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Simple Summary: Up to 30% of oral cavity cancer patients with pathologically negative surgical
margins usually exhibit tumor recurrence. Early molecular alterations in the tumor-adjacent normal
tissues prior to the onset of cancer phenotype could be important to this event. Therefore, here we
aimed to evaluate the DNA methylation patterns of negative surgical margins as a prognostic factor
for tumor recurrence. Our results demonstrated that recurrent patients with negative histological
margins exhibit differential DNA methylation markers. These markers might be crucial for the
identification of individuals at higher risk of developing tumor recurrence and could be clinically
explored further to help in decreasing morbidity and improving survival rates of these patients.

Abstract: The identification of molecular markers in negative surgical margins of oral squamous
cell carcinoma (OSCC) might help in identifying residual molecular aberrations, and potentially
improve the prediction of prognosis. We performed an Infinium MethylationEPIC BeadChip array
on 32 negative surgical margins stratified based on the status of tumor recurrence in order to identify
recurrence-specific aberrant DNA methylation (DNAme) markers. We identified 2512 recurrence-
associated Differentially Methylated Positions (DMPs) and 392 Differentially Methylated Regions
(DMRs) which were enriched in cell signaling and cancer-related pathways. A set of 14-CpG markers
was able to discriminate recurrent and non-recurrent cases with high specificity and sensitivity
rates (AUC 0.98, p = 3 × 10−6; CI: 0.95–1). A risk score based on the 14-CpG marker panel was
applied, with cases classified within higher risk scores exhibiting poorer survival. The results
were replicated using tumor-adjacent normal HNSCC samples from The Cancer Genome Atlas
(TCGA). We identified residual DNAme aberrations in the negative surgical margins of OSCC
patients, which could be informative for patient management by improving therapeutic intervention.
This study proposes a novel DNAme-based 14-CpG marker panel as a promising predictor for tumor
recurrence, which might contribute to improved decision-making for the personalized treatment of
OSCC cases.

Keywords: DNA methylation markers; margins of excision; oral squamous cell carcinoma; tumor
recurrence
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1. Introduction

Head and neck squamous cell carcinoma (HNSCC) is a set of malignant epithelial
tumors located in the upper aerodigestive tract [1] and the 7th most frequent cancer
worldwide, with 931,931 new cases in 2020 [2]. The oral cavity is the main anatomical
site within the head and neck accounting for ~380,000 new cases and ~180,000 deaths in
2020 [2,3]. Oral squamous cell carcinoma (OSCC) is the most prevalent subtype and can
originate from the buccal mucosa, the floor of the mouth, tongue, alveolar ridges, palate,
and other regions in the oral cavity [3]. OSCC development is strongly associated with
lifestyle-related risk factors including smoking and alcohol consumption [4].

OSCC treatment normally involves surgical excision of tumors with adequate surgical
margins, followed by radiotherapy and/or chemotherapy [5,6]. Despite the different strate-
gies used and the advances in treatment, the 5-year overall survival rate for OSCC remains
around 50% [7,8]. One of the main reasons for treatment failure, together with the depth
and pattern of invasion of the tumor, is the development of loco-regional recurrences [9,10],
which accounts for approximately 15–35% of the cases [11,12]. Thus, obtaining tumor-free
margins at surgery is of paramount importance for decreasing the rates of local recurrence.
However, 10–30% of the patients with negative histological margins also exhibit loco-
regional recurrences, raising the possibility that the available methods may not be sensitive
enough to detect molecular alterations in the tumor surrounding tissue that may precede a
histological phenotype [9,13]. The presence of undetected cancerized normal-appearing
cells (cells with molecular aberrations) in the surgical margins contributes to increased local
recurrence rates and decreased overall survival [14–16]. Many studies attempted to identify
molecular markers of loco-regional recurrence from pre-operative or post-operative oral
brushing samples, but none of them exhibited consistent results with proper specificity
and sensitivity of the markers [17,18].

Previous studies have suggested the presence of epigenetic alterations in the mucosa
adjacent to the primary tumor, before the onset of cancer phenotype, due to which it is
usually not visible by pathological examination [13,14,19,20]. However, most of these
studies were limited to analyzing the promoter regions of genes related to carcinogenesis.
Hence, the comprehensive genome-wide analyses of DNA methylation (DNAme) profile
of negative surgical margins of OSCC might be able to contribute to a better understanding
of the recurrence patterns of these patients.

