracting physiologically relevant information from
high-quality data [11].

Omics data integration approaches are often developed to build cancer-specific GEMs
(CGEMs) (Table 1). These types of studies highlight the importance of understanding
the evolution of cancer metabolism and metabolic phenotypes [9] to discover cancers’
vulnerabilities, leading to novel prognostic biomarkers and therapeutics [12]. Increasing
interest in GEM and CGEM approaches has induced a line of new publications focusing
on the benchmarking of the tools used to generate context-specific models. All agree that
none of these algorithms systematically outperforms the others and each has specific pros
and cons depending on the type of data availability to tailor the GEM [13–15].
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Table 1. Summary of studies that used omics databases and integration algorithms to generate CGEM.

Reference Study Conclusions

Shlomi et al. [16]

Generation of cancer-specific GEM (CGEM) by omics data
integration to investigate the metabolic reprogramming of

60 cell lines by employing stoichiometric and enzyme solvent
capacity constraints.

Warburg effect is a direct consequence of the metabolic
adaptation to maximize the growth rate of cancer cells.

Folger et al. [17]
Combination of microarray data from 59 cancer cell lines

with Recon1 to generate a generic metabolic model of human
cancer cells.

Generation of a generic metabolic model of human
cancer cells.

Wang et al. [18] Reconstruction and pathway-level analyses of GEMs for
26 human cancer and counterpart normal tissues.

Eicosanoid metabolic pathway is a potential selective
drug target.

Jerby et al. [19]
Development of a method to interpret metabolic phenotypes
of breast cancer patients by the integration of transcriptomics

and proteomics data into the GEMs.

Presentation of a novel metabolic hallmark of estrogen
receptor in breast cancer.

Yizhak et al. [20] Exploration of the role of the Warburg effect in supporting
tumor migration by using GEMs.

Identification of metabolic targets inhibiting the cancer
cell migration.

Nam et al. [21]
Deployment of genetic mutation information, transcriptomics

data of nine cancer types as well as Recon2 for the
reconstruction of CGEMs.

Prediction of oncometabolites that potentially
dysregulate the epigenetic mechanisms.

Asgari et al. [22]
Construction of 13 CGEMs and their corresponding normal
models by gene expression integration into Recon1 using the

E-Flux method.

Results supporting the hypothesis that the Warburg
effect is a consequence of metabolic adaptation.

Uhlen et al. [23]
Generation of more than 7000 patient-specific GEMs based on

the integration of transcriptomics data into HMR2 by the
tINIT method.

They disclosed that cancer patients show widespread
metabolic heterogeneity, highlighting the need for

personalized treatment.

Up to now, there has been no comprehensive benchmark for the assessment of the
metabolic phenotype patterns as biomarkers of all cancers (the active reactions carrying
fluxes and their flux magnitude, FBA-based feature) and cancer cells. To understand the
influence of context-specific extraction methods on the metabolic pattern and how likely
a certain metabolic pattern leads to specific metabolic hallmarks of cancer, we generated
3740 CGEMs. In addition, we benchmarked the integration of all types of publicly available
expression omics data into Recon3D by four algorithms to (i) evaluate the quality of a
context-specific model of cancer, (ii) evaluate the impact of omics data and integration
algorithms on the behavior of a CGEM, (iii) assess the metabolic patterns of different cancer
types and (iv) suggest the main features of heterogeneity in cancer metabolism. Accordingly,
we integrated omics data from both human cancer cell lines and actual patients’ samples
(microarray gene expression, RNA-seq transcriptome, and proteomics data) into Recon3D
by GIMME, iMAT, INIT, and FASTCORE algorithms. We then employed machine learning
(ML) algorithms to both leverage the discrepancies in metabolic flux states of CGEMs (FBA-
based feature) and also to determine the main metabolic features allowing a classification of
various cancers. The results indicate that the active reactions and their corresponding flux
magnitude for each CGEM are unique to each cancer type that can act as their metabolic
fingerprint. We also discovered that extracellular transport, peptide metabolism, fatty acid
synthesis, vitamin A metabolism, mitochondrial transporters, and the pentose phosphate
pathway are probably the main varied pathways in all cancers. Therefore, they are the
main sources of metabolic heterogeneity in different cancers. This discovery sheds more
light on the cancer metabolism domain and can delineate potential future scenarios for
personalized medicine.

2. Materials and Methods
2.1. Data Collection and Preprocessing

Data were extracted from human cancer-specific omics data from two different sources:
(i) human cancer cell lines and (ii) patients’ samples. Each data source included three
experimental platforms: microarray gene expression, RNA-seq gene sequencing, and
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proteomics data. Table 2 shows the summary of sources, platforms, and the number of
samples we used.

