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Abstract: The valorization of agri-food by-products is essential from both economic and sustainability
perspectives. The large quantity of such materials causes problems for the environment; however,
they can also generate new valuable ingredients and products which promote beneficial effects on
human health. It is estimated that soybean production, the major oilseed crop worldwide, will leave
about 597 million metric tons of branches, leaves, pods, and roots on the ground post-harvesting
in 2020/21. An alternative for the use of soy-related by-products arises from the several bioactive
compounds found in this plant. Metabolomics studies have already identified isoflavonoids, saponins,
and organic and fatty acids, among other metabolites, in all soy organs. The present review aims to
show the application of metabolomics for identifying high-added-value compounds in underused
parts of the soy plant, listing the main bioactive metabolites identified up to now, as well as the
factors affecting their production.

Keywords: Glycine max; foodomics; agricultural waste

1. Introduction
1.1. Metabolomics Applied to Agri-Foods and Their By-Products

Plants have been used to produce food, feed, energy, biomaterials, and also as a source
of bioactive compounds. Metabolomics has emerged as one of the principal contributors
to enhancing the identification of these compounds, generating innovative discoveries
and supporting the development of novel products [1]. Progress in efficient extraction
techniques, such as ultrasound, microwave, and pulsed-electric-field-assisted extractions,
as well as supercritical fluid and pressurized liquid extractions, among others, generate ex-
tracts with a higher yield and bioactivity [2–6]. Once these extracts are generated, they can
be analyzed with one or more powerful chromatography and/or electrophoresis techniques
coupled to high-resolution mass spectrometry (MS) or nuclear magnetic resonance (NMR),
producing accurate chemical information on a vast number of compounds [7–12]. For
the identification of metabolites, databases have been increasingly updated, crosslinking
information from different libraries. Sorokina and Steinbeck [13] list almost one hundred
databases useful for natural product research. In addition, Global Natural Product Social
Molecular Networking (GNPS) and Small Molecule Accurate Recognition Technology
(SMART 2.0) are examples of bio-cheminformatics tools for the analysis of MS and NMR
data, respectively [14–16]. All these modern techniques and tools support the advancement
of metabolomics’ frontiers.

In 2019, 8.3 billion metric tons of cereals, oil crops, roots and tubers, sugar crops, and
vegetables were produced [17]. However, it is estimated that one-third of food production
is lost and wasted, and this problem is Target 12.3 of the 17 Sustainable Development Goals
(SDGs) set by the United Nations (UN) [18–20]. In this context, foodomics has shown the
potential not only of foods, but also of their related by-products, as sources of compounds
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with human health benefits (Figure 1) [21,22]. For example, Katsinas et al. [23] used su-
percritical carbon dioxide and pressurized liquid extractions to valorize olive pomace,
which is a by-product of the olive oil industry. As a result, they identified several phenolic
compounds and generated bioactive extracts. Assirati et al. [24] applied a metabolomics
approach in the chemical investigation of the three major solid sugarcane (Saccharum offici-
narum) by-products, leading to the identification of up to 111 metabolites in a single matrix,
with several of these compounds already known by their potent bioactive properties, such
as 1-octacosanol, octacosanal, orientin, and apigenin-6-C-glucosylrhamnoside. Terpenes of
orange (Citrus sinensis) juice by-products showed antioxidant and neuroprotective potential
in in vitro assays, as revealed by Sánchez-Martínez et al. [25]. As for the permeability of
the blood–brain barrier, some terpenes of orange extract demonstrated a high capacity to
cross this obstacle, which is a critical point for treating Alzheimer’s disease [25,26].
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1.2. Glycine max: More Than Beans