Therefore, we hypothesized that pathologically confirmed negative surgical margins
of OSCC cases may harbor aberrant DNAme that could be explored as potential targets
to predict tumor recurrence. To test this hypothesis, we performed DNA methylome
analysis on negative margin tissues from recurrent and non-recurrent OSCC cases. We then
replicated our results using normal adjacent to tumor (NAT) samples of HNSCC cases from
The Cancer Genome Atlas (TCGA) database. We found a set of 14 CpGs that could be used
to differentiate patients with a higher risk of developing local recurrences. This marker
panel could help to improve the prediction of prognosis in OSCC cases.

2. Materials and Methods
2.1. Patients

The discovery phase of this study included 32 patients surgically treated for primary
OSCC at the Department of Head and Neck Surgery of the Barretos Cancer Hospital (BCH),
Brazil, from 2007 to 2015. All patients had complete clinicopathological data available,
including local recurrence status. Tumor staging was determined based on the 7th edition
of the American Joint Committee on Cancer (AJCC) TNM classification system. Previously
untreated patients with primary OSCC submitted to surgery with curative intent and
confirmed negative surgical margin samples were the inclusion criteria. Patients were
excluded if they underwent neoadjuvant treatment or presented synchronous tumors.
In addition, patients submitted to an adjuvant treatment or with less than two years of
follow-up that did not develop local recurrence were excluded. The study was approved
by the BCH Research Ethics Committee under approval number 1121/2016.
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2.2. Sample Preparation for Methylome Profiling

The biospecimens analyzed in this study consisted of fresh-frozen histologically
negative surgical margins tissue from OSCC patients. At BCH, after OSCC excision,
the surgical specimen is routinely sent for anatomopathological evaluation of the tumor
tissue and surgical margins through the preparation of paraffin blocks and hematoxylin and
eosin (H&E) slides. For the purpose of this study, a fragment of the mucosal margin was
also sent for cryopreservation at the Biobank of the institution. According to the availability
of stored material, one cryopreserved mucosal margin fragment from each patient was
used. A new H&E slide prepared from the frozen mucosal margin was evaluated by an
experienced pathologist for confirmation and characterization of cellular components prior
to DNA isolation (Supplementary Figure S1). The average distance of the closest negative
margins from the tumor area was 6 mm. DNA extraction was automatically performed in
the QIAsymphony SP equipment (Qiagen, Hilden, Germany), following the manufacturer’s
instructions. Quantification of the samples was performed by fluorimetric assay, using the
Qubit dsDNA BR Assay Kit and Qubit Fluorometer 2.0 equipment (Invitrogen, Carlsbad,
CA, USA). The purity of the DNA was determined by optical density in NanoDrop 2000
(Thermo Fisher Scientific, Waltham, MA, USA). Samples with insufficient quantification
or quality were replaced. Then, 600 ng of DNA was bisulfite converted using the EZ
DNA Methylation Kit (Zymo Research, Irvine, CA, USA), according to the manufacturer’s
protocol [21]. The study design demonstrating the sample processing plan for DNAme
analysis is shown in Figure 1.
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Figure 1. Study design showing sample sources and processing scheme for DNAme analysis and identification of markers.

2.3. DNA Methylome Profiling

Bisulfite-converted samples were subjected to genome-wide DNAme profiling using
the Illumina MethylationEPIC BeadChip microarray (HM850K; Illumina, San Diego, CA,
USA) [21]. This array provides wide coverage across the genome, interrogating more than
850,000 CpG sites and allowing a comprehensive view of genome-wide DNAme patterns
of various genomic regions [22]. The array generates intensity data (IDAT) files containing
the raw intensity data values for every bead consisting of CpG probes defining the DNAme
status of every interrogated CpG site.

2.4. Data Pre-Processing and Normalization

The IDAT files generated from the HM850K arrays were used for the analysis. The pre-
processing and normalization were done using the “Funnorm” function present in minfi
Bioconductor package in R (version 3.6.3) [23]. This eliminates undesirable discrepancy by
regressing out variability explained by the control probes present on the HM850K array.
The CpGs that showed low detection p-value or low confidence (detection p > 0.05) or
missing data for >10% of samples were excluded. Moreover, single nucleotide polymor-
phisms (SNPs) associated with CpG probes [24], cross-reactive probes [22] and probes
from X and Y chromosomes were excluded. Samples with overall low confidence for >10%
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of CpG sites or missing/poor signals were also removed from the analysis. After the
pre-processing, normalization, and probe filtering, 706,671 probes within the 32-margin
samples were retained for further analysis. Intensity data for each CpG site were assigned
with a β-value [25], calculated by the ratio of signal intensities of methylated probe (Mp)
versus the sum of Mp and unmethylated probe (Up):

