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Abstract: Mucinous cystic neoplasms (MCN) and serous cystic neoplasms (SCN) account for a large
portion of solitary pancreatic cystic neoplasms (PCN). In this study we implemented a convolutional
neural network (CNN) model using ResNet50 to differentiate between MCN and SCN. The training
data were collected retrospectively from 59 MCN and 49 SCN patients from two different hospitals.
Data augmentation was used to enhance the size and quality of training datasets. Fine-tuning training
approaches were utilized by adopting the pre-trained model from transfer learning while training
selected layers. Testing of the network was conducted by varying the endoscopic ultrasonography
(EUS) image sizes and positions to evaluate the network performance for differentiation. The
proposed network model achieved up to 82.75% accuracy and a 0.88 (95% CI: 0.817-0.930) area under
curve (AUC) score. The performance of the implemented deep learning networks in decision-making
using only EUS images is comparable to that of traditional manual decision-making using EUS
images along with supporting clinical information. Gradient-weighted class activation mapping
(Grad-CAM) confirmed that the network model learned the features from the cyst region accurately.
This study proves the feasibility of diagnosing MCN and SCN using a deep learning network model.
Further improvement using more datasets is needed.

Keywords: endoscopic ultrasonography; mucinous cystic neoplasm; serous cystic neoplasm; deep
learning; convolutional neural network; pancreatic cystic neoplasms; diagnostic imaging

1. Introduction

Endoscopic ultrasonography (EUS) is used for diagnosing pancreatic cystic neoplasms
(PCN) such as intraductal papillary mucinous neoplasm (IPMN), mucinous cystic neoplasm
(MCN), serous cystic neoplasm (SCN), and other cystic cases [1-7]. As the spectrum of PCN
varies widely from benign to malignant, the accurate diagnosis of PCN is required. While
MCN has the potential to develop into a malignancy needing early surgical resection, SCN
involves a relatively small risk of malignancy [1,2,5,7-13]. Thus, it is critical to determine
whether a cyst is MCN or SCN [1,9,13,14], which can be categorized as mucinous and
non-mucinous cysts, respectively [1,6,7,10].

The diagnosis of MCN and SCN is challenging because of the lack of criteria for
differentiation [1,2,6,10,12,14,15]. Nagashio et al. [6] utilized fluid markers such as the
carcinoembryonic antigens (CEA), carbohydrate antigens (CA 19-9 and CA 125), amylase,
as well as cytology to classify different pancreatic lesions and to differentiate between
malignant and benign lesions. The study showed that the combination of fluid markers is
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useful for differentiation between mucinous and non-mucinous lesions with an accuracy
of 77.8%. Gaddam et al. [7] also tried to find the optimal cutoff value for the CEA level
to diagnose between mucinous and non-mucinous cystic lesions, and the result from
the study could reach an AUC around 0.77. Pérez et al. [5] investigated the impact of
molecular analysis for PCN classification by analyzing the combination of morphological,
cytological, and biochemical analysis to differentiate between mucinous and non-mucinous
PCNs. Their study showed that molecular analysis was effective for the differentiation of
mucinous cysts from non-mucinous cysts. Wang Y. et al. [9] classified MCN and SCN by
investigating the alterations of glycopatterns in cystic fluids and demonstrated that the
variation in glycopatterns and glycoproteins are associated with the differences between
MCN and SCN. Biomarkers can be good indicators in the diagnosis but have limitations if
used alone.