Table 2. The sources, platforms, and the number of samples we used in this study.

Sources Platforms Samples

HPA RNA-seq 32 cell lines
EMTAB-37 Microarray 317 cell lines

NCI-60 Mass spectrometry proteomics 59 cell lines
TCGA RNA-seq 202 patients

GSE2019 Microarray 315 patients
PX Mass spectrometry proteomics 10 patients

2.1.1. Human Cancer Cell Line Data
Human Protein Atlas (HPA)

The HPA is a freely available database including the Tissue Atlas, Cell Atlas, and
Pathology Atlas. The Cell Atlas contains mRNA expression profiles of 64 cell lines from
RNA sequencing. After filtering the non-metastatic human cancer cell lines, 32 cell lines
were downloaded [24].

EMTAB-37

ArrayExpress is an archive of functional genomics data that stores high-throughput
functional genomics data and provides them for reuse to the research community. The
transcriptomics profiles of 317 various cancer cell lines were downloaded from (https://ww
w.ebi.ac.uk/arrayexpress/experiments/E-MTAB-37/samples/) (accessed on 23 September
2020) [25].

NCI-60 Proteome

ProteomicsDB is an effort of the Technische Universität München that is dedicated
to expedite the identification of various proteomes and their use across the scientific
community. We used the results of the Global Proteome Analysis study. Gholami et al.
employed an MS-based proteomics analysis and provided quantitative proteome profiles
of all 59 cell lines of the NCI-60 panel. The dataset contains 10,350 identified proteins [26].

2.1.2. Human Cancer Patient Data
TCGA

The Cancer Genome Atlas (TCGA) is a joint effort between the National Cancer Insti-
tute and the National Human Genome Research Institute that generated high-throughput
data. The RNA-seq data were obtained using the GDC Data Portal platform. In total,
11,571 files for 10,672 cases were found. The metadata file was downloaded and only
files of primary tumor- or primary blood-derived cancer bone marrow or peripheral were
selected and, finally, 10,322 files were downloaded. After the combination of the same
disease types, 202 different cancer types were prepared for the current study [27].

GSE2109

The Gene Expression Omnibus (GEO) is a public functional genomics data repository
that stores microarray- and sequence-based data [28]. The results of DNA microarray
analysis of “The Expression Project for Oncology” (expO) from the International Genomics
Consortium were downloaded from (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?a
cc=GSE2109) (accessed on 23 September 2020). Among 2158 patient samples, the metastatic
and ambiguous samples were removed and 1895 samples from 315 different cancer types
were selected. In total, 24,442 unique genes exist in this dataset [28].

https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-37/samples/
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-37/samples/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2109
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2109
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ProteomeXchange (PX)

The ProteomeXchange (PX) Consortium of proteomics resources (http://www.proteo
mexchange.org) (accessed on 23 September 2020) provides a standard portal for submission
and dissemination of mass spectrometry proteomics data [29]. We extracted 10 datasets of
four different cancer types containing 11,961 identified proteins.

Data Preprocessing

All replicated data were averaged and normalized between 0 and 1 (min–max normal-
ization) using a z-score scaling formula,

Value−min
max−min

2.2. Genome-Scale Metabolic Models (GEMs)

Recon3D [30] version 3.01 was downloaded from the VMH database [31]. Recon3D is
a manually curated GEM which contains 13,543 reactions, 4140 metabolites, and 3697 genes.
All exchange reactions used the original flux bounds of the Reconn3D model. The orig-
inal model was converted to a flux consistent model (i.e., all reactions are able to carry
fluxes) using the ‘findFluxConsistentSubset’ function of COBRA Toolbox and the ‘fastcc’
algorithm of ‘fastcore’ with a reaction activity threshold of 1−10 [32]. The final consistent
model, used in the study, contained 3256 metabolites and 11,961 reactions. For all con-
structed context-specific models, six reactions were reserved and prevented from deletion,
‘biomass_reaction’, ‘DM_atp_c_’, ‘GAPD’, ‘ATPS4mi’, ‘D_LACt2’, and ‘O2t’.