β =
Mp

(Mp + Up)
(1)

This value ranges from zero to one, with one being fully methylated and zero com-
pletely unmethylated. For further analyses, β-values were also converted to M-values that
is calculated as the log2 ratio between the intensities of Mp and Up [26]:

M = log2

(
Mp
Up

)
(2)

Principal Component Analysis (PCA) was performed to identify the influence of
different variables in various components. Potential unknown sources of variation were ad-
justed by the Surrogate Variable Analysis (SVA) R Bioconductor package [27] and additional
known variables were adjusted during the regression analysis. The bioinformatics analy-
sis was performed following the pipeline available in https://github.com/IARCbioinfo/
methylkey (accessed on 30 April 2020).

2.5. Differential DNAme Analysis

We performed robust linear regression analysis using the Limma package [28] to
identify differential DNAme between recurrent and non-recurrent samples. To identify
Differentially Methylated Positions (DMPs), we corrected for multiple testing with False
Discovery Rate (FDR) < 10% [29] and set the cut-off of at least 5% ∆β (≥5% difference in
DNAme). Since we had a limited sample size and included histologically normal squamous
epithelial samples in our study, we considered less stringent thresholds in our analysis.

A pathway enrichment analysis using all DMP-related genes was performed us-
ing the Kyoto Encyclopedia of Genes and Genomes (KEGG) database using the Enrichr
tool [30,31]. Enrichr tool uses a computational method for deducing knowledge about an
input set of genes (DMP associated genes in our case) through comparison to annotated
sets of genes corresponding to various pathways that represent prior biological knowledge.
The generated p-values are calculated by Fisher’s exact test, with genes being consid-
ered independent, while the q-values represent adjusted p-values calculated using the
Benjamini–Hochberg method [32].

To identify Differentially Methylated Regions (DMRs) consisting of ≥2 CpGs within
the 1000 base-pair window, we used the DMRcate package with FDR of <5% [33]. The DMR
analysis allows the identification of regional differences between the groups, improving
the robustness of the findings and the replicative value when compared with individ-
ual site differences [34]. To estimate and illustrate region-based associations, we used
Gviz package [35].

Annotation of the CpG probes was done using specific Bioconductor packages for
HM850K array and HM450K array data [36,37]. ChIPseeker package was used to illustrate
DMPs and DMRs genomic localization [38]. The comparison between two observed
proportions was assessed using the two-proportion z-test.

2.6. TCGA Replication

To replicate our results from the discovery phase, we downloaded Illumina Human-
MethylationBeadChip array (HM450K) raw data of HNSCC-NAT samples (IDAT files) from
TCGA using TCGAbiolinks package [39]. In addition to the HM450K data, clinical and
demographic data were also retrieved from cBio Cancer Genomics Portal [40]. From the
TCGA downloaded methylome data, 27 NAT samples from HNSCC were included in

https://github.com/IARCbioinfo/methylkey
https://github.com/IARCbioinfo/methylkey
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our study, after excluding samples from patients who underwent neoadjuvant treatment,
who presented synchronous tumors or were in the disease-free group for less than one year
of follow-up. These HM450K data were stratified based on recurrence-free survival (RFS),
with 19/27 showing RFS and 8/27 showing recurrence in five years. RFS was defined as
the time between surgery and the advent of a new tumor event. The differential DNAme
analysis between these groups was conducted following the same pipeline as the discovery
set, by performing a linear regression based on the RFS status of the patients to identify
DMPs and DMRs.

It is important to mention that the NAT samples from TCGA differ in their proximity to
the tumor sites when compared to the surgical margin samples included in the discovery set,
which could lead to a different field cancerization effect. However, our study hypothesizes
that the pathologically confirmed normal adjacent tissue—regardless of the distance to the
tumor—might harbor altered DNAme that could be explored as potential targets to predict
tumor recurrence.