Soy, also known as soybean (Glycine max (L.) Merr.), is originally from China and
Eastern Asia [27]. It is the major oilseed crop worldwide, with a world production of 362,
254, and 61 million metric tons of soy grains, meal, and oil, respectively, in 2020/21. For
the same period, the global area harvested was 1.28 million km2, 2.5 times the area of
Spain [28,29]. Figure 2 shows soybean production from 2000/01 to 2020/21, demonstrating
consistent growth, with few moments of decrease [29,30]. However, this production
involves just one part of G. max: the beans. Krisnawati and Adie [31] analyzed 29 soybean
genotypes and found an average value of 1.65 for the straw:grain ratio in soy. Therefore,
it is estimated that about 597 million metric tons of soy branches, leaves, pods, and roots
will be left on the ground post-harvesting in 2020/21 [29,31]. Figure 3 shows the soil
of a no-tillage soybean production, a system which leaves all underused soy parts on
the ground. Keeping these materials on the soil contributes to mineral, organic matter,
and humidity factors [32]. In contrast, problems related to higher weed and disease
infestations, as well as greenhouse gas emissions caused by the decomposition of organic
matter, require alternative management of the agricultural straw [33–38]. By applying a
biorefinery approach, such by-products could be transformed into raw material for the
extraction of several bioactive compounds.

Inspired by the potential of underused soy parts, this review aims to show the applica-
tion of metabolomics in soy analysis, listing the potential of these by-products as a source
of high-added-value compounds, as well as the factors which affect their production.
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2. Metabolomics and Soy
An Overview

Soy has been recognized as a medicinal plant since it contains several bioactive
compounds in its various parts. For example, bioactive peptides found in soybeans have
been linked to human health benefits with potential anti-hypertensive, anti-cancer, and
anti-inflammatory properties [39]. Another type of bioactive compound identified in
soybeans, the anthocyanins, showed anti-obesity and anti- inflammatory properties [40].
Isoflavonoids, the best-known class of compounds found in all parts of soy, have been
studied due to their potential protective effects associated with chronic diseases, cancer,
osteoporosis, and menopausal symptoms [41–47].

Different factors modulate a plant’s metabolism, and metabolomics can measure
these variations qualitatively and quantitatively, analyzing the production and turnover
of primary and secondary (specialized) metabolites [48–50]. In soy, metabolomics studies
have identified four main causes of changes in metabolism: genetic modifications, organism
interactions, growth stages, and abiotic factors. Genetic modifications can be related to
different species and cultivar/variety of soybean. Lu et al. [51] investigated the metabolic
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changes between two soybean species (Glycine max and Glycine soja) under salt stress. Using
gas chromatography coupled to mass spectrometry (GC–MS) and liquid chromatography
coupled to Fourier transform and mass spectrometry (LC–FT/MS), the authors found
a higher content of hormones, reactive oxygen species, and other substances related to
the salt stress condition. In another study, Glycine max and Glycine gracilis presented
different profiles of secondary metabolites during the growth stage, as revealed by a 1H
NMR-based metabolomics approach [52]. The advancement of molecular biology provides
the development of a wide range of soybean cultivars or varieties, with new types of
plants resistant against insects, abiotic stress, and other factors. The United States Patent
and Trademark Office (USPTO) database reveals 4869 patents for a “soybean cultivar”
or “soybean variety” search [53]. Different colored soybeans, such as brown, yellow, or
black, present specific metabolite profiles [54–56]. Isoflavones could be the substrate for
the production of proanthocyanidin in the seed coat, being a possible cause for the brown
color of the cultivar Mallikong mutant [55]. Yang et al. [56] identified higher levels of
anthocyanin and protein in yellow cotyledon seeds of black soybean. In contrast, higher
levels of isoflavone, stearic acid, and polysaccharide are related to the green cotyledon
seeds of the same species. Two Korean soy cultivars, Sojeongja and Haepum, presented
different levels of soyasaponins Aa and Ab, whose production is related to specific gene
variations [57]. Another important factor in genetic modification is the transgenic soybean.
García-Villalba et al. [58] used capillary electrophoresis time-of-flight mass spectrometry
(CE-TOF-MS) to qualitatively and quantitatively measure the metabolites of transgenic
and non-transgenic soybeans. In summary, similar types and amounts of metabolites were
identified. The same result was achieved by Harrigan et al. [59] and Clarke et al. [60].
However, it is reported that transgenic soybeans were less affected by generational effects
and can present more secondary metabolites, such as prenylated isoflavones [61,62].