Data Processing and Extraction of Context-Specific Model

The gene/protein expression data were mapped to model reactions using gene–
protein–reaction (GPR) rules. For genes with ‘AND’ logic (enzyme complex), the minimum
expression, and for ‘OR’ logic (isozyme), the maximum expression of the corresponding
genes, were used. Reactions were not assigned a value if GPR or expression data were
missing. Then, we used four prominent integration algorithms to generate cancer-specific
GEMs (CGEM). The integration algorithms can be classified in many different ways on the
basis of the underlying methodology. In 2015, Estévez and Nikoloski [33] stratified these
methods into three groups: 1. GIMME- and GIM3E-like methods. This group refers to
two-step approaches with a metabolic functionality (objective function) being optimized
via FBA. Then, the obtained optimal value is employed to minimize the discrepancies
between fluxes and data; 2. iMAT- and INIT-like methods. This group of algorithms
determines the binary reaction status (i.e., active or inactive) which are in good agreement
with the associated data state; and 3. MBA-, mCADRE-, and fastCORE-like methods. This
group defines a core set of active reactions and then finds the minimum essential set of
reactions to satisfy the consistency condition of the model. In this study, we selected four
algorithms, GIMME, INIT, iMAT, and FASTCORE. The created CGEMs were optimized for
maximization of biomass reaction [34] using the ‘optimizeCbModel’ function of COBRA
Toolbox, and reaction flux values were selected.

2.3. Validation of CGEMs by Two Known Hallmarks of Cancer
2.3.1. Metabolic Hallmark of CGEMs (Warburg Score)

The quantification of the Warburg effect in CGEMs was formulated in two studies [20,35].
The glycolytic to oxidative ATP flux ratio (AFR or BEC) and the ratio of the glycolytic versus
oxidative capacity (EOR) as two indices of the metabolic hallmarks of cancer for CGEMs were
defined. We calculated these two scores by the following formulations for all CGEMs:

AFR score =
FluxGAPD

FluxATPS4mi

http://www.proteomexchange.org
http://www.proteomexchange.org
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EOR score =
FluxD_LACt2

FluxO2t

2.3.2. The Gene Set Hallmark of Cancer

Liberzon et al. [36] presented the gene set hallmark of cancer containing 197 genes [37].
Here, we calculated the total number of cancer hallmark genes presented in all CGEMs.

2.4. Characterization of Metabolic Pattern of CGEMs
2.4.1. Jaccard Index

The Jaccard similarity coefficient [38,39] was used as a similarity index to calculate
the proportion of overlap between two sets of features (the number of active reactions in
CGEMs). The Jaccard index is the proportion of shared elements between set A and set B
relative to the total number of the union of the elements. It is defined below:

Jaccard indexi,j =

∣∣NRi ∩ NRj
∣∣∣∣NRi ∪ NRj
∣∣

where NRi are active reactions of disease i and NRj are active reactions of disease j. The
range is between 0 and 1.

Indeed, active reactions were defined as the reactions which remained in the con-
structed context-specific model after applying the integration method into the original
model (consistent Recon3D). For each disease pair, the number of remaining reactions in
the model’s subsystems (109 different subsystems) was determined. The Jaccard index for
each subsystem was calculated separately and the final Jaccard index was indicated by the
mean of these indices.

2.4.2. Bland–Altman Plot

The Bland–Altman plot and limits of agreement (LoAs) is a standard method for the
assessment of the results of the two methods [40]. The difference between the two methods
is plotted against the averages of the two methods and the LoAs are defined as the mean
difference ±1.96 times the standard deviation of the differences. The plots were interpreted
informally and if the differences are not clinically important, the two methods may be used
interchangeably.

2.4.3. Principal Component Analysis (PCA)

Principal component analysis is used to extract the important information from mul-
tidimensional correlated variables and to provide a set of new uncorrelated variables
called principal components. The goal of PCA is to identify directions showing the highest
variations in the data and, thus, carrying the main information. The first two principal
components have the largest possible variance or data variability and can be visualized
graphically. The flux distribution data were classified by the ‘prcomp’ function of the stats
package in R and results visualized by the ‘factoextra’ R package [41].

2.4.4. Machine Learning Method (Random Forest)

Random forests are ensemble classifiers that aggregate the results of many individual
decision trees. We used the ‘randomForest’ R package [42] with two hyperparameters: the
number of training trees (nTree) and the number of predictors to consider at each split
point (mTry). The default settings of nTree = 500 and mTry as the square root of the number
of predictor variables were used in this study. The PCA results were used as the response
variable in the random forest (RF) analysis and only flux distributions which had two or
more classes in PCA were included in the analysis. All flux data were used as a training
set. The results of RF were interpreted and visualized by the ‘randomForestExplainer’ R
package [43].
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2.5. Implementation

All codes were implemented in MATLAB and R. COBRA Toolbox 2.0 [44] in MATLAB
2018b and IBM CPLEX as a solver were used. The website for GEMbench at https://ge
mbench.bio.informatik.uni-rostock.de/ (accessed on 23 September 2020) is basic HTML
with plain CSS layout. User interaction with the website was realized using JavaScript. The
figures were created in D3.js (https://d3js.org/) (accessed on 23 September 2020).