2.7. Assessment of Recurrence Markers

To assess and identify a set of CpGs that could discriminate recurrent cases from
non-recurrent ones, we performed Partial Least Square-Discriminant Analysis (PLS-DA)
using β-values of the identified DMPs [41]. PLS is a supervised analysis that uses the
independent βvalues from DNAme to predict the dependent variables as the outcome
(recurrence). Here, we determined the potential CpG markers from the previously identi-
fied common DMPs in the discovery and TCGA set, based on the least error rate and the
lowest number of predictors (CpGs), possible using cross-validating with 100 iterations [42].
We also estimated the performance of the identified CpG sets by plotting receiver operating
characteristic curves (ROC) using discovery set samples and then the performance was val-
idated using TCGA samples. Once the CpG markers were selected, a linear regression was
performed to assess the relationship between the methylation pattern of these markers and
the recurrence status of the patients. Then, a risk score for each patient was calculated by
summing up the multiplication of the β-values of each CpG with its respective regression
coefficient, as described below:

Risk Score = β1∗ coef1 + β2 ∗coef2 + . . . + βn ∗ coefn (3)

In order to assess the influence of field of cancerization and tumor anatomical sites in
the identified DNAme patterns, β-values from 144 TCGA tumor samples were downloaded
from the LinkedOmics database [43]. Similar to our discovery set samples, for this analysis,
disease free survival data were obtained from patients with negative surgical margins and
with tumors of the tongue, floor of mouth, or alveolar ridge. Methylation values of the
target CpG sites were compared between anatomical sites and recurrence groups.

2.8. Survival Analysis

The methylome analysis results were correlated with the clinical and pathological data
of the patients, especially with local recurrences. The cases from the discovery and TCGA
set were stratified by the median value of the developed risk score. The differences in
each set of data between the two groups were evaluated using the Student t-test. The RFS
analysis of the stratified groups was performed by the Kaplan–Meier method and the
survival curves were compared using the log-rank test (R package survminer) [44] with a
statistical significance of p-value ≤ 0.05.

3. Results
3.1. Clinicopathological Characteristics

This study consists of 32 OSCC cases from the Barretos Cancer Hospital patient
cohort. Half of the subjects (n = 16) developed local recurrence within five years after
initial treatment. The average age of the cases was around 60 years, with 84.4% reporting
tobacco and 71.9% alcohol consumption. Most of the patients were male (68.8%). The main
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anatomical site affected in the cases was the tongue (18/32; 56.3%) followed by the floor of
the mouth (11/32; 34.4%). The clinicopathological characteristics of the cases included in
the discovery phase are shown in Table 1.

Table 1. Clinicopathological characteristics of the patients.

Characteristic Discovery Set
n (%)

Replication Set
n (%)

Mean age (range) 62 (45–89) 59.6 (26–80)
Gender

Male 22 (68.8) 22 (81.5)
Female 10 (31.3) 5 (18.5)

Tobacco Consumption
Never 5 (15.6) 6 (23.1)
Ever 27 (84.4) 20 (76.9)

Alcohol Consumption
Never 9 (28.1) 6 (23.1)
Ever 23 (71.9) 20 (76.9)

Anatomical Site
Floor of mouth 11 (34.4) 2 (7.4)

Tongue 18 (56.3) 13 (48.2)
Gingiva 3 (9.4) 1 (3.7)
Larynx 0 (0.0) 10 (37.0)

Base of tongue 0 (0.0) 1 (3.7)
Tumor Stage

I/II 19 (59.4) 2 (7.4)
III/IV 13 (40.6) 25 (92.6)

In the TCGA cohort, eight patients were described as recurred or progressed, whereas
19 patients were free of disease at the time of follow up. The clinicopathological data of this
cohort are indicated in Table 1. The average age of the patients was 60 years. Most of the
patients were male (81.5%) and tobacco (76.9%) and alcohol (76.9%) consumers. The main
anatomical sites were the tongue (48.2%) and the larynx (37.0%), and most of the patients
were diagnosed with advanced tumors (92.6%).

