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Summary

Radiologic screening of high-risk adults reduces lung cancer-related mortality1–3. Despite this, < 

5% of eligible individuals undergo such screening in the U.S.4,5, and the availability of blood-

based tests could increase adoption. Here, we introduce enhancements to Cancer Personalized 

Profiling by deep Sequencing (CAPP-Seq)6 circulating tumor DNA (ctDNA) analysis that 

facilitate screening applications. We show that although ctDNA levels are very low in early-stage 

lung cancers, ctDNA is present pre-treatment in most patients and is strongly prognostic. We also 

demonstrate that the majority of somatic mutations in cell-free DNA (cfDNA) of lung cancer 

patients and risk-matched controls reflect clonal hematopoiesis (CH) and are non-recurrent. 
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Compared to tumor-derived mutations, CH mutations occur on longer cfDNA fragments and lack 

mutational signatures associated with tobacco smoking. Integrating these findings with other 

molecular features, we develop and prospectively validate a machine learning-based Lung Cancer 

Likelihood in Plasma (Lung-CLiP) method that robustly discriminates early-stage lung cancer 

patients from risk-matched controls. Our approach achieves similar performance as tumor-

informed ctDNA detection and allows for tuning of specificity to facilitate distinct clinical 

applications. Our findings establish the potential of cfDNA for lung cancer screening and highlight 

the importance of risk-matching cases and controls in cfDNA-based screening studies.

Although annual radiologic screening via low-dose computed tomography (LDCT) is 

recommended for high-risk populations in the United States3, implementation has been 

complicated by a high false discovery rate (~90%)1 and low compliance4,5. Therefore, there 

is an unmet need for new methods for early detection of lung cancers. Analysis of ctDNA is 

a promising approach that could facilitate blood-based screening.

Improving detection of rare variants

Prior studies have shown that most patients with stage I lung cancer harbor ctDNA levels 

below 0.1%7,8. We therefore began by enhancing our previously described CAPP-Seq 

method6 for early detection applications (Fig. 1a, Supplementary Methods, Supplemental 

Note). Specifically, using in silico simulations of molecular losses at various workflow steps, 

we optimized our protocol to improve recovery of unique cfDNA molecules and the fraction 

of cfDNA duplexes for which both strands were sequenced (Extended Data Fig. 1). 

Separately, we improved the error profile of our sequencing data through chemical inhibition 

of G-oxidation that occurs during hybrid capture enrichment (Extended Data Fig. 2). Lastly, 

we developed a custom duplex adapter schema for library preparation with several 

advantages compared to our previously described tandem adapters6 (Extended Data Fig. 3).

Tumor-informed ctDNA detection

As a step towards developing a noninvasive method for non-small cell lung cancer (NSCLC) 

screening, we aimed to determine ctDNA detection rates in early-stage NSCLC patients 

using a tumor-informed approach. We genotyped tumor tissue, pre-treatment plasma cfDNA, 

and leukocyte DNA from 85 patients with stage I-III NSCLC by targeted deep sequencing of 

255 genes recurrently mutated in NSCLC using a 355 kb CAPP-Seq panel (Extended Data 

Fig. 4). Using this panel, which does not require patient-specific customization (i.e. 

‘population-based’ approach), we found a median of 4 mutations per patient in tumor 

specimens and detected ctDNA in 49% (38/85) of patients. We found that sensitivity of 

detection improved as the number of monitored tumor mutations increased (Extended Data 

Fig. 5a–b). To empirically test whether tracking more mutations improves sensitivity, we 

designed customized capture panels based on tumor exome sequencing data for 17 patients 

in whom ctDNA was not detected using the population-based panel. Using these customized 

panels, we detected ctDNA in 10/17 (59%) patients at a median VAF of 0.002% and at levels 

as low as 2.9 in 106 molecules (Extended Data Fig. 5c).
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Combining the results of population-based (n=68) and customized (n=17) tumor-informed 

strategies, we detected ctDNA in 42%, 67%, and 88% of patients with stage I, II, and III 

disease, respectively (Fig. 1b). The patient-specific analytical limit of detection (LOD) was 

inferior in patients without detectable ctDNA (Extended Data Fig. 5d), suggesting that 

detection might improve by increasing the number of mutations monitored or the unique 

molecular depth. Indeed, when considering only patients for whom a LOD of < 0.01% was 

achieved, sensitivity increased to 63%, 82%, and 100% for stage I, II, and III tumors, 

respectively. Strikingly, we found that 50%, 38% and 7% of stage I, II, and III patients had 

ctDNA levels below 0.01%, respectively (Fig. 1c). Thus, the majority of localized NSCLCs 

shed ctDNA, but levels in many cases are lower than previously recognized7,8.

We characterized properties of ctDNA molecules that could inform tumor-naïve screening. 

Consistent with prior reports8–10, clonal tumor mutations were more frequently detected in 

plasma and observed at higher VAFs than their subclonal counterparts (Extended Data Fig. 

5e), and cfDNA molecules harboring mutations present in matched tumor samples (i.e. 

ctDNA) were shorter than non-mutant molecules (Fig. 1d). Mutant cfDNA molecules were 

enriched among sub-mononucleosomal and sub-disomal fragments (Fig. 1e). When only 

considering molecules in these size windows, we observed a 2.17-fold median enrichment in 

the VAFs of tumor-derived mutations (Extended Data Fig. 5f–g), suggesting that in silico 
size selection for these regions might be useful. However, size selection disproportionately 

favored variants with higher pre-enrichment VAFs (Extended Data Fig. 5h–i), and although 

size selection improved sensitivity when using customized panels, sensitivity degraded when 

using the population-based panel (Extended Data Fig. 5j). This suggests that considering the 

extent to which a mutation is enriched in these regions may have advantages over only 

considering molecules in the ctDNA-enriched size windows.

Clinical correlates of ctDNA detection

We next evaluated clinical and pathological correlates of ctDNA levels. We found ctDNA 

level to be associated with stage (Fig. 1f), metabolic tumor volume (MTV) (Fig. 1g, 

Extended Data Fig. 6a–b), and tumor histology (Fig. 1h). Interestingly, each of these 

parameters were independently associated with ctDNA level in multiple variable analysis 

(Extended Data Fig. 6c), suggesting that ctDNA levels reflect multiple biological factors.

Lung adenocarcinomas exist on a spectrum from pre-invasive to frankly invasive epithelial 

proliferations, associated with differences in radiologic appearance ranging from pure 

ground-glass opacities (GGOs) to solid lesions. Since GGO-predominant lung cancers are 

slow growing and often indolent11, we hypothesized that they shed less ctDNA than solid 

lesions. We detected ctDNA less frequently and at lower levels in patients with a substantial 

ground-glass component (≥ 25% GGO, Extended Data Fig. 6d). Separately, ctDNA was 

more frequently detectable in patients whose tumors displayed radiologic evidence of 

necrosis (Extended Data Fig. 6e). Thus, imaging characteristics of NSCLCs are associated 

with ctDNA shedding and may help identify patients most appropriate for ctDNA analysis.

Given that prior studies have found that residual ctDNA following treatment of localized 

NSCLC portends a high risk of recurrence7,8,12, we next tested the association of pre-
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treatment ctDNA levels with clinical outcomes. Patients with higher-than-median ctDNA 

levels had inferior freedom from recurrence (Fig. 1i) and recurrence-free survival (Extended 

Data Fig. 7a). Pre-treatment ctDNA level was similarly prognostic when only considering 

patients with stage I disease (Fig. 1j, Extended Data Fig. 7b). Importantly, in multivariable 

analysis including both MTV and stage, only ctDNA was significantly associated with 

outcome (Fig. 1k). Since distant metastasis drives cancer-associated mortality after treatment 

of localized NSCLC, we examined the association of pre-treatment ctDNA levels with future 

metastasis. Strikingly, high pre-treatment ctDNA was also associated with inferior freedom 

from distant metastasis (Extended Data Fig. 7c–e). Thus, pre-treatment ctDNA level is a 

previously unrecognized prognostic factor in localized NSCLC that appears to enrich for 

patients harboring micro-metastatic disease (Extended Data Fig. 7f).