3. Results
3.1. Construction of Cancer-Specific GEMs (CGEMs)

Cancer-specific GEMs are the de facto standard to analyze cancer behaviors. To
comprehensively assess the metabolic patterns of different cancer types, we integrated
six different human cancer omics datasets that are publicly available (Table 2) into the
generic human GEM (Recon3D) using four integration approaches (GIMME, iMAT, INIT,
and FASTCORE). The six omics datasets are composed of (i) human cancer cell line data
including 32 RNA-seq profiles (HPA database), 317 microarray profiles (EMTAB-37 dataset)
and 59 proteome profiles (NCI-60 proteome dataset), (ii) human cancer patient data in-
cluding 202 RNA-seq profiles (TCGA database), 315 microarray profiles (GSE2109), and
10 proteome profiles (ProteomeXchange database). We integrated each omics data profile
into Recon3D by each individual integration approach, leading to a total of 3740 CGEMs
(Figure 2).
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3.2. Evaluation of the Quality of a Context-Specific Model of Cancer

MEMOTE is a standardized means of quality control for newly reconstructed GEMs [45].
However, the most effective way for testing the quality of context-specific models is assess-
ing the model functionalities. There are a limited number of ways in which the functionalities
of GEMs can be tested, e.g., prediction of the growth rate [46]. Due to the lack of an accurate
human objective function [47] and sufficient experimental data to be compared with CGEM
results, the objective function-related functionalities of GEMs were not included in this
study. Therefore, we made specific indices consisting of metabolic and gene set hallmarks
of cancers to evaluate the quality of CGEMs.

3.2.1. Assessment of Metabolic Hallmarks of Cancer in all CGEMs

We started our study with the Warburg effect phenotype as a prominent hallmark
of all cancers. We used two specific indices of metabolic hallmarks of cancer to quantify
the Warburg effect: the ratio of glycolytic to oxidative ATP flux (i.e., AFR score) and the
ratio of extracellular acidification rate (ECAR, a proxy of lactate secretion) to the oxygen
consumption rate (i.e., EOR score). Both scores correlate significantly with migration rates,
however, AFR has more predictive power than the EOR score [20]. Our results show that all
CGEMs have a positive value for AFR and negative for EOR that are in a good agreement
with the metabolic behavior of any cancer [35]. Conceivably, the CGEMs generated with the
iMAT algorithm are not able to accurately predict the EOR score for the NCI-60 proteome
cell line and all patients’ omics data (Table 3). Although AFR and EOR scores have various
values in different CGEMs, we noticed that higher AFR values denote more Warburg
phenotype cancer cells [20]. Interestingly, it has been recently proposed that ATP plays a
major role in the fitness of Warburg cells in their variable microenvironment [48].

Table 3. The mean of AFR and EOR scores in all CGEMs. AFR and EOR are two indices to quantify
Warburg effect in CGEMs.

GIMME iMAT INIT FASTCORE

AFR EOR AFR EOR AFR EOR AFR EOR

HPA 1.00 −0.31 1.03 −0.05 1.00 −0.44 1.32 −0.14
EMTAB-37 1.00 −0.44 1.11 −0.31 1.17 −0.06 1.62 −0.52

NCI−60 1.00 −0.76 1.10 0.63 1.07 −0.41 1.65 −0.50
TCGA 1.00 −0.38 1.12 0.00 1.00 −0.22 17.40 −0.28

GSE2109 1.01 −0.48 1.33 0.06 1.20 −0.10 1.27 −0.21
PX 1.00 −0.55 2.54 0.18 1.08 −1.17 4.66 −0.39

3.2.2. Assessment of a Gene Set Hallmark of Cancer in all CGEMs

Then, we used a gene set hallmark of cancer to quantify and validate the cancerous
molecular signature of CGEMs. This gene set consists of a collection of 197 genes as cancer
biomarkers [36]. Among the whole set, 192 genes initially existed in Recon3D. Therefore,
we tested how likely this gene set is to be actuated in the generated CGEMs. Table 4
summarizes the percentage of activated gene signatures in different constructed CGEMs.
Almost all models have nearly 80–90% of activated cancer genes, however, iMAT- and
FASTCORE-based CGEMs poorly (less than 80%) predicted this determined index. On
the other hand, GIMME- and INIT-based CGEMs contain the largest amount (93%) of the
activated cancer gene set (regardless of the integrated omics data). In addition, proteome-
based CGEMs (both cell lines and patient samples) show the highest variance of activated
genes, which means the data points are spread out from the mean and from one another
(Figure 3).
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Table 4. The percentage of activated cancer genes in CGEMs of different datasets and methods.