Various imaging modalities such as endoscopic ultrasound (EUS), magnetic resonance
imaging (MRI), computed tomography (CT), and positron emission tomography (PET)
are used for visual diagnosis of MCN and SCN [1,3-5,7,10,12]. Wang G. et al. [13] pro-
posed a method to differentiate PCNs by combining the observations from PET/CT with
multiparametric analysis such as the maximum and mean of standardized uptake values,
metabolic tumor volume (MTV), and total lesion glycolysis (TLG). Their study achieved an
AUC up to 0.810. Diagnosis using imaging modalities mainly relies on visual observations
and biopsies. Among the imaging modalities, EUS has the advantage of capturing internal
structures [1,4,12,16] and can be combined with a biopsy by using fine-needle aspiration
(FNA) [3,10]. Koker et al. [17] performed the EUS-FNA to investigate the effectiveness
of CEA level for differentiating low risk IPMN from low risk MCN. The study achieved
an AUC around 0.930 for differentiating between low risk IPMN and low risk MCN.
Zhang et al. [1] suggested certain criteria based on the visual features of pancreatic cysts
in EUS images such as honeycomb cysts, latticed cysts, and round shaped cysts featuring
nodules and calcification. In addition to the visual information, the carcinoembryonic
antigen (CEA) level analyzed from cyst fluid was utilized. These criteria helped achieve
82.93% accuracy. Kubo et al. [2] also reported features to diagnose PCN in the EUS images,
which were microcystic areas, mural nodules, the number of cystic formations, locularity,
and the cystic component. Despite providing pathological information for the diagnosis
of cysts, EUS with FNA has some safety concerns as it can lead to severe outcomes for
non-mucinous cases, such as peritoneal dissemination or gastric seeding due to the leakage
of cyst fluid [18,19].

Using deep learning techniques such as convolutional neural networks (CNNs), compli-
cated features that are unrecognizable to human vision can be extracted. Thus, deep learning
technology is widely used in classification tasks in the medical imaging field [14-16,20-22].
Kurita et al. [15] investigated the feasibility of neural network models for differentiating
between malignant and benign pancreatic lesions by utilizing the carcinoembryonic anti-
gen (CEA), cytology, and other clinical information, and showed an accuracy of 92.9%.
Kuwahara et al. [20] used the CNN model to diagnose benign and malignant cases of
IPMN by utilizing EUS images of PCN lesions, and achieved 86.2% accuracy.

The recent studies have proven that the deep learning techniques can be applied to
diagnosis of pancreatic disease. Thus far, to the best of our knowledge, no study has been
conducted on the classification of MCN and SCN from EUS images using CNN models. In
this study, we aim to implement CNN models to differentiate between MCN and SCN from
EUS images of the pancreas. The performance of the CNN model for this classification is
thoroughly evaluated.

2. Materials and Methods
2.1. EUS Data
2.1.1. Data Acquisition

All procedures were performed between December 2010 and December 2020 at the
endoscopic center of Inha University Hospital and Asan Medical Center. An ultrasound
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scanning system (SSD 5500, 5 and 10; Aloka, Tokyo, Japan) with linear (GF-UCT 240;
Olympus Optical corp. Ltd., Tokyo, Japan) and radial (GF-UE 260; Olympus Optical
corp. Ltd., Tokyo, Japan) echoendoscopes was used. The examination was conducted
by endosonographers with at least five years of experience. Endosonographers at two
separate sites independently acquired and completed the analysis of the EUS images. The
clinical data were analyzed for image findings and pathological diagnosis of the patients.
To validate the diagnosis of unclear cases, FNA or histology analysis through surgery was
performed and 44% of the patients experienced this additional level of diagnosis. This
study was reviewed and approved by the Institutional Review Boards of Inha University
Hospital (2020-05-002) and of Asan Medical Center (2020-1290-0001).

The EUS data were acquired from 47 MCN and 31 SCN patients at the 1st hospital
and 13 MCN and 18 SCN patients at the 2nd hospital. The characteristics of the patients
and lesions for this study are summarized in Table 1. Figure 1 shows a sample of histology
images for MCN (Figure 1A) and SCN (Figure 1B) cases.

Table 1. Patient and lesion characteristics. (MCN: mucinous cystic neoplasm, SCN: serous cystic neoplasm).

Gender (Male/Female) 38/71
Mean age, years (range) 60 (19-88)
Average cyst size, mm (range) 27.5 (4-75)

Locularity (monolocular/multicystic) 51/58
Cyst location (head /body/tail) 55/20/37

Histology (MCN/SCN) 18/26

FNA (MCN/SCN) 3/2

Recorded year (range) 2010-2020

(A)

Figure 1. Histology images (200x) for (A) mucinous cystic neoplasm and (B) serous cystic neo-
plasm cases.