3.2. Identifying Recurrence-Associated DMPs

The quality of HM850K array-generated IDAT files from all samples was considered
good, as they exhibited small detection p-values, indicating the reliability of the signal [45]
(Supplementary Figure S2A). Since age, gender, and alcohol consumption were found to
be important variables based on principal component analysis (PCA), we adjusted these
variables in the regression model. Differential methylation analysis revealed 2512 DMPs
associated with tumor recurrence (Supplementary Table S1) with 5% ∆β difference and
FDR of 10% (genomic inflation factor λ = 0.99; Supplementary Figure S2B). The majority
of DMPs (63.5% i.e., 1594/2512) were hypermethylated in the recurrent cases (Figure 2A).
The median distribution of hypermethylated probes throughout the chromosomes was
64.3% (50–70.9%), whereas the median distribution of hypomethylated probes was 35.7%
(29.1–50%; Figure 2B). The identified DMPs showed enrichment in regulatory regions such
as CpG islands (31% vs. 19%, p < 0.001) and shores (21% vs. 18%, p < 0.001) compared to
the total number of probes present in the HM850K array (Figure 2C). Conversely, there was
a decrease in the proportion of DMPs in open sea regions, when compared with HM850K
(44% vs. 56%, p < 0.001; Figure 2C). Genomic localization of the identified DMPs revealed
that they are largely in the ≤1 kb promoter regions (38.5% vs. 30% in the entire array),
corroborating with the previous result and suggesting their potential role in altering gene
expression (Figure 2D). No significant differences were observed when comparing genomic
localization within hypermethylated and hypomethylated DMPs. We prioritized the 100
most significant DMPs found when comparing samples with and without recurrence.
As expected, the use of those DMPs in an unsupervised hierarchical clustering separated
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the cases according to their recurrence status (Figure 2E). Recurrence status of the cases
were the major clusters and the clustering pattern was not influenced by gender and tumor
anatomical sites.

We used the CancerMine resource [46] to retrieve information about the role of the
100 DMP-related genes as oncogenes and/or tumor suppressor genes (TSG) in cancer.
Among these, twenty-six genes (26/100, Figure 2E) had previously been reported to have a
role in cancer: 30.8% (8/26) were TSG, 50% (13/26) were oncogenes and the remaining five
(19.2%) had conflicting associations. Only one DMP-related gene (NSD2) was described as
associated with HNSCC.

To get insights into the biological impact of altered DNAme patterns associated
with recurrence, a pathway enrichment analysis using all 1508 unique DMP-related genes
(Supplementary Table S1) was performed. cGMP-PKG signaling, MAPK signaling, prostate,
lung, and endometrial cancers were among the top enriched and significant pathways
identified (Figure 2F and Supplementary Table S2). This signifies the potential DNAme-
associated with the deregulation of cell signaling and cancer-related genes and pathways.

3.3. Identifying Recurrence-Associated DMRs

DMR analysis by considering at least two or more differentially methylated CpGs in a
1 kb window revealed 392 regions with different DNAme patterns between recurrent and
non-recurrent groups. Among the identified DMRs, 276/392 (70%) were hypermethylated
and 116 (30%) hypomethylated in the recurrent group with a mean ∆β of 5% (Figure 3A
and Supplementary Table S3). The majority of these DMRs were located within CpG
islands, which are usually present in the promoter regions. The genomic characterization
of these DMRs revealed more hypomethylation of the recurrent group in the first intron
(p = 0.13), other exons (p = 0.16), and 3′ untranslated (UTR) regions (p = 0.02). We also
found more hypermethylated DMRs of the recurrent group in the promoter (0.07) and other
introns (p = 0.14; Figure 3B). Among the top DMRs were GALR1 and IFFO1; the DMR at
GALR1 constitutes six CpGs and the DMR at IFFO1 is comprised of eight CpGs. All CpGs
within these regions were hypermethylated in recurrent cases (Figure 3C,D).

3.4. Identification of Potential Markers of OSCC Recurrence

PLS-DA identified 14 CpG sites associated with OSCC recurrence that discriminate
samples into recurrent and non-recurrent groups in our discovery set analysis by cross-
validating with 100 iterations (Figure 4A and Table 2). These identified 14 CpGs also
correctly predicted the recurrence status in samples from TCGA (Figure 4B). We performed
multidimensional scaling (MDS) plots using the 14-CpG marker panel stratifying the
patients based on risk factors and other clinical characteristics to evaluate the influence
of these parameters on DNAme patterns (Supplementary Figure S3). We observed that
samples were dispersed randomly after stratifying by various parameters suggesting
minimal or no influence of these in DNAme patterns. Furthermore, the methylation of
the proposed 14-CpG panel was plotted in box-plots and samples were stratified based on
various clinical parameters (Supplementary Figure S4). We found statistically significant
differences in DNAme based on recurrence even after stratifying by these parameters.

Moreover, we tested the possibility of any bias due to tumor anatomical sites in the
identified DNAme patterns by MDS plot using the 14-CpG panel and then tested if this
was also true for TCGA tumor tissues. We did not see any significant bias and these results
further substantiate that the identified recurrence-specific DNAme patterns are not influ-
enced by different tumor anatomical sites in our discovery set (Supplementary Figure S5A)
and TCGA tumor samples (Supplementary Figure S5B).