Sources of cfDNA somatic variants

Clonal hematopoiesis (CH) is an aging-related phenomenon wherein non-malignant 

hematopoietic stem/progenitor cells acquire somatic alterations that can confer a selective 

advantage13. Since hematopoietic cells are the primary source of cfDNA14 and contribute 

somatic variants to the cfDNA pool15,16, we sought to identify approaches for distinguishing 

CH-derived mutations from their tumor-derived counterparts.

We began by examining whether variants found in cfDNA were also detected in matched 

white-blood cells (WBCs) in early-stage NSCLC patients (n=104) and non-cancer control 

subjects (n=98). We considered two separate control groups: 56 age-, sex- and smoking 

status-matched adults undergoing annual radiologic screening for lung cancer (“risk-

matched controls”), and 42 un-matched adult blood donors (“low-risk controls,”). We 

observed more total cfDNA mutations and mutations that were absent in matched leukocytes 

(i.e. “WBC-”) in NSCLC patients than both control groups (Fig. 2a). However, both NSCLC 

patients and risk-matched controls harbored more cfDNA mutations and CH variants (i.e. 

“WBC+”) than low-risk controls, highlighting the importance of risk-matching cases and 

controls in cfDNA-based early detection studies.

We found that 94.8% of WBC+ cfDNA mutations were private to individual subjects (Fig. 

2b) and 48% of WBC+ cfDNA mutations in controls affected genes not canonically 

associated with CH (Fig. 2c). Importantly, the majority of cfDNA variants in both NSCLC 

patients (58%) and controls (90%) were attributable to CH and in 76% of patients and 91% 

of controls the mutation with the highest VAF was also present in matched WBCs (Fig. 2d). 

The VAFs of mutations observed in both compartments were significantly correlated (Fig. 

2e) and 81% of WBC+ cfDNA variants had VAFs below 1% in leukocytes (Extended Data 

Fig. 8a). These findings highlight the importance of sequencing matched leukocyte DNA 

and cfDNA to equivalent depths to determine whether cfDNA mutations are CH-derived.

In individuals without a hematologic neoplasm, WBC mutations in canonical CH genes with 

a VAF ≥ 2% are commonly referred to as clonal hematopoiesis of indeterminate potential 

(CHIP)13. We observed one or more such mutations in 13.5% of NSCLC patients, 7.1% of 

risk-matched controls, and none of the low-risk controls. As expected, variants in WBCs 
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occurring at ≥ 2% VAF more frequently affected canonical CH genes than variants occurring 

at < 2% (Extended Data Fig. 8b).

Since CH is known to increase with age13, we next examined whether the number of WBC+ 

cfDNA mutations was associated with age. We found that the number of WBC+ mutations, 

but not WBC- mutations, was significantly correlated with age (Fig. 2f). Consistent with the 

concept that these mutations constitute CH events, the genes most frequently containing 

WBC+ cfDNA mutations were canonical CH genes, including DNMT3A, TET2, TP53, 

PPM1D and SF3B1 (Extended Data Fig. 8c–d).

To examine whether presence of WBC+ cfDNA mutations changed over time, we 

considered the subset of our cohort with plasma from two time points. Among WBC+ 

cfDNA mutations detected at the first time point, 74% (42/57) were also detected at the 

second time point and had highly correlated VAFs (Extended Data Fig. 8e). Additionally, 

considering all WBC+ cfDNA mutations, canonical CH genes harbored higher rates of 

nonsynonymous mutations than synonymous variants (Extended Data Fig. 8f), consistent 

with these mutations being under positive selection.

We next compared the mutational signatures of WBC+ and WBC- cfDNA mutations to each 

other and to mutation datasets from the CH and lung cancer literature17–19. We found that 

WBC+ cfDNA mutations were dominated by the aging-associated mutational signature 

(Signature 1) in both NSCLC patients and controls (Fig. 2g). Interestingly, Signature 4, 

which is associated with tobacco smoking and is the predominant mutational signature of 

NSCLC tumor genomes20, was observed in WBC- but not WBC+ cfDNA mutations in 

NSCLC patients and was not observed in either compartment among controls with or 

without a history of smoking. This suggests that the base substitution spectrum of cfDNA 

variants might be useful for distinguishing carcinoma-derived from CH-derived mutations.

TP53 is the most frequently mutated gene in human cancers21; however, mutations in TP53 
are also frequently seen in CH17. Discrimination between carcinoma-derived and CH-

derived TP53 mutations is therefore an important consideration for cfDNA-based cancer 

screening approaches. Notably, many TP53 variants found in cfDNA were also detectable in 

WBCs in both NSCLC patients (40.6%) and controls (100%; Extended Data Fig. 8c). 

Although the distribution of WBC+ and WBC- cfDNA mutations was similar across the p53 

protein (Extended Data Fig. 8g), WBC- TP53 mutations displayed stronger evidence of the 

smoking mutational signature than their WBC+ counterparts (Fig. 2h).

We also studied the fragment size distribution of cfDNA molecules harboring variants 

present in matched WBCs or in matched tumor biopsies. We found that cfDNA molecules 

harboring WBC+ cfDNA mutations displayed a nearly identical size distribution as non-

mutant molecules (Fig. 2i). In contrast, cfDNA molecules harboring mutations present in 

matched tumor specimens were significantly shorter than non-mutant molecules. 

Accordingly, in silico size selection for the fragment sizes found to be ctDNA-enriched in 

our tumor-informed analysis (Fig. 1e) did not increase the VAFs of CH mutations in NSCLC 

patients or controls (Extended Data Fig. 8h). However, the VAFs of WBC- mutations in 

NSCLC patients, but not in controls, significantly enriched with size selection. This suggests 
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that cfDNA fragment size may also be useful for distinguishing carcinoma-derived from 

CH-derived mutations.

Estimating cancer likelihood in plasma

Having identified properties that distinguish tumor-derived and CH-derived cfDNA 

fragments, we developed a method to measure Lung Cancer Likelihood in Plasma (Lung-

CLiP). This approach involves targeted sequencing of plasma cfDNA and matched leukocyte 

DNA and integrates single nucleotide variants (SNVs) and genome-wide copy number 

analysis with machine learning models. We trained Lung-CLiP using samples from a 

discovery cohort of 104 early-stage NSCLC patients and 56 risk-matched controls 

undergoing annual radiologic screening for lung cancer at 4 cancer centers. To develop 

Lung-CLiP we employed a multi-tiered machine learning approach in which we first trained 

a model to estimate the probability a cfDNA mutation is tumor-derived. This ‘SNV model’ 

leverages biological and technical features specific to each variant such as background 

frequencies, cfDNA fragment size, the gene affected, and CH-likelihood (Extended Data 

Fig. 9a). Next, we utilize both the on- and off-target sequencing reads from CAPP-Seq to 

identify genome-wide copy number alterations. The results of the SNV model and the 

genome-wide copy number calls are then integrated within a final patient-level classifier that 

estimates the likelihood a blood sample contains lung cancer-derived cfDNA (i.e. “Lung-

CLiP score,” Fig. 3a).

Receiver-operator characteristic curve shapes revealed that Lung-CLiP sensitivity can be 

tuned to desirable specificities depending on the target clinical application (Extended Data 

Fig. 9b). For example, as a standalone screening test, high specificity would be desirable to 

minimize false positives. At 98% specificity, we observed sensitivities of 41% in stage I, 

54% in stage II, and 67% in stage III patients (Fig. 3b). Alternatively, a lower specificity 

may be acceptable if Lung-CLiP were applied to the ~95% of at-risk individuals who are not 

currently undergoing LDCT screening due to access limitations or other hurdles4,5. In this 

context, a lower specificity would be reasonable since the reflex test for a positive Lung-

CLiP test would be LDCT. For example, at 80% specificity we observed sensitivities of 63% 

in stage I, 69% in stage II, and 75% in stage III patients (Fig. 3c).