2.1.2. Data Preparation and Preprocessing

Figure 2 illustrates the data preparation and preprocessing procedure for this study.
From each patient’s data (out of 109 patients), 1-4 EUS images were extracted. For MCN
and SCN cases, 130 and 81 images, respectively, were selected. The region surrounding the
cysts in the EUS image was selected as the region of interest (ROI). Unnecessary regions
including the metadata information and the circular hollow region (radial EUS probe) or
semicircular hollow region (linear EUS probe) were excluded from the ROL. For the test
data of the CNN model, two types of ROI selections were made to check whether the
performance of the network model was affected by the ROI selection. The first type of ROI
was selected in an aspect ratio of 1:1 (i.e., a square); this type of ROI selection is denoted
as single-ROI. Another type of ROI selection involved varying the size and aspect ratio of
four different ROISs; this type of ROI selection is denoted by multi-ROL. In order to validate
the proposed model without bias, we performed the hold out validation three times. From
each group, 10 different patients were selected for each class (i.e., MCN and SCN) while
the rest of the data were used as training data, as shown in Figure 3.
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Figure 2. Diagram of data preparation and preprocessing. There were 109 patients, including

60 mucinous cystic neoplasm (MCN) patients and 49 serous cystic neoplasm (SCN) patients providing
130 and 81 endoscopic ultrasonography images for MCN and SCN, respectively.

MCN
|| 50 Patients | |
[Copetiens | R 0 patients ]
I| 20 Patients || 30 Patients ||

SCN
|| 39 Patients ||
[Coretens | I 25 patients ]
[l 20 Patients | 1oPatients || 19 Patients |

I esting Data
[ Training Data

Figure 3. Three groups of holdout validation. Ten patients were selected from each class for testing
and the rest were used to provide training data.

2.1.3. Data Augmentation for Training Data

Data augmentation was used to increase the amount of training data and further help
the generalization of the network decision. The augmentation techniques used in this study
are flip, rotation, translation, zoom in, zoom out, adding Gaussian noise, and perspective
transformation [23]. Perspective transformation was utilized to simulate the deformation
of the cyst in the EUS image.

Data augmentation for the training data is illustrated in Figure 4. Examples of the
augmentation process are shown in Figure 5. The augmentation process starts from a
grayscale EUS image and is followed by rotation and random perspective transformation.
Then, ROIs in arbitrary rectangular shapes were selected manually as shown in Figure 5B.
Selected ROIs were flipped after Gaussian noise was added. Finally, each ROI was resized
to act as the input of the CNN model (i.e.,, 244 x 244 in this study). Intensities were
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normalized in the range of (0, 1). The examples of the augmented ROIs are shown in
Figure 5C. Given that the EUS image was in grayscale, the grayscale images were repeated
for the three-color channels of the input for the CNN model.

N

Perspective ROI
transformation selection

Gaussian
noise

Resize and
normalization

Save ROI

Figure 4. Data augmentation process for training data. Y and N represent the decision as to whether
ROI can be selected, noise is added, and flipping is applied.

Figure 5. Examples of data augmentation for training data. (A) Original EUS image, (B) image
after perspective transformation, (C) selected ROIs. The yellow circle in (B) represents the circular
or semicircular hollow region owing to the EUS probe, while the dotted square in (B) represents
examples of ROI selection.

2.2. Deep Learning Approach
2.2.1. Deep Learning Network Architecture

The CNN model used in this study was Resnet-50 [24], which consists of four main
blocks (Figure 6). Each block contains several convolutional operations as shown in
Figure 6. Resnet introduced residual learning by using a skip connection technique to over-
come the vanishing and exploding gradient problem during the training of the deep layer.