Moreover, the interaction between soy and microorganisms, nematodes, aphids, and
other insects causes distinct metabolic responses, and metabolomics is a unique approach
for understanding such changes, providing insights to improve soy’s response against
biotic factors [63–80]. Recent works used GNPS to identify metabolite variation in soy
infected by the fungus Phakopsora pachyrhizi and the nematode Aphelenchoides besseyi [78–80].
Both pathogens resulted in a higher production of bioactive compounds such as flavonoids,
isoflavonoids, and terpenoids.

Distinct metabolic responses have also been reported for each growth stage of soy-
bean [81–83]. During germination, 58 metabolites were reported in the separation of
soy sprouts, such as phytosterols, isoflavones, and soyasaponins [84]. The production of
secondary metabolites such as daidzein, genistein, and coumestrol also changed in the
vegetative and reproductive soybean stages, as described by Song et al. [85].

The presence of soybean crops in a wide range of latitudes and longitudes is a conse-
quence of several adaptive changes in their metabolism. Brazil, which is the major producer
of soybean, presents different soil and climate types; even so, there is soy production in
all its regions. This fact corroborates the high performance of soybean in several abiotic
conditions. In addition, treatments with fertilizers and other agricultural inputs have
been tested for the cultivation of soybeans in unfavorable conditions, causing additional
modifications in soy metabolism [86–94]. As an example of external treatments, ethylene
application on soybean leaves increased the genistin, daidzin, malonylgenistin, and mal-
onyldaidzin production [94]. Using two ionization methods, electrospray ionization (ESI)
and matrix-assisted laser desorption ionization (MALDI), coupled to Fourier transform
ion cyclotron resonance-mass spectrometry (FTICR-MS), Yilmaz et al. [95] analyzed the
metabolite profile of soy leaves from midsummer to autumn. They found a decreased
production of chlorophyll-related metabolites and a higher level of disaccharides from
summer to autumn. Another metabolomic approach analyzed soy leaves from crops with
different geographical localizations and identified different amounts of metabolites such as
pinitol and flavonoids [96]. An excellent review performed by Feng et al. [97] summarizes
the use of metabolomics in soy under abiotic stress.
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3. Bioactive Compounds in Underused Soy Parts

In addition to the four main causes of change in soy metabolism mentioned above,
both qualitative and quantitative metabolic variations among soy organs are expected.
To present an overview of the metabolite profile of underused soy parts, we selected
metabolomics and related works which used various approaches to analyze
them [38,67,78–80,93,94,98–108]. Using Jchem (JChem for Excel 21.1.0.787, ChemAxon
(https://www.chemaxon.com, accessed on 8 April 2021)) [109] and ClassyFire [110], we or-
ganized and classified the metabolites identified in soy roots, leaves, branches, and pods, as
presented in Supplementary Materials Tables S1–S4, respectively. Figure 4 summarizes the
best-known classes of bioactive compounds identified in underused soy parts. Carboxylic
acids and their derivatives, such as amino acids, peptides, and analogues, are the most
mentioned class of compounds. This class is mainly composed of primary metabolites;
however, it also contains several bioactive compounds. Similarly, organooxygen and fatty
acyl compounds include metabolites with human health benefits. Isoflavonoids, which are
the most mentioned class of secondary metabolites, as well as prenol lipids and flavonoids,
have been suggested to have a wide range of medicinal uses. Focusing on secondary
metabolites, prenol lipids are the most identified class of compounds in soy roots, with
several soyasaponins found in this part. In soy leaves, different subclasses of isoflavonoids
have been found, such as isoflavonoid O-glycosides, isoflavans, isoflav-2-enes, and others.
The metabolite profiles of soy branches and pods have been less studied; however, approxi-
mately 20 flavonoids and isoflavonoids have been identified in each part. Other classes
of compounds, such as steroids and steroid derivatives, coumarins and derivatives, and
cinnamic acids and derivatives, have been found in underused soy parts.
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Table 1 presents 38 isoflavonoids identified in one or more of the above-mentioned
underused soy parts. Eight of them (daidzein, genistein, glycitein, daidzin, genistin, glyc-
itin, malonyldaidzin, and malonylgenistin) were reported in all soy organs. Recent works
showed promising biological activities of daidzein against colon cancer and hepatitis C
virus [111,112]. Daidzin, which is a glyco-conjugate form of daidzein, presented therapeutic
properties against multiple myeloma and epilepsy [113,114]. Bioactivity studies regarding
the other aforementioned compounds also found properties against chronic vascular in-
flammation, human gastric cancer, breast cancer, and degenerative joint diseases [115–117].
Biochanin A, coumestrol, glyceollin, medicarpin, and ononin are more examples of widely