To confirm the biological plausibility of Lung-CLiP scores, we compared them to tumor-

informed ctDNA levels and clinicopathological features (Fig. 3d). Lung-CLiP achieved 

statistically similar stage-matched sensitivities at 98% specificity as tumor-informed ctDNA 

analysis (Fig. 3e) and Lung-CLiP scores were correlated with tumor-informed ctDNA levels 

(Fig. 3f). As expected, tumors from NSCLC patients classified as positive by Lung-CLiP 

were larger than those classified as negative (Fig. 3g), and patients with non-

adenocarcinoma histology were more frequently detected (Fig. 3h). Taken together, these 

data suggest that Lung-CLiP scores capture biologically meaningful factors related to 

overall ctDNA burden.

Next, we prospectively validated performance of Lung-CLiP in a cohort of 46 early-stage 

NSCLC patients and 48 risk-matched controls enrolled at an independent institution 

(Extended Data Fig. 9c). Stage-matched performance in the validation cohort was 
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statistically similar to that observed in the training by AUC and sensitivity metrics (Fig. 4a–

c, Extended Data Fig. 9d). Furthermore, specificity thresholds set in the training cohort 

performed similarly when applied to the controls in the validation cohort, indicating that 

Lung-CLiP scores are well calibrated (Extended Data Fig. 9e). For example, the 98% 

specificity threshold defined in the training cohort achieved a statistically similar specificity 

of 96% (95% CI: 89%−100%) in the validation cohort (55/56 training controls vs. 44/46 

validation controls classified as negative, P = 0.59, Fisher’s Exact Test). Finally, we explored 

the relationship between tumor volume and likelihood of detection by Lung-CLiP in the 103 

NSCLC patients from the training and validation cohorts with MTV data available. We 

observed a strong correlation between MTV and sensitivity of Lung-CLiP (Fig. 4d, 

Extended Data Fig. 9f), with approximate sensitivities of 16% (95% CI: 4%−24%), 52% 

(95% CI: 32%−72%) and 80% (95% CI: 60%−96%) for 1 mL, 10 mL, and > 100 mL 

tumors, respectively.

Discussion

Here we describe a novel approach for noninvasive NSCLC screening that integrates 

improved molecular techniques with machine learning to predict the presence of NSCLC-

derived cfDNA in a blood sample. Lung-CLiP achieves performance similar to tumor-

informed ctDNA analysis without the need for tissue genotyping. Our approach differs from 

recent liquid biopsy studies that have attempted to develop pan-cancer screening assays22–25. 

Instead, we focused on NSCLC, allowing us to leverage lung cancer-specific features and to 

use control subjects who are at high-risk for developing the disease, a measure that reduces 

the likelihood that unrecognized confounders bias classification results. Additionally, unlike 

prior studies that did not perform validation or used cross-validation within the same 

case:control cohort23–25, we employed an independent validation cohort that was 

prospectively enrolled at a different institution. This decreases the risk of model over-fitting 

leading to overly optimistic results26. Finally, although prior studies have also examined 

cfDNA fragmentation patterns9,10,25, our study is unique in that we use this feature to aid in 

distinguishing tumor-derived mutations from their CH-derived counterparts.

We envision that one potential application of Lung-CLiP could be to serve as an initial 

screen in some of the ~95% of high-risk patients who are candidates for LDCT in the US, 

but who are not being screened due to a variety of issues including limited access and 

concerns with false positives4,5. Patients with positive Lung-CLiP tests would then be 

referred for LDCT. Although Lung-CLiP is less sensitive than LDCT, this hybrid approach 

could potentially increase the total number of patients screened and therefore the number of 

lives saved annually in the US from the current ~600 to closer to the projected maximum of 

~12,00027.

A striking observation in our study was the strong association of pre-treatment ctDNA levels 

with clinical outcomes in early-stage NSCLC, including within stage I patients. While these 

findings need to be validated, our results suggest that high pre-treatment ctDNA levels may 

reflect the presence of micro-metastatic disease and thus may allow identification of patients 

who would most benefit from neoadjuvant systemic therapy prior to surgery. Furthermore, it 

is possible that pre-treatment ctDNA measurements could be incorporated into NSCLC 
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staging as well as enable real-time risk models that combine pre- and post-treatment 

variables to predict individualized patient outcomes28.

Strengths of our study include the identification of molecular features differentiating tumor-

derived and CH-derived cfDNA mutations, the use of risk-matched controls, and prospective 

validation. Our study also has a number of limitations. First, more patients need to be 

analyzed to fully establish performance characteristics of Lung-CLiP. Second, the majority 

of cases in our study were incidentally diagnosed lung cancers, and not identified by LDCT 

screening. Therefore, clinical screening sensitivity could be lower in a population setting and 

this should be prospectively evaluated. Third, we developed Lung-CLiP in a cohort mainly 

composed of smokers and therefore it is possible that performance could be worse in non-

smokers.

In summary, we have developed an integrated genomic strategy that can detect a significant 

fraction of early-stage lung cancers using blood plasma. We envision that integration of 

Lung-CLiP with LDCT or other circulating biomarkers could further improve performance. 

Additionally, by modifying the at-risk populations considered and incorporating molecular 

features appropriate for other cancer types, we expect that it will be feasible to develop CLiP 

methods for a diverse range of malignancies.

Materials and Methods

Study design and patients

All samples analyzed in this study were collected with informed consent from subjects 

enrolled on Institutional Review Board-approved protocols that complied with all relevant 

ethical regulations at their respective centers, including Stanford University, MD Anderson 

Cancer Center, Mayo Clinic, Vanderbilt University Medical Center, and Massachusetts 

General Hospital.

Lung Cancer Patients: All patients had AJCC v7 stage I-III NSCLC and received 

curative-intent treatment with surgery or radiotherapy. This study consisted of two cohorts, a 

discovery cohort and a validation cohort. Clinical characteristics of patients in both cohorts 

are provided in Extended Data Fig. 4b. The discovery cohort consisted of two groups of 

patients: (1) tumor-informed NSCLC patients (Fig. 1 and Extended Data Fig. 5–7) and (2) 

Lung-CLiP training NSCLC cases (Fig. 2–3 and Extended Data Fig. 9a–b). These two 

groups consisted of lung cancer patients enrolled at Stanford University (n=80), Vanderbilt 

University (n=21), Mayo Clinic (n=14) and MD Anderson Cancer Center (n=7) between 

November of 2009 and July of 2018. The tumor-informed NSCLC cases consisted of 85 

patients with matched tumor tissue available, the majority of which (67/85) were analyzed 

with all aspects of the improved CAPP-Seq workflow described in Fig. 1a. The Lung-CLiP 

training group was restricted only to patients analyzed with the improved workflow (n=104) 

and was studied for the tumor-naïve analyses in Fig. 2 and Extended Data Fig. 8, serving as 

the training group for the Lung-CLiP classifier (Fig. 3 and Extended Data Fig. 9a–b). 

Among the 104 Lung-CLiP training NSCLC cases, 67 overlap with the 85 patients in the 

tumor-informed group. After initial training of Lung-CLiP, NSCLC patients in the 

independent validation cohort (46 lung cancer cases; Fig. 4 and Extended Data Fig. 9c–d) 
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were prospectively enrolled at Massachusetts General Hospital (MGH) between January and 

December of 2018.

Controls: The discovery cohort consisted of two separate control groups (Extended Data 

Fig. 4b). The first group consisted of 42 adult blood donors who were un-matched for risk 

(“low-risk controls”) and were only included in analyses presented in Fig. 2 and Extended 

Data Fig. 8. The second group consisted of 56 age-, sex- and smoking status-matched adults 

(“risk-matched controls”) who had negative low-dose computed tomography (LDCT) 

screening scans for lung cancer at Stanford University and served as the training group for 

the Lung-CLiP classifier (Fig. 2–3 and Extended Data Fig. 8, 9a–b). The validation cohort 

contained a third control group, comprised of 48 risk-matched adults undergoing LDCT 

screening at Massachusetts General Hospital, that were prospectively enrolled between 

January and December of 2018. This control group was only considered for the validation of 

the Lung-CLiP model (Fig. 4 and Extended Data Fig. 9c–d).