GIMME iMAT INIT FASTCORE

HPA 91.15 77.93 92.26 75.98
EMTAB-37 91.39 78.67 92.12 76.84

NCI-60 87.20 69.61 79.66 64.96
TCGA 92.69 76.84 93.11 73.85

GSE2109 91.90 80.31 92.55 77.38
PX 86.14 62.18 80.76 61.52
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3.3. Evaluation of the Impact of Integration Algorithms and Omics Data on the Behavior
of CGEMs

The four integration algorithms differ in assumptions and mathematical formulations
in using different gene expression datasets (in the form of microarray, RNA-seq, and
proteome data). The iMAT algorithm splits gene expression values into two groups: highly
and poorly expressed genes. It then maximizes the model consistency with the classification.
Similar to iMAT, the FASTCORE algorithm takes a core set of active reactions in the
context of interest as an input. In a different fashion, the GIMME algorithm minimizes the
utilization of inactive reactions, and INIT uses the relaxation strategy to prevent the removal
of reactions that have a small net accumulation rate. Regarding all the facts mentioned
about integration algorithms, we expected that GIMME and INIT would return CGEMs
with more reactions and genes including the signature of cancer phenotype. Additionally,
our results indicated that GIMME and INIT generated more consistent CGEMs (with less
variance in all three scores) (Tables 3 and 4).

In principle, we expected that proteome data should build more accurate CGEMs
than transcriptome data. However, we found no advantages of using proteomic data over
transcriptomic data, probably due to the smaller number of expressed genes detected by
proteome-based approaches. In contrast, microarray- and RNA-seq-generated CGEMs
showed no difference. On the other hand, proteome-based CGEMs (both cell lines and
patient samples) were less consistent (with high variance in all three scores) (Tables 3 and 4).

3.4. Characterization of Metabolic Pattern (FBA-Based Feature) in CGEMs

In addition to the evaluation of cancer hallmarks (Warburg scores and gene set hall-
marks) in CGEMs, we assessed the similarity of the metabolic patterns among CGEMs to
be able to understand the metabolic pattern that makes cancers of widely different types
unique. For this reason, we considered two aspects of a metabolic pattern: the active
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reactions (carrying flux) and the corresponding flux magnitude. The similarity of different
types of cancer was investigated by calculating the number of active reactions (carrying
flux reactions) using the Jaccard index, and by comparing the flux states (flux magnitude of
active reactions that are obtained by FBA) using Bland–Altman plots that will be elaborated
on in the next sections.

3.4.1. Number of Active Reactions (Carrying Flux Reactions)

The mean value of the Jaccard similarity index indicates the similarities among the
number of active reactions in the metabolic subsystems (Recon3D consists of 103 metabolic
subsystems) of CGEMs, as presented in Table 5. Figure 4 also represents the Jaccard
index variance distribution in all CGEMs. As we expected, GIMME and INIT show less
variance in the Jaccard similarity (models are more consistent), in contrast to the iMAT
and FASTCORE algorithms. That means, however, that the number of active reactions is
highly correlated with the applied integration method. From another point of view, the
number of active reactions correlated with the type of input data, meaning that proteome-
based CGEMs (both cell lines and patient samples) show the highest variance in our study.
Broadly speaking, the number of active reactions might be an appropriate indicator to
distinguish CGEMs or evaluate an integration approach.

Table 5. The mean value of Jaccard similarity index among the number of active reactions in the metabolic subsystems.
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3.4.2. Flux States of CGEMs (Magnitude Flux of Active Reactions)

In addition to the correlation of a number of active reactions between CGEMs, we also
evaluated another aspect of CGEMs, flux states (FBA-based feature). In other words, we
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took into account the combination of the active reaction and their associated magnitude.
Therefore, we leveraged the differences in metabolic flux states among all CGEMs in each
dataset–algorithm category to identify the main metabolic features of CGEMs.