The sensitivity and specificity of the identified marker panel in predicting recurrence
were assessed using the Receiver Operating Characteristic Curve (ROC) analysis to evaluate
the predictive accuracy in the discovery and TCGA datasets. The Area Under Curve (AUC)
of the identified 14 CpG markers for the discovery set was 0.98 (p = 3× 10−6; CI: 0.95–1) and
the replication set (from TCGA) was 0.95 (p = 2 × 10−4; CI: 0.86–1) shown in Figure 4C,D.
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Figure 2. Identifying tumor-specific DMPs (5% ∆β) across the genome. (A) volcano plot showing
hyper and hypo methylated CpGs between recurrent and non-recurrent cases. The x-axis representing
the differential methylation between the groups is plotted against the statistical significance of each
probe analyzed. Hypermethylated probes with adjusted p-value > 0.1 and ∆β ≥ 0.5 are represented in
orange, while hypomethylated probes with adjusted p-value > 0.1 and ∆β ≤ −0.5 are represented
in blue; (B) genome-wide DNA methylation profile of patients that developed local recurrence,
by chromosome. Orange dots represent hypermethylated probes, blue dots represent hypomethylated
probes; (C) CpG context of the identified DMPs in CpG islands, shores, shelves, and open sea.
All (n = 2512), hypermethylated (n = 1594) and hypomethylated (n = 918) DMPs are compared with
the HM850K array (n∼= 85,000); (D) genomic annotations of the identified DMPs in the human genome.
Plot generated using ChIPseeker package; (E) heatmap showing the top 100 DMPs associated with
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local recurrence. CpG sites are clustered in the horizontal rows and samples are clustered in the
vertical columns. High methylation levels are shown in yellow and low methylation levels in blue,
according to the scale bar on the left; (F) volcano plot showing the significance of each gene set from
the DMP-associated gene list versus its odds ratio. Each point represents a single gene set from
a pathway, where the larger and darker blue color dots represent significant (p-value < 0.05) and
smaller gray color dots represent non-significant enrichments.
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Figure 3. Genomic characterization of DMRs (5% ∆β). (A) Distribution of the percentage of differential DNAme of the
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the human genome. Plot generated using ChIPseeker package; (C) DMR plots showing chromosome localization and the
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(blue) cases are demonstrated.

Table 2. Information related to the 14 CpGs in the marker panel.

CpG-ID Chr Start End RefGene Genomic Location p-Value
Average β-Values

∆β
R NR

cg09830162 16 1,889,615 1,889,614 FAHD1 3′UTR <0.001 0.437 0.562 −0.125
cg04504441 5 132,948,218 132,948,217 FSTL4 1st exon <0.001 0.459 0.540 −0.081
cg05467458 19 33,361,033 33,361,032 SLC7A9 TSS1500 0.002 0.555 0.450 0.106
cg07969676 8 10,590,642 10,590,641 SOX7 5′UTR 0.002 0.548 0.451 0.097
cg03078363 12 54,408,665 54,408,664 HOXC4 TSS1500 0.002 0.541 0.460 0.081
cg01580782 5 927,438 927,437 non-genic intergenic 0.002 0.529 0.470 0.059
cg03659519 18 74,961,967 74,961,966 GALR1 TSS200 0.005 0.570 0.430 0.141
cg26252794 14 88,097,222 88,097,221 non-genic intergenic 0.006 0.526 0.474 0.053
cg01364862 3 159,364,475 159,364,474 IQCJ-SCHIP1 Body 0.006 0.470 0.530 −0.060
cg14051544 3 170,303,287 170,303,286 CLDN11 5′UTR 0.007 0.556 0.447 0.109
cg00363813 12 6,664,873 6,664,872 IFFO1 1st exon 0.016 0.554 0.446 0.108
cg10094616 8 53,478,024 53,478,023 ALKAL1 TSS200 0.018 0.543 0.456 0.087
cg14884793 13 109,148,554 109,148,553 non-genic Intergenic 0.019 0.534 0.466 0.068
cg00082235 12 6,664,537 6,664,536 IFFO1 1st exon 0.032 0.538 0.462 0.076

Chr: chromosome; NR: non-recurrence; R: recurrence; UTR: untranslated region; TSS: transcription start site.
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the 14-CpG marker panel from the discovery set; (B) sample prediction area from a PLS-DA model based on the 14-CpG
marker panel in the replication set from TCGA; (C) Receiver Operating Characteristic (ROC) curve showing specificity and
sensitivity of the identified DNAme markers in the discovery set. The area under the curve (AUC) was 0.98; (D) ROC curve
showing specificity and sensitivity of the identified DNAme markers in the replication set from TCGA. The AUC was 0.95.