Blood collection and processing

Logistical considerations related to the prospective collection of the validation cohort 

required the use of STRECK blood collection tubes, while K2EDTA collection tubes were 

used for the training cohort. Whole blood collected in K2EDTA tubes was processed 

immediately or within 4 hours following storage at 4 °C. Whole blood collected in Cell-Free 

DNA BCT (STRECK) tubes was processed within 72 hours. K2EDTA tubes were 

centrifuged once at 1,800 × g for 10 min and STRECK tubes were centrifuged twice at 

1,600 × g for 10 min at room temperature. Following centrifugation, plasma was stored at 

−80°C in 1.8 ml aliquots until cfDNA isolation. Plasma-depleted whole blood was stored at 

−80°C for DNA isolation from leukocytes.

Our study design guards against pre-analytical variables such as blood collection tubes 

driving classification of cases versus controls because all samples within our training cohort 

(i.e. both cases and controls) were collected in K2EDTA tubes while all samples within the 

validation cohort were collected in STRECK tubes. Nevertheless, to confirm that the type of 

collection tube does not confound the Lung-CLiP model we collected blood from three 

healthy donors in K2EDTA and STRECK tubes and compared key metrics including Lung-

CLiP classification, cfDNA mutation concordance, fragment size, cfDNA concentration, 

molecular recovery and error profiles and found that none of these were significantly 

affected by the type of collection tube used (Extended Data Fig. 10a–j).

Cell-free DNA was extracted from 2 to 16 mL of plasma (median of 3.25 ml for NSCLC 

patients and 3.91 ml for controls) using the QIAamp Circulating Nucleic Acid Kit (Qiagen) 

according to the manufacturer’s instructions. After isolation, cfDNA was quantified using 

the Qubit dsDNA High Sensitivity Kit (Thermo Fisher Scientific) and High Sensitivity NGS 

Fragment Analyzer (Agilent). Genomic DNA (gDNA) from matched plasma-depleted whole 

blood (i.e. “WBCs” or “leukocytes”) was extracted using the Qiagen DNeasy Blood and 

Tissue kit, quantified using Qubit dsDNA High Sensitivity Kit, and fragmented to a target 

size of 170 bp using Covaris S2 sonicator. Post-sonication, fragmented gDNA was purified 

using the QIAquick PCR Purification Kit (Qiagen). For cfDNA, a median of 38 ng (range 8–
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85 ng; median of 38 ng and 40 ng in cases and controls, respectively) was input into library 

preparation. DNA input was scaled to control for high molecular weight DNA 

contamination. For gDNA from leukocytes, ≤ 100 ng of fragmented gDNA was input into 

library preparation.

Tumor tissue collection and processing

Tumor DNA was extracted from frozen biopsy samples using the Qiagen DNeasy Blood and 

Tissue kit or from FFPE biopsy samples using the Qiagen AllPrep DNA/RNA FFPE kit 

according to the manufacturer’s instructions. Following extraction, DNA was quantified and 

fragmented in the same manner as gDNA from plasma depleted whole blood and ≤ 100 ng 

of sheared DNA was input into library preparation.

Library preparation and sequencing

We developed a new adapter schema, FLexible Error-correcting dupleX adapters (“FLEX 

adapters”), that de-couples the portion of the adapter containing the duplex molecular 

barcode (i.e. unique identifier or “UID”) from the portion containing the sample barcode 

(Extended Data Fig. 3b). FLEX adapters utilize dual-index 8 bp sample barcodes (pairwise 

edit distances ≥ 5) and 6 bp error correcting UIDs (pairwise edit distances ≥ 3) with 

optimized GC content and sequence diversity. End repair, A-tailing, and adapter ligation are 

performed following the KAPA Hyper Prep Kit manufacturer’s instructions with ligation 

performed overnight at 4°C. Adapter ligation is performed using a partial Y adapter 

containing a 6 bp UID and the T overhang required for ligation (Extended Data Fig. 3c). 

Following ligation, a bead cleanup is performed using SPRIselect magnetic beads (Beckman 

Coulter). Next, “grafting PCR” is performed to add dual-index 8 bp sample barcodes and the 

remaining adapter sequence necessary to make a functional Illumina sequencing library. 

Following another SPRI bead cleanup, universal PCR is performed. Additional details 

regarding the FLEX adapter design can be found in the Supplementary Methods.

Following library preparation, hybrid capture (SeqCap EZ Choice, NimbleGen) is 

performed. In this study we utilized a custom 355 kb NSCLC-focused panel targeting 255 

genes recurrently mutated in lung cancer and 11 genes canonically associated with clonal 

hematopoiesis (Supplementary Table 1). Hybrid capture was performed according to the 

manufacturer’s protocol, with the exception that hypotaurine (Sigma-Aldrich cat # H1384) 

was added to the hybrid capture reaction at a final working concentration of 5mM. All 

capture steps were conducted on a thermal cycler at 47 °C. Following enrichment, libraries 

were sequenced on an Illumina HiSeq4000 with 2×150 bp paired-end reads. Sequencing 

lane share was determined based on cfDNA input and the desired barcode family size. 

Median sequencing depths were 23,570x/5,012x (nominal/unique) for cases and 19,534x/

4,075x for controls.

Sequencing data analysis and variant calling

Preprocessing and alignment: FASTQ files were demultiplexed using a custom 

pipeline in which read pairs were only considered if both 8 bp sample barcodes and 6 bp 

UIDs matched expected sequences following error-correction. Following demultiplexing, 

UIDs were removed and adapter read-through was trimmed from the 3’ end of the reads 
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using AfterQC to preserve short fragments29. Reads were aligned to the human reference 

genome (hg19) using BWA ALN30.

Error suppression and variant calling: Molecular barcode-mediated error suppression 

and background polishing were performed as previously described6. To leverage the 

improved error profile afforded by capturing samples with the ROS scavenger hypotaurine, a 

background database built from 12 withheld healthy control plasma samples captured with 

hypotaurine was used for background polishing. Following error suppression, selector-wide 

single nucleotide variant (SNV) calling was performed as previously described using a 

custom variant calling algorithm optimized for the detection of low allele frequency variants 

from deep sequencing data6. This approach, termed “adaptive variant calling,” considers 

local and global variation in background error rates in order to determine position-specific 

variant calling thresholds within each sample. Variant calls were then further filtered as 

follows: (I) germline variants identified in WBC gDNA from any individual in the study at > 

25% VAF were removed, (II) variants at low depth positions (< 50% of the median depth), 

and those in repeat, intronic, intergenic, or pseudogene regions were removed, (III) variants 

falling in regions with poor uniqueness or mappability were removed, (IV) variants with a 

population allele frequency > 0.1% in the gnomAD database31 were removed, (V) recurrent 

background artifacts were removed using a blacklist specific to our targeted sequencing 

space derived from a database of 430 WBC gDNA samples. Following variant calling and 

filtering, additional filters were applied depending on the tissue compartment and analysis 

being performed (described below).

Tumor genotyping

Somatic variant calling in tumor tissue was performed as described in the prior section 

except that we required: (1) a minimum allele frequency threshold of 5%, (2) variants could 

not be present in the matched WBCs, (3) variants in intronic or intergenic were retained, and 

(4) variants in canonical clonal hematopoiesis genes other than TP53 were removed.

Tumor-informed ctDNA detection

To query plasma for the presence of ctDNA using mutations identified in matched tumor 

tissue, we used our previously described Monte Carlo-based ctDNA detection index6. The 

ctDNA detection index threshold was set to achieve ≥ 98% specificity in 56 held-out control 

cfDNA samples from patients with negative LDCT scans analyzed using the same 

sequencing panel. In samples with detectable ctDNA the plasma VAF of each mutation 

tracked was adjusted based on the clonality and the copy number state of the mutations in 

the tumor (Extended Data Fig. 10l–n) as described in the Supplementary Methods. The 

ctDNA VAF for each sample was then calculated by averaging the VAFs of all tumor 

variants used for monitoring (including variants with 0 mutant reads in the sample).