3.5. Flux States Are an Appropriate Index to Distinguish CGEMs

In this section, we show the Bland–Altman approach used to find that flux states
of CGEMs are in agreement. A Bland–Altman plot quantifies the agreement between
two quantitative measurements by constructing the limits of agreement [49]. By using
the mean and standard deviation (SD) of the differences between two measurements, we
calculated statistical limits. Usually, the outcome is a scatter plot in which the difference of
the two paired measurements is plotted versus the mean of the two measurements. It was
suggested that 95% of the data points should lie within ±2SD of the mean difference.

Alternatively, it is also possible to plot the differences as percentages [50]. By using the
Bland–Altman plot, we answered the following questions: (i) is the discrepancy between
two CGEMs large enough to be important?; (ii) how wide are the limits of agreement?
If the limits are narrow, then the two flux states of CGEMs are essentially equivalent.
Thus, we did pairwise comparisons between any two CGEMs in each dataset–algorithm
category and among different datasets to investigate whether each CGEM has a distinct
flux fingerprint or CGEMs have the same flux pattern (i.e., two CGEMs are in agreement).
The Bland–Altman results show that the flux distributions of any two CGEMs are in
disagreement (Table 6). In one example (Figure 5), we depict the plot of differences in flux
distribution between skin melanoma and pancreas carcinoma (constructed by EMTAB-37–
GIMME), expressed as percentages of the values on the axis ((skin melanoma—pancreas
carcinoma)/mean%)), versus the mean of the two measurements. The lines of the 95%
confidence interval (CI) for the mean of differences and limits of agreement were drawn.
Taken together, these results are highly convincing that flux states are also an appropriate
index to distinguish CGEMs.

Table 6. The percentage of statistically significant disagreement among CGEM pairs in Bland–Altman
analysis (p-value < 0.05).

GIMME iMAT INIT FASTCORE

HPA 88.71 82.46 88.91 83.87
EMTAB-37 87.10 69.72 81.48 81.69

NCI-60 61.31 62.71 82.29 84.98
TCGA 88.44 83.65 90.27 83.01

GSE2109 84.05 77.91 89.16 85.54
PX 80.00 86.67 82.22 93.33

3.6. Are CGEMs Distinguishable Based on Their Flux States?

We then used principal component analysis (PCA) to make uncorrelated variables
concise and identify similarity amongst clusters in different samples. We could not find
a clear separation among CGEMs generated based on proteome data (regardless of the
integration methods) and CGEMs generated by FASTCORE (regardless of the omics data).
Table 7 shows the number of clusters determined by the first two PCs in which iMAT-based
CGEMs have fewer components than the two other approaches, GIMME and INIT. Our
analysis showed that PCA is not able to significantly reduce the predictors (reactions) with-
out compromising on explained variance. For example, as shown in Figure 6, a cumulative
variance plot for the HPA dataset using the GIMME method, nearly all 32 components are
required to explain the variance in the dataset.
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Figure 5. The Bland–Altman plot for flux states of skin melanoma GEM and pancreas carcinoma
GEM in EMTAB-37–GIMME method (hypothesis mean = 0 rejected by p-value < 0.0001).

Table 7. The number of clusters, which were determined by the first two principal components.

GIMME iMAT INIT FASTCORE

HPA 4 2 - 1
EMTAB-37 4 2 4 1

NCI-60 1 1 1 1
TCGA 4 2 4 1

GSE2109 4 2 4 1
PX - - 1 1
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3.7. Main FBA-Based Features to Distinguish CGEMs