The DNAme status of the identified 14-CpG panel was estimated in the discovery and
TCGA set of samples. The β-values of recurrent and non-recurrent cases were significantly
different for almost all the 14 CpGs in both the discovery (Figure 5A) and TCGA sets
(Figure 5B). Among the TCGA sample set, four CpGs namely: cg01364862, cg07969676,
cg00082235, and cg00363813 were not significantly different; however, they showed a
similar trend of alteration as the discovery set.

We also evaluated the DNAme of 7 common CpGs from the 14-CpG marker panel
in 144 TCGA tumor tissues. Among the cases, 85 remained disease free and 59 exhibited
recurrence/progression. The mean methylation of the common CpGs was significantly
higher (p = 0.04) in the recurrence group.

3.5. Survival Analysis Using Combined Score Generated from the Identified Marker Panel

Based on the DNAme status and the regression coefficient of the identified 14-CpG
marker panel, a risk score was generated to stratify the cases for predicting their recurrence.
We stratified the cases into two groups based on the median value of the generated risk
score. The risk scores of the discovery set are shown in Figure 6A, which ranged from
0.1805 to 0.5186 with a median value of 0.3730. The cases with values above the median
were considered in the group of high-risk scores and the cases with scores lower than
the median were considered in the low-risk score group. Kaplan–Meier curve plotted for
recurrence-free survival between the two groups of the discovery set showed better survival
for the low-risk score individuals than those with high-risk scores (p < 0.0001), presented in
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Figure 6B. The cases from the TCGA set were also stratified similarly based on the risk
scores which ranged from 0.0991 to 0.3593 with a median value of 0.1996 (Figure 6C).
Kaplan–Meier curve plotted for recurrence-free survival between the two groups of the
TCGA set also revealed better survival for the low-risk score individuals than the high-risk
scores (p < 0.034) shown in Figure 6D. Half of the individuals from the high-risk group
exhibited recurrence within five years, which further justifies the validity of the scoring
and the identified marker panel.
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median. *** p < 0.001; ** p < 0.01; * p < 0.05; ns: not significant.
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Figure 6. Scoring and survival curves. (A) Calculated score for each of the cases from the discovery set using the identified
14-CpG marker; (B) Kaplan–Meier curves showing the recurrence-free survival patterns of the cases from the discovery
set, comparing cases with low (green line) and high (orange line) risk of developing recurrences; (C) scoring for each
case from TCGA replication set using the identified 14-CpG marker; (D) Kaplan–Meier curves showing the disease-free
survival patterns of the cases from the replication set, comparing cases with low (green line) and high (orange line) risk of
developing recurrences.

4. Discussion

Surgical resection is the most crucial step in the treatment of OSCC which includes
resection of negative margins to assess the effectiveness of the surgical procedure. However,
up to 30% of patients who present histologically negative surgical margins at the time
of surgery will develop recurrences [14]. This is probably due to the residual cluster of
tumor cells in the negative margins that are undetectable upon routine histopatholog-
ical examination (minimal residual cancer) [47]. Another possible theory suggests the
presence of atypical changes in the tissues surrounding the tumor and associates their
persistence with the development of local recurrence or second primary tumors, which is
also called the theory of field cancerization [48]. Both concepts are closely related to an
insufficient histological evaluation of apparently normal tissues surrounding the tumor,
suggesting that additional methods should be explored for greater accuracy in the evalua-
tion of surgical margins. Therefore, it was proposed that the cells from negative margins
might harbor additional genetic and epigenetic alterations leading to invasive cancer at a
later stage [48,49].

Most of the previously reported studies focused on specific DNAme events with a
targeted approach in head and neck cancers [50–55]. This is the first study to investigate
the recurrence-associated genome-wide DNAme alterations in negative surgical margins
of OSCC to predict local recurrence. Our study revealed recurrence-specific aberrant DMPs



Cancers 2021, 13, 2915 13 of 17

and DMRs and the identified DMP-associated genes were enriched in cell signaling and
cancer-related pathways. This further provides additional evidence for the presence of
DNAme alterations of key cancer-related genes and pathways in negative surgical margins.
The top differentially methylated probes could distinguish cases based on recurrence status,
irrespective of other variables like gender or anatomical site, which establishes the robust
nature of the identified aberrant DNAme patterns.