https://www.chemaxon.com
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known bioactive isoflavonoids which are found in different soy organs (see Table 1 for a
summary) [118–122]. Carneiro et al. [38] quantified six isoflavones in soy branches, leaves,
pods, and beans collected just after mechanical harvesting. Almost 3 kg of isoflavones were
found per metric ton of soy leaves. However, less than 1 kg per metric ton was found in
soy branches and pods. In soybeans, which are the main product of the soy plant, it was
approximately 2 kg per metric ton.

Table 1. Isoflavonoids identified in soy branches (B), leaves (L), pods (P), and roots (R).

Name Formula B L P R References

2′-hydroxydaidzein C15H10O5 X [80]
7,3′,4′-trihydroxyisoflavone C15H10O5 X [79]

7-O-methylluteone C21H20O6 X [78]
acetyl daidzin C22H22O9 X [104]
acetyl genistin C23H22O11 X X [94,104]
acetyl glycitin C24H24O11 X [104]

afrormosin 7-O-glucoside C23H24O10 X [80]
biochanin A C16H12O5 X [80]

biochanin A 7-O-D-glucoside C22H22O10 X [80]
biochanin A

7-O-glucoside-6′ ′-O-malonate C25H24O13 X [80]

calycosin C16H12O5 X [80]
coumestrol C15H8O5 X X [79,80,101]

daidzein C15H10O4 X X X X [38,78–80,94,98,101,103,104,106–108]
daidzin C21H20O9 X X X X [38,78–80,94,98,101,103,104,107,108]

formononetin C16H12O4 X [80,102]
formononetin 7-O-glucoside C22H22O9 X X [79,80]

formononetin
7-O-glucoside-6′ ′-malonate C25H24O12 X [78,80,94]

formononetin
7-O-glucoside-6-O-malonate C25H24O12 X X [78,79]

genistein C15H10O5 X X X X [38,79,94,98,104,108]
genistin C21H20O10 X X X X [38,78,79,94,101,104,107,108]

glyceollidin I/II C20H20O5 X [80]
glyceollin I C20H18O5 X [78,80]
glyceollin II C20H18O5 X [78,80]
glyceollin III C20H18O5 X [78,80]
glyceollin IV C21H22O5 X [80]
glyceollin VI C20H16O4 X [80]

glycitein C16H12O5 X X X X [38,80,98,104,108]
glycitein 7-O-glucoside C22H22O10 X [80]

glycitin C22H22O10 X X X X [38,79,101,104,108]
isotrifoliol C16H10O6 X [80]

malonyldaidzin C24H22O12 X X X X [38,78–80,94,101,103,104,107,108]
malonylgenistin C24H22O13 X X X X [78–80,94,101,104,107,108]
malonylglycitin C25H24O13 X X X [80,94,104,108]

medicarpin C16H14O4 X [80]
neobavaisoflavone C20H18O4 X X [78,79]

phaseollin C20H18O4 X [80]
pisatin C17H14O6 X [80]
sojagol C20H16O5 X [78,80]