Data science provides a plethora of classification algorithms such as logistic regression,
support vector machines, naïve Bayes classifiers, decision trees, and the RF classifier [51].
An enhanced version of reaction selection using RF was utilized in order to achieve the
best FBA-based feature to distinguish the metabolic pattern in CGEMs. Thus, RF returned
a selection of features for each dataset–algorithm CGEM, and we obtained the distinc-
tive features to distinguish CGEMs (we excluded proteome-based and FASTCORE-based
CGEMs for the RF analysis). Additionally, RF returned nothing for iMAT–EMTAB-37
and INIT–HPA. Figure 7 represents the subsystems of important feature selection re-
sults for all dataset–algorithm CGEMs. In fact, we found different features for each
dataset–algorithm (Figure 8). Although different datasets and different integration ap-
proaches (Figure 8) selected different flux fingerprints, extracellular transport and peptide
metabolism are common features in all CGEMs. In total, in EMTAB-37–GIMME, 15 reac-
tions in five different subsystems (triacylglycerol synthesis, exchange/demand reaction,
transport—extracellular, transport—peroxisomal, and transport—mitochondrial), and in
EMTAB-37–INIT, 16 reactions in eight different subsystems (exchange/demand reaction,
transport—extracellular, transport—mitochondrial, glutathione metabolism, fatty acid syn-
thesis, fatty acid oxidation, arginine and proline metabolism, and cholesterol metabolism),
show significant differences in the flux among the clusters. In GSE2109–GIMME, 16 reac-
tions in three different subsystems (exchange/demand reaction, transport—extracellular,
and peptide metabolism), in GSE2109–INIT, 15 reactions in seven different subsystems
(exchange/demand reaction, fatty acid synthesis, pentose phosphate pathway, transport—
extracellular, peptide metabolism, citric acid cycle, and nucleotide interconversion), and
in GSE2109–iMAT, 15 reactions in three different subsystems (exchange/demand reac-
tion, peptide metabolism, and transport—extracellular), show significant differences in
the flux among the clusters. In HPA–GIMME, 15 reactions in three different subsys-
tems (exchange/demand reaction, peptide metabolism, and transport—extracellular) and
in HPA–iMAT, 15 reactions in three different subsystems (exchange/demand reaction,
peptide metabolism, and transport—extracellular), show significant differences in the
flux among the clusters. In TCGA–GIMME, 15 reactions in five different subsystems
(transport—extracellular, exchange/demand reaction, glycerophospholipid metabolism,
peptide metabolism, and vitamin A metabolism), in TCGA–INIT, 15 reactions in five differ-
ent subsystems (transport—extracellular, fatty acid synthesis, exchange/demand reaction,
peptide metabolism, and pentose phosphate pathway), and in TCGA–iMAT, 15 reactions in
three different subsystems (transport—extracellular, exchange/demand reaction, and pep-
tide metabolism), show significant differences in the flux among the clusters. Interestingly,
our results show that the main features (regardless of data source and extraction algorithms)
to distinguish CGEMs are extracellular transport, peptide metabolism, fatty acid synthesis,
vitamin A metabolism, mitochondrial transporters, and the pentose phosphate pathway.

3.8. Development of the GEMbench Interactive Website

We believe that static figures do not give sufficient access to the data. Thus, we built a
website that allows users to explore our findings using interactive visualizations. Apart
from the landing page, the website consists of three main pages describing (i) the data we
obtained, (ii) the integration methods we used, and (iii) the findings we observed, and parts
of it are depicted in Figure 9. On the findings page of the website, our validation results can
be comprehended interactively. We dynamically visualized the data using boxplots accord-
ing to the five different metrics, as explained above (top to bottom: AFR, EOR, hallmark,
Bland–Altman, and Jaccard index). The boxplots are indicated on the left-hand side of
Figure 9. The non-linear scales of the y-axes in the figure on the webpage are dynamically
scaled to zoom into dense areas of high or low values (we removed most tick marks in
Figure 9 and increased the font size of the remaining labels to improve readability).
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Every plot contains six groups of boxplots (representing the underlying data A–F, as
indicated by the slightly different background colors), every group consist of four boxplots
representing the applied integration methods (1–4: green, blue, purple, and orange).

On the website, the boxes and the outliers can be hovered over to get more information
about the data, or a boxplot can be clicked to explore the outliers in a modal window. Our
results of the cluster analyses can be explored when selecting the clusterability metric on
the findings page, indicated on the right-hand side of Figure 9. It initially displays our PCA
results of the different integration methods (vertically 1–4) and data samples (horizontally
A–F). Every scatter plot categorizes the corresponding data/method samples according
to the first two principal components. If we were able to distinguish clusters, we ran an
RF analysis and analyzed which cellular processes contributed to the differentiation of the
samples (as shown in the heatmap at the bottom of Figure 9).
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Based on the results of the RF, we determined which cellular subsystems were affected
by the corresponding processes and found 16 subsystems to be major targets of changes.
Based on that insight, we developed colored barcodes as shown below each PCA plot.
Every barcode represents a cellular subsystem. If a barcode is colored, a process of the
corresponding subsystem shows a different expression between the clusters of data. The
bigger the colored section, the more processes of the subsystem are affected. As not
all data/method combinations expressed proper clusters, we were not able to identify
differentially expressed processes and, thus, not all PCA plots have a barcode. On the
website, the barcodes are clickable and reveal more details of the RF results.

3.9. Limitations

Drawing conclusions from metabolic heterogeneity in different types of cancers and
identifying cancer-specific metabolic signatures should be a much more precise and high-
resolution process than finding FBA-based features using PCA and RF. This prediction
is not entirely definitive to find metabolic signatures of cancers. Complementary and
supplementary approaches can reinforce the results.