In the tumor-informed CAPP-Seq analyses, the patient-specific analytical limit of detection 

(LOD) was determined as previously described6. Briefly, the LOD was estimated based on 

the binomial distribution, number of mutations tracked, and the number of cfDNA molecules 

sequenced (e.g. unique depth). In the present study, the LOD was defined as the lowest 

tumor fraction expected to yield 3 or more mutation-containing cfDNA molecules with 95% 
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confidence based on the binomial distribution, the number of mutations tracked, and the 

unique molecular depth. These patient-specific LODs were utilized in Fig. 1b–c and 

Extended Data Fig. 5c–d. Only patients with detectable ctDNA or an LOD < 0.01% were 

considered in Fig. 1c, with cases without detectable ctDNA classified as having ctDNA < 

0.01%.

Capture panel design for customized CAPP-Seq

Whole-exome sequencing of tumor DNA and matched leukocyte DNA was performed for 

17 patients using the SeqCap EZ Exome version 3.0 capture reagent (NimbleGen) according 

to the manufacturer’s protocol. Sequencing data were demultiplexed and mapped as 

described above and duplicate reads were removed using ‘samtools rmdup’. Single-

nucleotide variants were called using VarScan232, Mutect33 and Strelka34. Variants called by 

≥ 2 callers were then further filtered requiring: (i) VAF ≥ 5%, (ii) ≥ 30X positional depth in 

both tumor and germline, (iii) 0 germline reads, (iv) a population allele frequency ≤ 0.1% in 

the gnomAD database31, and removing variants lying in repeat, intronic, intergenic, or 

pseudogene regions. Custom capture panels (SeqCap EZ Choice, NimbleGen) were then 

designed, each targeting the union of mutations from 5–7 patients and ranging in size from 

212–487 kb. Tumor and matched leukocyte sequencing libraries from each patient were re-

captured using these custom panels and tumor variants were re-called from the targeted 

sequencing data using the standard CAPP-Seq pipeline. These final variant lists, targeting a 

median of 68 mutations per patient (range 7–543), were then used for ctDNA detection.

ctDNA detection for customized CAPP-Seq

To query for the presence of ctDNA using custom CAPP-Seq panels, we applied the same 

Monte Carlo-based sampling approach6 used for standard CAPP-Seq tumor-informed 

detection to two different subsets of molecules: (i) cfDNA molecules for which both strands 

of the original cfDNA duplex were observed and (ii) cfDNA molecules in the ctDNA 

enriched regions (Fig. 1e). We then combined these two P-values using Fisher’s method. The 

ctDNA detection index threshold then was set to achieve ≥ 98% specificity in 24 healthy 

control cfDNA samples analyzed using the same sequencing panel.

Cancer cell fraction analysis

To determine the clonality of mutations identified in tumor samples, ABSOLUTE was used 

as previously described35 to estimate the fraction of tumor cells harboring each somatic 

mutation (i.e. cancer cell fraction, CCF). Genome-wide segmented copy number calls (see 

“Detection of genome-wide copy number variation from targeted sequencing” section of 

Supplementary Methods) and the positions and VAFs of point mutations were used as input. 

Clonal mutations were defined as those for which the upper bound of the CCF confidence 

interval was > 0.95, while mutations with CCF estimates below this threshold were defined 

as subclonal. If only 1 mutation was identified in a tumor sample this mutation was 

considered to be clonal as it was not possible to obtain a CCF estimate.
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ctDNA fragment size analysis

To compare the size distribution of tumor-derived and non-mutant cfDNA molecules we 

queried the plasma for cfDNA molecules overlapping the genomic positions of mutations 

identified in matched tumor samples. We then extracted the cfDNA fragment size (TLEN 

field in SAM Spec v1.6) of each molecule containing a tumor-derived mutation (i.e. “mutant 

molecules” or “ctDNA”) and every non-mutant molecule spanning the same genomic 

position in the same individual. We then pooled mutant and non-mutant fragment lengths 

across all positions to generate the fragment size distributions depicted in Fig. 1d. We 

applied the same methodology to cfDNA mutations identified following tumor-naïve variant 

calling to generate the “CH” and “Tumor-adjudicated” mutation fragment size distributions 

depicted in Fig. 2i.

To determine what fragment size windows were enriched for ctDNA, we calculated the 

fraction of all mutant and non-mutant molecules falling in a 5 bp sliding window using the 

rollapply function in R (zoo package). We then calculated the relative enrichment of mutant 

vs. non-mutant molecules (i.e. “ctDNA enrichment”) for every cfDNA fragment size 

between 50–500 bp (Fig. 1e).

Clinical correlates of ctDNA detection

Metabolic tumor volume was determined using whole body [18F] FDG positron emission 

tomography (PET)-CT scans. Percent ground glass opacity (GGO) and the presence of 

necrosis were determined using pretreatment imaging with chest computed tomography 

(CT) by a thoracic radiologist. GGO was defined by the presence of hazy, increased opacity 

of the lung with preservation of the bronchial and vascular margins11. Percent GGO was 

determined by examining the entire volume of the lesion on axial, sagittal, and coronal 

reconstructions with percent GOO in the entire tumor quantified and rounded to the nearest 

quartile. Multivariable linear regression was performed to associate the predictor variables 

(with stage and histology as categorical variables and MTV as a continuous variable) with 

mean ctDNA VAF (as the continuous dependent variable; Extended Data Fig. 6c). For 

patients without detectable ctDNA, a VAF of 0.001% was used. MTV and mean ctDNA 

VAF were log transformed to produce normally distributed data. The linear regression model 

was statistically significant (P < 2.2 × 10−16) and the residuals of the model were normally 

distributed as determined by the Shapiro-Wilk normality test.

We considered the following survival endpoints: (1) freedom from recurrence (radiographic 

or biopsy proven recurrence with censoring of non-cancer deaths), (2) freedom from 

metastasis (radiographic or biopsy proven metastasis to a distant organ or the contralateral 

lung with censoring of non-cancer deaths), (3) recurrence-free survival (radiographic or 

biopsy proven recurrence or death from any cause), (4) metastasis -free survival 

(radiographic or biopsy proven metastasis to a distant organ or the contralateral lung or 

death from any cause), (5) overall survival (death from any cause). Median follow up for the 

cohort was 30.1 months and 78/85 (92%) of patients were treated surgically (Supplementary 

Table 3). Patients without events were censored at last radiographic follow-up. Survival 

probabilities were estimated using the Kaplan-Meier method and survival of groups was 

compared using a two-sided log-rank test. Regression analysis was performed by Cox 
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proportional hazards modeling, P-values were assessed using the log-likelihood test, and all 

P-values were two-sided. For regression analyses, log-transformed mean VAF and tumor 

volume measurements were used; log transformation was performed to produce normally 

distributed data. For patients without detectable ctDNA, a VAF of 0.001% was used. 

Continuous variables were standardized to enable comparison of hazard ratios and 95% 

confidence intervals using Cox models. The proportional hazard assumption of the Cox 

proportional hazard models (Fig. 1k and Extended Data Fig. 7e) was satisfied. We tested the 

proportional hazard assumption by Schoenfeld residuals and the P-values for the test of 

proportional hazards for each individual covariate are provided in Supplementary Table 11.

Characterization of clonal hematopoiesis in cfDNA and WBCs

To characterize clonal hematopoiesis (CH) in the cfDNA and WBC compartments (Fig. 2, 

Extended Data Fig. 8) we began with variants called as described in the “Error suppression 

and variant calling” section of the Methods with the following additional filters: (1) only 

nonsynonymous mutations were considered except for the positive selection analysis 

(Extended Data Fig. 8f) and the mutational signature analysis (Fig. 2g) for which 

synonymous mutations were also considered, (2) mutations were rescued from blacklisting 

if they were in the following 12 genes canonically associated with CH: ASXL1, PPM1D, 
DNMT3A, TET2, GNB1, CBL, JAK2, STAT3, GNAS, MYD88, SF3B1, TP53, and (3) 

mutations in canonical lung cancer driver genes36 were rescued from blacklisting if they had 

been observed in ≥ 10 COSMIC lung cancer cases (CosmicGenomeScreens v85).