3.1. Roots

Different compounds belonging to the prenol lipids category, which are recognized
by their bioactivity, have already been identified in soy. Table S1 contains 339 compounds
found in soy roots, of which 33 are of this class [79,93,98,101,103,106,108]. Tsuno et al. [108]
identified several soyasaponins, sapogenins, and isoflavones in soy root exudates. Soy-
asaponins have been linked to anti-obesity, anti-oxidative stress, and anti-inflammatory
properties, as well as preventive effects on hepatic triacylglycerol accumulation [123–126].
Omar et al. [127] identified the potent inhibitory effects of soyasapogenol A, which is a triter-
penoid, against p53-deficient aggressive malignancies. In addition, other compounds of
different classes, such as fatty acyls, isoflavonoids, flavonoids, and others, are presented in
Table S1. Linoleic acid, naringenin, and formononetin-7-O-glucoside, which are examples
of the aforementioned classes, have been related to cardiovascular health, neuroprotective
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effects, and anti-inflammatory properties [122,128,129]. The chemical structures of these
bioactive compounds are presented in Figure 5.
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Figure 5. Chemical structures of soyasapogenol A, linoleic acid, naringenin, and formononetin-7-O-glucoside, which are
examples of bioactive compounds identified in soy roots.

3.2. Leaves

Leaves and roots are the most-studied underused soy parts. In Table S2, 259 metabo-
lites of 32 classes identified in soy leaves are presented [38,78,80,94,98,101–103,106]. Almost
90 of these compounds are flavonoids, isoflavonoids, or prenol lipids. Widely known
bioactive flavonoids such as apigenin, kaempferol, rutin, and others were also identified.
Apigenin has been suggested as a potential anticancer agent [130]. Glyceollin I and soyas-
aponin I, an isoflavonoid and a prenol lipid, presented activities against breast cancer and
Parkinson’s disease, respectively [120,131]. Moreover, different soyasaponins and even
trigonelline, which is an alkaloid, were found in this part of the plant. For example, the
latter substance was reported to have potential for lung cancer therapy, memory function
recovery, and an anti-obesity effect [132–134]. Figure 6 shows the chemical structures of
the aforementioned metabolites.
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3.3. Branches

In soy branches, 197 compounds have already been identified, as presented in Ta-
ble S3 [38,67,98,99,101]. The most widely reported class among these metabolites is the
organooxygen compounds category (53 compounds), such as alcohols and polyols, car-
bohydrates and their conjugates, and carbonyl (Table S3). Shikimic acid, an example
of an organooxygen compound, was linked to therapeutic effects in osteoarthritis [135].
Metabolites of other classes, such as succinic and stearic acids, presented an apoptotic
effect in T-cell acute lymphoblastic leukemia and antifibrotic activity, respectively [136,137].
Flavonoids and isoflavonoids, such as 7,4′-dihydroxyflavone and glycitin, presented activ-
ity against lung diseases [138,139]. The chemical structures of these compounds are shown
in Figure 7.
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which are examples of bioactive compounds identified in soy branches.

3.4. Pods

Similarly to branches, there are few metabolomics works identifying pod metabo-
lites [38,98,100,104,105,107]. Amino acids, peptides, and mono-, di-, and tricarboxylic acids
and their derivatives are the most mentioned types of compounds in pods, as shown in
Table S4, with some of these substances already widely used in industry, such as citric and
fumaric acids. Moreover, specialized metabolites such as camphene and α-pinene, which
were also identified in soy pods, presented anti-skeletal muscle atrophy and neuroprotec-
tive effects, respectively [140,141]. Quercetin, which is a widely known flavonoid, may
be a potential anti-inflammatory treatment in patients with COVID-19, as described by
Saeedi-Boroujeni and Mahmoudian-Sani [142]. Hexadecanoic acid, a fatty acyl compound,
presented an inhibitory effect on HT-29 human colon cancer cells [143]. Figure 8 presents
the chemical structures of one compound of each class mentioned. In addition, fatty acyls,
flavonoids, isoflavonoids, and other classes of compounds were identified in pods, leading
to the 94 metabolites presented in Table S4.
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4. Bioactive Compounds in Industrial By-Products from Soybean Processing—An
Overview and Trends