4. Discussion

Cancer is one of the most complicated diseases with multiple aggressive phenotypes
and shows heterogeneity and diversity in the underlying (epi)genetic alteration, gene
expression, and metabolic pattern. In spite of many systematic investigations of the
genome, epigenome, and transcriptome patterns of the cancerization process [52], the
metabolome profile of all cancers (similarity and differences amongst all types of cancer)
has not been fully studied and there has not been a comprehensive study to systematically
assess the metabolic pattern of the cancerization process from the early stage to metastasis
of disease.

In our current study, we employed ML approaches to study the theoretical landscape
of cancer metabolism, i.e., to determine the best FBA-based feature for cancer stratifi-
cation. Additionally, we benchmarked context-specific models of cancer metabolism,
which can let researchers to choose the proper integration methods and omics data for
generating CGEMs.

In a first step, we evaluated the influence of different omics data and extraction algo-
rithms in the development of cancer models. By measuring and analyzing two Warburg
scores (AFR and EOR) and a cancer gene dataset of all 3740 generated CGEMs, we demon-
strated that all approaches (regardless of platform and extraction methods) are able to
generate a CGEM. Amongst the omics data, proteome-based CGEM measurements, and
amongst the algorithms, iMAT and FASTCORE, showed less accuracy in CGEMs. The
lower accuracy of proteome data may be due to the smaller number of expressed genes
detected by proteomic-based approaches.

There are several hypotheses about the metabolic hallmarks of cancers. In this study, we
specifically investigated whether the similar metabolic pattern represents these hallmarks of
cancers with a focus on the Warburg effect as an example of these metabolic phenotypes.

In a second step, we were further motivated to discover the metabolic patterns in
CGEMs and highlight the FBA-based features that might distinguish the CGEMs. These
analyses lead us to a critical view of cancer metabolism, which may pave the way for
personalized cancer treatment. In fact, assessment of heterogeneity in the metabolic pattern
of cancers underlines the requirement for personalized medicine for cancer treatment.

Accordingly, we assessed the metabolic pattern from two perspectives, i.e., the number
of activated reactions and the FBA-based features of CGEMs. Our results show that the
number of activated reactions might be a suitable feature for CGEM comparison and
evaluation. On the other hand, the flux states of CGEMs are also an appropriate alternative
framework to distinguish CGEMs.

Although, according to the central dogma that different biological layers should
be correlated with each other (level of transcripts and proteins with enzyme activities),
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numerous published studies did not confirm this fact [53]. Nonetheless, the flux states of a
biological system as a last informative layer of the central dogma (that is a representative of
enzyme activity) could be the most informative layer. Consequently, by running FBA, we
obtained the flux distribution of cancer models and, by Bland–Altman analyses, we found
that the flux states of each cancer model are like a metabolic fingerprint of the cancer that
cannot be used interchangeably. Afterwards, we sought the proper method to cluster the
FBA-based features and utilized PCA-based dimensionality reduction and random forest
approaches to reveal the most influential flux containing the most relevant information.

Various experimental studies investigated the heterogeneity of metabolic pattern and
suggested several mechanisms for the underlying metabolic alterations across cancers.
In one of the most recent studies, Reznik et al. [4] suggested the recurrent patterns of
differentially abundant metabolites across cancer types. In another investigation, it has
been demonstrated that disturbance in vitamin A metabolism [54] and mitochondrial
dysfunction [55] likewise seem to be important characteristics of cancers.

Interestingly, we discovered that extracellular transport, peptide metabolism, fatty acid
synthesis, vitamin A metabolism, mitochondrial transporters, and the pentose phosphate
pathway are probably the main candidates for cancer heterogeneity and stratification,
which is in good agreement with previous findings. In fact, these pathways and subsystems
not only enable us to distinguish between cancer cells and normal counterparts, but also
provide the different metabolic patterns in cancers.

Conclusively, this study suggests that GIMME and INIT algorithms as well as mi-
croarray and RNA-seq datasets might be better suited dataset–algorithm combinations for
the reconstruction of context-specific models of cancers. Moreover, the Warburg effect is
the consequence of different metabolic patterns of cancers. We believe that these results
have the potential to further establish a new discovery approach in cancer metabolism
and personalized medicine and may address an unmet need for precision treatments of
cancer patients.

5. Conclusions

Altogether, this study suggested that the differences in the flux profiles of cancers
is nearly unique and could act as a cancer metabolic fingerprint. Indeed, the hetero-
geneity in the metabolic pattern for cancers contributes to better cancer stratification and
personalized treatment.
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