Using matched white blood cell (WBC) sequencing, mutations identified in the cfDNA were 

labeled as WBC-, WBC+, or WBC-undetermined as follows:

i. A mutation was considered WBC+ if it was above background in matched 

WBCs as assessed using the same Monte Carlo approach used for tumor 

informed ctDNA detection and requiring a detection index P-value < 0.05.

ii. A mutation was considered WBC- if there were 0 supporting reads in the 

matched WBC DNA and there was sufficient depth in the matched WBC DNA 

to identify the mutation given the VAF observed in plasma. Specifically, a 

mutation was only labeled WBC- if the probability of observing ε 1 supporting 

read in the WBCs was > 95% given the VAF of the variant in the cfDNA and the 

positional depth in the WBCs.

iii. A mutation was considered WBC-undetermined if there were > 0 supporting 

reads in the WBCs but the detection index P-value was ≥ 0.05 (i.e. mutation was 

not significantly above background in WBCs) or if there were 0 supporting reads 

but the probability of observing the mutation in the matched WBCs was ≤ 95% 

given the VAF of the variant in the cfDNA and positional depth in the WBCs.

Only mutations identified de novo in the cfDNA for which presence in the matched WBCs 

could be confidently assessed (labeled as WBC- or WBC+) were considered for all the 

analyses in Fig. 2 and Extended Data Fig. 8 with the following exceptions:

i. For Extended Data Fig. 8b, mutations identified de novo from WBCs were also 

considered.
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ii. For the analysis comparing VAFs of mutations found in cfDNA and WBCs (Fig. 

2e), mutations called de novo in either compartment (cfDNA or WBCs) were 

considered as long as the presence or absence of the alteration could be 

confidently assessed in both tissue compartments, as detailed above. Therefore, 

mutations identified de novo in WBCs were labeled as cfDNA-, cfDNA+, or 

cfDNA-undetermined in the same manner that WBC support was determined for 

cfDNA mutations (see above). All mutations identified in either compartment are 

provided in Supplementary Tables 7–8.

Positive selection analysis of CH-derived cfDNA mutations

Positive selection analysis was carried out on all synonymous and nonsynonymous WBC+ 

and WBC- cfDNA mutations using the dNdScv R package37 with a modification to account 

for the fraction of a given gene covered by our sequencing panel (see Data and code 

availability section). Genes were considered under positive selection for nonsynonymous 

mutations if the dNdScv-reported Q-value for all substitution types was < 0.05. All genes 

meeting this threshold are displayed in Extended Data Fig. 8f.

Mutational signature analysis of WBC+ and WBC- cfDNA mutations

The contribution of known mutational processes to the mutations we observed in cfDNA 

was assessed with the deconstructSigs R package38 using the COSMIC signature set (v2). 

Due to the limited number of mutations per individual, mutations were pooled across 

individuals to evaluate mutational signatures present in WBC+ and WBC- compartments for 

a given comparison (e.g. WBC+ mutations in patients vs. WBC+ mutations in controls). 

Signatures recurrently observed across groups are displayed in Fig. 2g. To assess the 

statistical significance of differences in the contribution of Signature 4 (smoking) to different 

sets of mutations, we performed 1,000 permutations per comparison of interest in which 

mutation labels were scrambled and mutational signature contributions were recalculated 

with deconstructSigs. For each permutation, the difference in Signature 4 contributions 

between the two mutation groups was computed to generate a null distribution, and an 

empirical P-value was determined by comparing the observed difference in Signature 4 

between true mutation groups to the null distribution. To correct for mutation sets that had 

imbalanced label counts due to differences in cohort size (i.e. different numbers of mutations 

in the groups being compared), we randomly down-sampled the number of mutations to the 

less-represented label’s total in each iteration before recalculating the mutational signature 

contributions.

Data and code availability
Anonymized clinical and demographic data on the lung cancer cases and non-cancer controls considered in this study, as well as 
cfDNA metrics, cfDNA and WBC somatic mutation data, Lung-CLiP scores, and other relevant data are provided in the 
Supplementary Tables. The detailed patient-level genomic features used as input for the Lung-CLiP model (including genome wide 
somatic copy number alteration data and somatic mutation genotyping data with all the associated features considered in the Lung-
CLiP model), along with code for the Lung-CLiP classification model, the in silico simulation of the CAPP-Seq molecular biology 
workflow, and the modified dNdScv R functions37 (accounting for the fraction of a given gene covered by our sequencing panel) can 
be found at http://clip.stanford.edu. This website provides users with the code and data used for the training and validation of the 
Lung-CLiP model and the in silico simulation of the CAPP-Seq molecular biology workflow, allowing for reproduction of our results 
and figures. Due to restrictions related to dissemination of germline sequence information included in the informed consent forms used 
to enroll study subjects, we are unable to provide access to raw sequencing data. Reasonable requests for additional data will be 
reviewed by the senior authors to determine whether they can be fulfilled in accordance with these privacy restrictions.
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To assign each mutation a score reflecting the likelihood it resulted from smoking-associated 

mutational processes (Fig. 2h), we considered the trinucleotide context and base substitution 

for the mutation and then extracted the weight for that context from the COSMIC Signature 

4 vector as provided by deconstructSigs.

Droplet digital PCR

We performed an orthogonal validation of 15 WBC+ cfDNA mutations observed in a subset 

of patients and controls using droplet digital PCR (ddPCR). ddPCR was performed on a Bio-

Rad QX200 instrument as previously described39 using reagents, primers, and probes 

obtained from Bio-Rad. We validated four private mutations, as well as two recurrent 

hotspot mutations in DNMT3A and JAK2 that were observed in 11 cfDNA samples. We 

found that 100% (15/15) of the mutations we tested validated by ddPCR in both the cfDNA 

and WBC gDNA compartments and that VAFs quantified by CAPP-Seq and ddPCR were 

significantly correlated (Extended Data Fig. 10k).

Detection of genome-wide copy number variation from targeted sequencing

To identify copy number variants (CNVs), we utilized both the on- and off-target reads from 

CAPP-Seq. Briefly, each library in the CAPP-Seq workflow typically receives ~30–60 

million paired-end reads. These reads are mapped to the human genome (build GRCh37/

hg19), with ~60–80% of reads falling in the targeted genomic coordinates (“on-target 

reads”). The remaining 20–40% of reads predominantly map to the remainder of the human 

genome (“off-target reads”). To combine the high-depth data in our targeted sequencing 

space with the low-pass data in the off-target space, we treat each of these sets of reads 

separately, followed by statistical integration (described in detail in the “Detection of 

genome-wide copy number variation from targeted sequencing” section of the 

Supplementary Methods).

Lung-CLiP model

The Lung-CLiP model is an ensemble classification framework integrating the outputs of 

two constituent SNV and CNV models using five different classification rules, 5-nearest 
neighbor (5NN), 3NN, naïve Bayes, logistic regression and decision tree. Detailed 

descriptions of the SNV model, CNV model, and integrated Lung-CLiP ensemble classifier 

and the features used in each model are described in detail in the Supplementary Methods. 

Briefly, for the SNV model we developed a statistical model to distinguish cfDNA mutations 

observed in patients from those observed in controls. Within this model we leverage a semi-
supervised learning framework in which an elastic net logistic regression model is trained to 

distinguish tumor-adjudicated variants from non-adjudicated variants (‘tumor-adjudicated 

model’) in the subset of patients with matched tumors. This tumor-adjudicated model is used 

to label variants from patients without matched tumor samples. The SNV model is then used 

to assign scores to all variants in patients and controls using the labels assigned by the semi-

supervised tumor-adjudicated model. After variant scores have been assigned, we perform 

“Patient SNV Featurization” to summarize the variant scores in each sample. These 

summary scores are then used in a final elastic net logistic regression model trained to 

distinguish patients from controls. All these steps were performed in a nested patient-level 

leave-one-out framework in the training cohort.
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The CNV model enumerates altered genomic regions using two annotation lists: (1) a set of 

uniformly distributed 5 MB windows across the genome, and (2) recurrently altered regions 

identified by running GISTIC2.040 on 1,017 TCGA NSCLC cases (i.e. “hotspot regions”). 