Owing to the limited training data size, the transfer learning technique was employed
instead of training from scratch [21,22,25-27]. The idea of transfer learning is to reuse the
trained weights learned from a similar task. There are several fine-tuning strategies in
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transfer learning, including determining whether to freeze or to train the selected layers [27].
The level of fine-tuning in transfer learning can be decided based on the similarity between
the pre-training task and the target task and also the characteristics of the data to be
utilized. In this study, the weights pre-trained on the ImageNet data, which consists of
approximately 15 million labeled high-resolution natural images, were utilized. As the
characteristics of EUS data differ from those of ImageNet data, two fine-tuning approaches
with transfer learning were employed as shown in Figure 6. First, the fully connected layer
(2048 x 2) was trained, followed by a softmax layer (Figure 6A). This approach is denoted
by Resnet-FC, which utilizes most of the features from the pre-trained weight. Another
fine-tuning approach was implemented by freezing the first three stages in the feature
selection part while the remaining stages were trained (Figure 6B), which is denoted by
ResNet-Conv+FC. This keeps low level features from the pre-trained weight but extracts
high level features and classifiers from the EUS data. Both ResNet-FC and ResNet-Conv+FC
were trained using the hyperparameters listed in Table 2. They were trained and tested
using an Intel® Core™ i7-9700 CPU @ 3.00 GHz processor, a CUDA-enabled Nvidia GTX
1660 Ti graphical processing unit (GPU), and Python 3.8 and PyTorch 1.7.1.

Table 2. Hyperparameters for the training.

Number of Epochs 50
Batch size 32
Learning rate 1x107°
Optimizer Adam (weight decay 1 x 107%)

Loss function Cross entropy

ResNet-FC

M
I— —I

1

1
iAverage SoftMax ! SCN
! pooling
1
1
1
1
1

CN

7 x 7 conv, 64
1x1 cony, 64
3 x 3 cony, 64
1x 1 cony, 256
1x1cony, 128
3 x 3 cony, 128
1 x 1 cony, 256
3 x 3 cony, 256
1x1 cony, 1024
1x1 cony, 512
3 x 3 cony, 512
1 x 1 cony, 2048

e

FC (A)

ResNet-Conv+FC

Average M softMax | SCN
pooling

_____________________________

-I —
Max
pooling

MCN

7 x 7 conv, 64
1x1conv, 64
3 x 3 cony, 64
1 x 1 cony, 256
1x1cony, 128
3 x 3 cony, 128
1x1cony, 512
1 x 1 conv, 256
3 x 3 cony, 256
1 x 1 conv, 1024
1x1cony, 512
3 x 3 cony, 512
1 x 1 cony, 2048

ImageNet pre-trained weight

FC (B)

Figure 6. Training approach for (A) ResNet-FC, (B) ResNet-Conv+FC utilizing ResNet-50. (ROI:
region of interest, FC: fully connected layer, MCN: mucinous cystic neoplasm, SCN: serous cystic
neoplasm, (X N): N times block repetition).

2.2.2. Grad-CAM

Although a deep learning network can be trained to classify the EUS images by
differentiating MCN and SCN, it is hard to clarify how the decision was made. In this study,
gradient-weighted class activation mapping (Grad-CAM) [22,28] was used to generate a
heatmap visualizing the region or feature that played an important role in making decisions
from any k-th feature in the network.
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The Grad-CAM map LCGr d—cAym €an be obtained as follows: first, compute oc,'é, ie.,
the neuron importance weights, by giving an input image to the network to obtain the
score ¢ of a specific class C, which is either MCN or SCN in this study, as specified in
Equation (1). The gradient of all other classes is set to 0, whereas the target class C is set
to 1. The gradient is then calculated via the backpropagation that flows to the k-th-feature
map AX over i (width) and j (height) while Z is the number of pixels in A. Finally, we
can obtain the L¢, ;-4 by @ weighted combination of A and oy, followed by a ReLU
activation function as shown in Equation (2).
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25

LG, pi—cam = Relu (Z:rxchk) ) )
k

In this study, Grad-CAM from the last convolution layer was calculated by
Equations (1) and (2).

2.3. Statistical Analyses

An Anderson-Darling test and a paired t-test were used to compare the accuracy,
sensitivity, and specificity between each group of holdout validation, and to compare the
metrics between the two fine-tuning approaches as classifiers, respectively. Statistical differ-
ences between AUC values were defined using two-sided DeLong tests, with p-value < 0.05
as the statistically significant level.