Underused soy parts are not the only by-products of soy. Soybean is transformed
into different products, such as flour, oil, tofu, soy sauce, and soy milk, as presented in
Figure 9. These processes generate by-products with vast applications, and their use as
sources of bioactive compounds is an excellent opportunity to develop new ingredients
and products with health benefits. In addition, green extractions of such materials provide
more sustainable and valuable outcomes. Soy hull represents approximately 8% of the
bean and is one of the by-products generated by soy flour and oil production [144]. Using a
sustainable approach for valorizing soybean hull, Cabezudo et al. [145] optimized alkaline
hydrolysis for polyphenol extraction and tested a fermentation with Aspergillus oryzae and
α-amylase hydrolysis for the same purpose. In this work, phenolic acids, anthocyanins,
and isoflavones were identified by LC–MS, demonstrating the great potential of soy hull as
a source of antioxidant compounds. Soybean meal is a by-product of soy oil production.
The characterization of soybean meal demonstrated a higher antioxidant capacity and
content of total phenolics, flavonoids, and saponins than in unprocessed grains [146]. In
addition, different forms of isoflavones, such as β-glucosylated, malonyl glucosylated,
acetyl glucosylated, and aglycones, as well as three group B soyasaponins were identi-
fied. Alvarez et al. [147] optimized a green supercritical fluid extraction using CO2 and
ethanol to analyze soybean meal, resulting in extracts with antioxidant properties and a
higher content of phenols and flavonoids. Freitas et al. [148] also used green extraction
to obtain an aqueous extract of soy meal with a high inhibition of lipid peroxidation,
identifying 16 phenolics in the extract. Okara and soy whey, which are by-products of
soymilk and tofu production, have also been used as a source of bioactive compounds.
Nkurunziza et al. [149] extracted different isoflavone aglycones of okara using subcritical
water. In addition, Nile et al. [150] found a high level of isoflavones in okara, as well as
potential antioxidant, anti-inflammatory, and inhibitory enzyme activities. Liu et al. [151]
used foam fractionation and acidic hydrolysis to remove proteins from soy whey, gener-
ating extracts with a high level of isoflavone aglycones. Other uses for and information
about soy whey are described by Chua and Liu [152] and Davy and Vuong [153].
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Additionally, biotechnology advances produce new opportunities to develop fer-
mented soy products with more health benefits [154–157]. Furthermore, metabolomics con-
tributes to a better understanding of the biotransformation of bioactive compounds [158].
As a substrate for microorganisms, okara has been widely used in different fermented
modes [159–164]. Rhizopus oligosporus, Bacillus subtilis WX-17, and Eurotium cristatum were
used for okara fermentation, resulting in products with higher bioactivity, nutritional
composition, and anti-diabetic potential [159–164]. In addition, higher levels of phenolics,
flavonoids, and biotransformed substances were identified. The fermentation of other soy
by-products, such as meal, whey, and hull, has demonstrated vast potential for enhancing
the bioactivity of the final products [165–171].

5. Conclusions and Outlook

Soy is the major oilseed crop worldwide, and its large production generates a massive
amount of by-products. The presence of isoflavonoids, flavonoids, terpenes, and other
substances in soy branches or stems, leaves, pods, and roots, provides insights into the use
of these underused materials as a source of bioactive compounds. In contrast, challenges
for the valorization of such by-products remain. A multi-omics approach, as proposed by
foodomics, may reduce the gap between the crude parts of soy and the final ingredient
or product, increasing the safety and quality of all the processes and products involved.
Moreover, soy metabolomics studies have focused on specific organs as well as metabolic
modifications, resulting in an incomplete metabolite profile of all soy parts. In summary,
our review demonstrates the extensive use of metabolomics in soy research and how this
work provides new information for alternative uses of underused soy parts with more
added value. Interestingly, our work also shows that there are many (underused) soy
compounds that still need to be interrogated for their potential bioactivity and possible
health benefits.

In addition, more studies about the life-cycle assessment (LCA) of the soybean supply
chain are required to analyze potential problems related to the high amount of by-products
which are left on the ground post-harvest. Environmental problems such as soil and water
contamination could occur due to the presence of several bioactive compounds present
in such agricultural by-products. The use of green extraction and biotechnology could be
feasible alternatives for the re-use of these materials.
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