Following filtering steps described in the Supplementary Methods, the number of 5 MB 

regions and GISTIC “hotspot” regions are used as features in the copy number model 

alongside a third feature which captures whether there is enrichment for regions known to be 

recurrently copy number altered in NSCLC (i.e. GISTIC) as opposed to uniform 5 MB bins.

In an exploratory analysis we combined the training and validation cohorts to examine 

whether sequencing depth or related metrics may influence detection by Lung-CLiP. We 

found that cfDNA input, plasma volume input, and unique sequencing depth were not 

significantly associated with the sensitivity of Lung-CLiP (Extended Data. Fig. 9g–i).

Statistical analysis

Statistical analyses were performed in R (version 3.4.0 and 3.5.2), MATLAB (R2018a) and 

GraphPadPrism7 (version 8.3.0). Statistical tests used throughout the manuscript include the 

Wilcoxon rank-sum test, paired t-test, Fisher’s Exact Test, Pearson correlation, Spearman 

correlation and Cox proportional hazards model. Unless otherwise specified, the sample size 

(n) denoted in the text, figure panels and figure legends refer to biologically independent 

individuals or mutations. Unless otherwise specified, all statistical tests were two-sided, no 

adjustments were made for multiple comparisons when performing grouped comparisons, 

and analyses for significant differences between two groups were conducted using the 

Wilcoxon rank-sum test. Unless otherwise specified, in violin plots the horizontal dashed 

lines denote the median and interquartile range, and in box plots the boxes capture the 

interquartile range, the center line denotes the median and the whiskers depict the extrema. 

When assessing correlation by Pearson or Spearman correlation, statistical significance was 

assessed using t-statistics. Survival probabilities were estimated using the Kaplan-Meier 

method and survival of groups of patients were compared using the log-rank test. Regression 

analysis was performed by Cox proportional hazards modeling, P-values were assessed 

using the log-likelihood test, and all P-values were two-sided. Multivariable analysis of 

clinical correlates of ctDNA burden was performed by linear regression. The Lung-CLiP 

classification framework employs the R packages glmnet, caret, ETC, pROC, survival, 

optparse and MASS. Confidence intervals for sensitivity, specificity, and AUC estimates of 

Lung-CLiP were generated by 1,000 bootstrap re-samplings of the Lung-CLiP classification 

scores in the training and validation cohorts. Details of the statistical models used in the 

Lung-CLiP classification framework and the in silico simulation of the CAPP-Seq molecular 

biology workflow can be found in the Supplementary Methods. A power analysis was 

performed to determine an appropriate size for the Lung-CLiP validation cohort. Assuming 

a specificity of 98% as determined in the training cohort, we calculated that 48 controls 

would have 80% power to detect that the true specificity is ≥ 90% (1 arm binomial test with 

one sided alpha = 0.05). Statistical significance for tumor-informed ctDNA detection was 

determined with our previously-described Monte Carlo-based ctDNA detection index6 as 

described in the Methods. Statistical significance of the smoking mutational signature 

contribution to select mutation sets was performed by permuting SNV labels as described in 
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the Methods. Positive selection analysis was carried out on WBC+ and WBC- cfDNA 

mutations using the dNdScv R package37 as described in the Methods.

Extended Data

Extended Data Figure 1. Development and experimental validation of an in silico simulation of 
the CAPP-Seq molecular biology workflow.
(a) The fraction of original unique (blue line) and duplex (green line) cfDNA molecules 

(‘Unique depth’, right axis) and total molecules including PCR duplicates (‘Nondeduped 

depth’, left axis) at each step in the CAPP-Seq molecular biology workflow were tracked 

using an in silico model based on random binomial sampling. In this model, only on-target 
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molecules are considered, with both individual DNA strands from original DNA duplexes 

tracked. Two simulations are shown, with 8.3% (top) and 100% (bottom) of amplified 

sequencing library input into the hybridization reaction for target enrichment. Additional 

details on the model are provided in the Supplementary Methods. (b-c) Empirical validation 

of simulation models. Comparison of median unique (b) de-duplicated (i.e. “deduped”) and 

(c) duplex depths recovered by sequencing following input of different fractions of 

sequencing library into the hybrid capture reaction. A total of 32 ng of cfDNA from each of 

4 healthy adults was used as input in each condition and each sample was downsampled to 

100 million sequencing reads prior to barcode-deduplication to facilitate comparison. 

Comparisons were performed with a paired two-sided t-test. (d-e) Comparison of (d) 

deduped and (e) duplex sequencing depths achieved following input of 8.3% (n=138 cfDNA 

samples) compared to ≥ 25% (n=145 cfDNA samples) of each sequencing library into the 

hybrid capture reaction. All samples had 32 ng of cfDNA as input to library preparation and 

were downsampled to 25 million reads prior to barcode-deduplication to facilitate 

comparison. In box plots the center line denotes the median, the box contains the 

interquartile range, and the whiskers denote the extrema that are no more than 1.5 × IQR 

from the edge of the box (Tukey style). (f-g) Comparison of deduped (f) and duplex (g) 

sequencing depths predicted by the model to that observed experimentally when 8.3% vs. 

100% of a sequencing library is input into the hybrid capture reaction. A range of capture 

efficiencies (7.5 – 75% hybrid capture efficiency) were considered in the simulation, where 

the confidence envelope denotes the resultant range of model predictions. The experimental 

data depicted in panels b-c (n=4 cfDNA samples per capture condition) was downsampled 

prior to barcode deduplication to enable comparisons across different sequencing read yields 

(x-axis). Dots denote the median and error bars denote the minimum and maximum.
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Extended Data Figure 2. The ROS scavenger hypotaurine reduces oxidative damage arising in 
vitro.
(a) Diagram illustrating the chemical mechanism by which carcinogens in cigarette smoke 

in vivo (top) or reactive oxygen species (ROS) in vitro (bottom) cause damage to DNA 

leading to the generation of 8-oxoguanine, which subsequently results in the generation of 

G>T transversions. (b) Diagram illustrating the proposed mechanism by which the addition 

of a ROS scavenger reduces oxidative damage-derived G>T artifacts in vitro. (c) 

Comparison of base substitution distributions in healthy control cfDNA samples (n=12 

individuals) captured with and without the ROS scavenger hypotaurine present in the hybrid 

capture reaction. The number of errors that are G>T transversions was compared using a 

paired two-sided t-test (P < 1×10−8). (d-e) Aggregate selector-wide nondeduped (d) and 
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deduped (e) background error rates summarizing results in panel c. Grouped comparisons 

were performed with a paired two-sided t-test. (f) Comparison of selector-wide error rates 

and base substitution distributions across two cohorts of healthy controls, where cfDNA 

samples were profiled with (“present,” bottom, n=104) or without (“absent,” top, n=69) the 

ROS scavenger hypotaurine present in the hybrid capture reaction. (g) Aggregate selector-

wide error rates summarizing results from panel f. In box plots the center line denotes the 

median, the box contains the interquartile range, and the whiskers denote the extrema that 

are no more than 1.5 × IQR from the edge of the box (Tukey style).

Extended Data Figure 3. Rationale for and overview of dual-index duplex adapters with error-
correcting barcodes (i.e. FLEX adapters).
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(a) An excess of molecular barcodes (i.e. unique identifier or “UIDs”) differing by 1 bp in 

cfDNA molecules with the same the start and end positions indicates that sequencing errors 

in UIDs can create erroneous UID families. Depicted is the expected and observed 

distribution of barcode Hamming edit distances (“UID edit distance”) when comparing 

UIDs from different groups of barcode-deduped (i.e. unique) cfDNA molecules sequenced 

using our previously described tandem adapters6. Tandem adapters utilize random 4-mer 

UIDs, resulting in 256 distinct UIDs that cannot be error corrected. The theoretical 

distribution of UID edit distances across all 256 UIDs is shown in orange (i.e. the fraction of 

UIDs that differ from one another by 1, 2, 3, and 4 bp). The green, red and blue bars 

represent the distribution of UID edit distances observed in healthy control cfDNA samples 

sequenced with tandem adapters (n=24 individuals). Green indicates randomly sampled 

UIDs, blue indicates UIDs from cfDNA molecules with different genomic start/end 

positions, and red indicates cfDNA molecules sharing the same start/end positions. UIDs 

differing by only one base are significantly overrepresented when comparing cfDNA 

molecules with the same start/end position (red bars) to each of the other UID distributions, 

suggesting that 1 bp errors are erroneously creating new UID families. Group comparisons 

were performed with a paired two-sided t-test, except when comparing to the theoretical 

distribution, for which an un-paired two-sided t-test was used (P < 1×10−8). Bars denote the 

mean and error bars denote the standard error. (b) Schematic overview of custom FLexible 

Error-correcting dupleX (‘FLEX’) sequencing adapters, enabling independent tailoring of 

UID diversity and multiplexing capacity. Shown is an initial DNA molecule to which ‘partial 

Y adapters’ containing duplex UIDs are ligated (1–2). Next, the two molecules derived after 

one round of ‘grafting PCR’ (which adds the first of two sample barcodes) are shown (3). 