3. Results and Evaluation
3.1. Deep Learning Network Training

Figure 7 shows the learning curves during training for both fine-tuning approaches.
For the first 50 epochs of the training, the mean training losses of the three groups for the
ResNet-FC (Figure 7A) was 0.57 while that of the ResNet-Conv+FC (Figure 7B) was 0.32.
For Res-Net-FC, the learning curve reached a stable point after 150 epochs but the loss
was still higher than 0.55. Thus, the training learning curve shows that the network can be
trained successfully with ResNet-Conv+FC.

ResNet-FC Training Loss ResNet-Conv+FC Training Loss
0.7r
—— Group #1 — Group #1
— — = Group #2 | — — = Group #2
e Group #3 +  Group #3

0.6r

Loss

0.5r

0.4r

it e

0 10

20 30 40 50 0 10 20 30 40 50
Epoch Epoch

(A) (B)

Figure 7. Training loss from three groups for (A) ResNet-FC and (B) ResNet-Conv+FC.
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3.2. Evaluation of the Network Model

Metrics such as accuracy, sensitivity, specificity, and AUC score taken from the re-
ceiver operating characteristic (ROC) were used to evaluate the performance of the net-
work. Figure 8 illustrates the ROC curves of both fine-tuning approaches (solid line:
ResNet-Conv+FC and dotted line: ResNet-FC) for single-ROI (Figure 8A) and multi-ROI
(Figure 8B). The Anderson-Darling test confirmed that the calculated accuracy, sensitivity,
and specificity show normal distribution. Table 3 presents the performance of the two fine-
tuning approaches tested on single-ROI and multi-ROI data. Overall, ResNet-Conv+FC
achieved higher performance in terms of accuracy (by 20.47%, p = 0.0036), sensitivity (by
20.79%, p = 0.0045), specificity (by 21.06%, p = 0.0046), and AUC score (by 22.73%) compared
to ResNet-FC. The result shows that the classification performance of ResNet-Conv+FC is
significantly different (p < 0.05) and superior compared to that of ResNet-FC.

Single-ROI i Multi-ROI

09r

08

o
]

=
o

True Positive Rate
o [=}
S (4]

9
w

0.2

4 ‘ """ ResNstRC(AUCS0.679) oag™ /= ResNet-FC (AUC = 0.672)
’ ResNet:Conv+EC (AUC=0.880) ResNet-Conv+FC (AUC = 0.844)
0
01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
False Positive Rate False Positive Rate

Figure 8. (A) ROC curve from single-ROI testing data, (B) ROC curve from multi-ROI test data. ResNet-FC and ResNet-
Conv+FC were both observed for test data. (ROC: receiver operating characteristic, ROI: region of interest, Resnet-FC:
Figure 6A, ResNet-Conv+FC: Figure 6B).

Table 3. Model performance for single ROI test set and multi-ROI test set (Bold font: best results).

Test Set Fine-Tune Approach Accuracy  Sensitivity Specificity AUC (95% CI)
Single-ROI ResNet-FC 62.29% 60.67% 63.30% 0.68 (0.640-0.794)
ResNet-Conv+FC 82.76% 81.46% 84.36% 0.88 (0.817-0.930)
Multi-ROI ResNet-FC 62.56% 60.35% 64.14% 0.67 (0.631-0.711)
ResNet-Conv+FC 80.00% 76.06% 84.55% 0.84 (0.811-0.873)

3.3. Gradient Visualization (Grad-CAM)

Figure 9 shows the Grad-CAM mapping obtained from ResNet-Conv+FC. Figure 9A-C
are MCN cases (probabilities of the predicted class were 100%, 87.5%, and 59.8%, respec-
tively) while Figure 9D-F are SCN cases (probabilities of the predicted class were 100%,
100%, and 50.4%, respectively). The Grad-CAM mapping emphasizes the regions affecting
the decision the most from the network. Colors from blue (low) to red (high) in Grad-CAM
illustrate the degree of decision contribution from various regions. It confirms that the
network model learned the critical features for the classification. Although Figure 9C,F is
correctly predicted, the prediction probabilities were 59.8% and 50.4% for MCN and SCN,
respectively. Despite Grad-CAM mapping for Figure 9C,F showing high activation near
the cyst region, the shapes of the cyst are hard to differentiate; this affected the decision.
Although the network was trained without information about the position of the cysts, it
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was observed that the decision from the network model was made based on the features
learned from the cystic region.