We also proposed a DNAme-based 14-CpG marker panel for predicting OSCC-
recurrence. The identified 14 CpG marker panel had a good performance in discriminating
the recurrence status of discovery set cases and also cases from TCGA. Among the genes as-
sociated with the 14-CpGs in the proposed marker panel (Table 2), three genes were earlier
associated with HNSCC carcinogenesis. Promoter hypermethylation of the GALR1 gene
was associated with a decrease in disease-free survival of head and neck cancer patients
and its potential use as a biomarker for prognosis was suggested [56,57]. The lack of SOX7
expression was associated with advanced tumor stages, regional lymph node metastasis,
and worse prognosis in OSCC patients [58]. Furthermore, the methylation of a CpG panel
including HOXC4 was predictive of survival in patients with oral cavity cancers [59]. In ad-
dition to these, we also identified some novel genes among the 14-CpG markers that were
not previously associated with cancer recurrences such as IFFO1, ALKAL1, FAHD1, FSTL4,
SLC7A9, IQCJ-SCHIP1, CLDN11 and three other CpGs at intergenic regions.

These findings could be useful for predicting OSCC recurrence that could benefit from
additional therapies or new targeted therapeutic trials due to the presence of cells with
molecular alterations in the histologically normal surrounding tissues. Moreover, these re-
sults support the notion of reassessing the routine surgical margins pathological evaluation
process at the molecular level to improve the prognosis of OSCC patients. This could
be done by coupling the molecular analysis (targeted DNAme analysis) of the surgical
negative margins in addition to the histopathological analysis, which is routinely practiced.

Our results not only suggest the effectiveness of the identified recurrence-specific
DNAme events for the OSCC prognosis but also establish the presence of early epigenetic
alterations in the negative surgical margins that cannot be detected by routine histopathol-
ogy. Among the limitations of our study is the small sample size. This is partly because of
the low yield of DNA recovered from non-tumor tissues [60,61], whereas a relatively high-
quality DNA sample is required for performing the HM850K array. We have overcome this
limitation to some extent by replicating the results on an independent set of samples using
TCGA data. However, we included other anatomical sites from head and neck cancers
beyond the oral cavity in the replication set, owing to the lack of prognostic information
available for all OSCC cases from TCGA and the limited number of tumor-adjacent normal
tissue DNAme data availability. Additional studies with a larger sample size are required
to further validate the robustness of the identified marker panels. Overall, our identified
marker panel exhibited promising results using DNA from post-operative negative margin
tissues and might be further tested on oral exfoliated cells (even by pre-operative sampling)
to validate its efficacy and clinical significance.

5. Conclusions

In conclusion, our study confirmed that there are DNAme alterations in the histo-
logically normal mucosa adjacent to the primary tumor of OSCC cases. These alterations
might act as early driver events for local recurrences in these individuals. Moreover,
these DNAme patterns can serve as markers to differentiate patients with a higher risk of
developing local recurrences and predicting prognosis.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13122915/s1, Figure S1: Barretos Cancer Hospital Biobank’s routine of storage and
DNA isolation from cryopreserved samples, Figure S2: Sample quality control and linear regression
model. (A) Quality control of the samples included in the methylation array. (B) QQ-plot of the
selected regression model. Observed p-values (black dots) plotted against the expected p-values
under no association (red line), Figure S3: Multidimensional scaling (MDS) plots based on DNAme
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of the 14-CpG marker panel showing sample clustering according to different clinical variables.
Each dot represents one OSCC patient sample in the discovery set, Figure S4: Box-plots based on
DNAme of the proposed 14-CpG marker panel, stratified according to different clinical variables,
Figure S5: Influence of anatomical sites in DNAme patterns. (A) Multidimensional scaling (MDS)
plot using the β-values of the identified 14-CpG marker panel in the discovery cohort. (B) Box-plot
using the β-values of the common 7 CpGs from TCGA tumor samples (n = 144; Alveolar Ridge = 14;
Floor of Mouth = 35 and Oral Tongue = 95), Table S1: Differentially Methylated Positions (DMPs)
between recurrent and non-recurrent OSCC patients, Table S2: Enriched pathways identified with
gene set enrichment analysis using differentially methylated position (DMP)-related genes, Table S3:
Differentially Methylated Regions (DMRs) between recurrent and non-recurrent OSCC patients.
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