24

-
=
_

B SCN: 50.4%

MCN: 100%

(A)

Figure 9. Grad-CAM mapping obtained using ResNet-Conv+FC. The upper row shows the selected ROIs from test images
and the lower row shows the corresponding Grad-CAM mappings. (A-C): mucinous cystic neoplasm and (D-F): serous
cystic neoplasm. Colors from blue to red in Grad-CAM illustrate the degree of decision contribution from various regions.

4. Discussion

In this study, we implemented a CNN model to differentiate between MCN and SCN
using EUS images. Overall accuracy was up to 82.76% and 80.00% from single-ROIs and
multi-ROIs, respectively. The classification errors from the implemented network model
mostly occurred in the confusing cases. It is known that the diagnosis of the macrocystic
SCN using EUS images is difficult even for experienced sonographers [29]. In spite of
the fact that the proposed model is not yet able achieve a level of histological diagnosis,
the performance of the current study reached the level of experienced endosonographers.
By utilizing the features in the images from the CNN model, the network model showed
comparable performance to that of Zhang et al. [1]. When their criteria with visual features
and additional information including the measured CEA level achieved the accuracy
of 82.93%.

There are several approaches to fine-tuning to train the network model [27], but
two fine-tuning approaches (ResNet-FC and ResNet-Conv+FC) were shown in this study.
Although it is not included in this paper, the full network was trained using initial pre-
trained weights and was also compared with various layers selected for training. However,
they all showed worse performance than the two fine-tuning approaches selected in this
study. Among the two selected fine-tuning approaches (Table 3), the network achieved
higher diagnosis performance by training selected top layers (ResNet-Conv+FC) compared
to the performance when the full pre-trained weights (Resnet-FC) were utilized.

Owing to the small amount of available data and varying number of samples for
each patient, holdout validation was employed to choose training and test data instead of
k-fold cross validation. In order to evaluate the reliability of the network, the multi-ROI
cases were employed. Varying the size and region of the ROI causes a slight decrease
in the overall accuracy. Considering that the EUS images were taken from two different
hospitals using various kinds of EUS imaging settings and clinical configurations (e.g.,
radial and linear echoendoscopes), however, the results in this study shows that our
approach can differentiate between MCN and SCN without dependency on the variations
of EUS imaging conditions.

Diagnosing various kinds of PCN remains a challenge owing to the lack of datasets and
exact criteria for differentiation. Typically, unilocular or multilocular cysts with variable
septations on an EUS image can be defined as MCN [30]. When a cyst has peripheral
calcifications or mucin content on EUS images, it is also categorized as MCN [30,31]. When
a cyst shows micro-cystic (<3 mm) honeycomb structures, it is classified as typical SCN [31].
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In addition, a cyst with a central scar can also be diagnosed as SCN [30,31]. The IPMN case
is especially complicated as it needs to consider surrounding tissues and has a high chance
of developing multiple cysts, which requires several EUS images to make the decision
rather than just a single image. Thus, further investigation is necessary to improve the
current network model to work with multiple input images to differentiate various kinds
of PCN cases. Owing to the scanning condition of the endoscopy, an EUS can have varying
distances from the surface of the imaging target and each imaging frame encounters huge
variations. Sequential frames in the EUS video can be utilized to overcome this issue. Only
two kinds of PCNs were diagnosed in this study because of the limitations of the dataset,
but the results in this study indicate the possibility of expanding the CNN model for the
differentiation of PCNs from EUS images. Although the performance of the network was
limited by the small amount of data in this study, the network will be further improved to
differentiate various kinds of PCN cases.

5. Conclusions

The implemented network provides reliable performance in differentiating between
MCN and SCN in terms of accuracy, sensitivity, and AUC score with verification from
Grad-cam mapping. In the future, we will further improve the network to differentiate
various kinds of PCN cases and also difficult cases using increased amounts of EUS images
and video data for the network training.
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