This is followed by additional rounds of grafting PCR which add the second sample barcode 

and continues to amplify the library (4). Following grafting PCR, a magnetic bead cleanup is 

performed (not shown) which is followed by universal PCR (5), after which final sequencing 

libraries compatible with Illumina sequencers are shown (6). Dual index sample barcodes 

types are indicated in yellow (‘index 1’ or ‘i7’) and orange (‘index 2’ or ‘i5’) and UIDs are 

indicated by purple/green blocks. (c) Diagram depicting a detailed view of the ‘partial Y 

adapters’ used for initial ligation to cfDNA. The adapters contain a ‘1 bp offset’ indicated in 

green, followed by a 6 bp error correcting UID indicated in purple (Hamming edit distances 

≥ 3), followed by 0–3 ‘stagger’ bases indicated in red, followed by a 3’ ‘T-overhang’ for 

ligation. The 0–3 bp stagger bases increase sequence complexity early in the sequencing 

reads to obviate the need for PhiX (used for spectral diversity). Additional details on the 

FLEX adapters are provided in the Supplementary Methods.
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Extended Data Figure 4. Study and cohort overview.
(a) Study Overview. (b) Clinical and demographic information pertaining to the NSCLC 

patient and non-cancer control cohorts considered in this study. For categorical variable, the 

count is provided with the percent of the cohort in parentheses. For continuous variables, the 

median value is provided with the range of values in parentheses. NOS = not otherwise 

specified, a = AJCC v7 staging, b = Low-risk controls were considered for feature discovery 

and CH analysis only and were not used for Lung-CLiP model training, c = Sex was 

compared with a two-sided Fisher’s Exact Test and continuous variables (age and pack-

years) were compared with an un-paired two-sided t-test, d = Lung CLiP NSCLC patients 

and risk-matched controls were compared.
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Extended Data Figure 5. Biological determinants of tumor-informed ctDNA detection.
(a) Association between tumor-informed ctDNA detection and the number of mutations 

tracked using the population-based lung cancer-focused CAPP-Seq panel. All patients were 

considered and binned by the number of mutations identified in matched tumor biopsy 

samples. (b) Association between the number of mutations identified in matched tumor 

samples and tumor-informed ctDNA detection using the population-based lung cancer-

focused CAPP-Seq panel. (c) ctDNA detection statistics in 17 early-stage NSCLC patients 

profiled both with the population-based lung cancer-focused CAPP-Seq panel (left), and 

customized capture panels designed using tumor exome sequencing data (right). While all 

17 patients were undetectable using the population-based method, 10 (59%) were detected 

using customized panels. For samples without detectable ctDNA (open circles), the 
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corresponding patient-specific analytical limit of detection (LOD) is shown. For patients 

with detectable ctDNA, the mean variant allele frequency (VAF) observed across all tracked 

mutations is depicted (blue circles). (d) Comparison of the patient-specific analytical limit of 

detection (LOD) in patients with and without detectable ctDNA using tumor-informed 

CAPP-Seq. LOD was determined based on the binomial distribution, number of mutations 

tracked, and the number of cfDNA molecules sequenced (e.g. unique depth). The LOD from 

patients sequenced with the population-based lung cancer-focused CAPP-Seq panel only 

(n=68) and patients sequenced with customized capture panels designed using tumor exome 

sequencing data (n=17 patients) are displayed. (e) Detection of clonal and subclonal SNVs 

in cfDNA. The fraction of all clonal and subclonal SNVs detected in plasma are depicted in 

pie charts (two-sided Fisher’s Exact Test, P = 0.039) and the VAFs of clonal and subclonal 

SNVs detectable in plasma are compared using violin plots in which horizontal dashed lines 

depict the median and interquartile range. All mutations identified using the population-

based lung cancer-focused CAPP-Seq panel are considered. (f) The fraction of all mutant 

and wild-type cfDNA molecules (defined as in Fig. 1d) with fragment sizes falling within 

the size windows found to be ctDNA-enriched in Fig. 1e. (g) Violin plot displaying the 

enrichment of SNV VAFs following in silico size selection for the cfDNA fragment sizes 

found to be ctDNA-enriched in Fig. 1e. Enrichment is defined as the ratio of the SNV VAF 

following size selection to that observed prior to size selection. All mutations detectable in 

plasma prior to size selection (n=323 mutations) were considered. In the boxplot the center 

line denotes the median, the box contains the interquartile range, and the whiskers denote 

the extrema that are no more than 1.5 × IQR from the edge of the box (Tukey style). (h) 

Comparison of SNV VAFs before and after size selection. The dot plot displays the VAF of 

SNVs in plasma before and after size selection. The bar plot depicts the fraction of SNVs for 

which the VAF increased, decreased, or became un-detectable following size selection. All 

mutations detectable in plasma prior to size selection were considered. (i) Comparison of 

SNV VAFs prior to size selection in SNVs for which the VAF increased, decreased, or 

became un-detectable following size selection. (j) Tumor-informed ctDNA detection rates 

before and after size selection in patients sequenced with the population-based lung cancer-

focused CAPP-Seq panel (n=85 patients) and customized capture panels designed using 

tumor exome sequencing data (n=17 patients).
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Extended Data Figure 6. Clinical correlates of tumor-informed ctDNA detection.
(a) Relationship between metabolic tumor volume (MTV) measured by PET-CT and 

pretreatment ctDNA concentration measured in haploid genome equivalents per mL plasma 

(hGE/mL). All patients with detectable ctDNA and MTV measurements available were 

considered (n=46). Comparison performed by Spearman correlation. (b) Comparison of 

MTV in patients with and without detectable ctDNA. All patients with MTV measurements 

(n=81) were considered. (c) Multivariable linear regression was performed to associate the 

predictor variables (MTV, histology, and stage) with mean ctDNA VAF. For patients without 

detectable ctDNA, a VAF of 0.001% was used. All patients with MTV measurements (n=81) 

were considered. Additional details are provided in the Methods. (d) Comparison of 

pretreatment ctDNA levels in patients with adenocarcinoma histology and varying amounts 
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of ground glass opacity (GGO) on pre-treatment CT scans. Brackets above depict 

comparison by Fisher’s Exact Test for ctDNA detection in patients with < 25% GGO (24/48 

patients with ctDNA detected) vs. those with ≥ 25% GGO (2/13 patients with ctDNA 

detected). ND = not detected. All patients with adenocarcinoma histology and pre-treatment 

CT scans available were considered (n=61). (e) ctDNA detection rates in all patients (n=82, 

blue bars) and only those with adenocarcinoma histology (n=61, grey bars) with tumors that 

do or do not have evidence of necrosis on pre-treatment CT scans. Detection rates were 

compared by Fisher’s Exact Test. All patients with pre-treatment CT scans available were 

considered (n=82).

Extended Data Figure 7. Pretreatment ctDNA burden is prognostic in early-stage NSCLC.
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(a-d) Kaplan–Meier analysis for recurrence-free survival (a,b) and freedom from metastasis 

(c,d) stratified by pretreatment ctDNA level in all stage I-III patients (a,c, n=85) and stage I 

patients only (b,d, n=48). The median ctDNA level across the cohort (0.0031%) was used to 

stratify patients into ctDNA high and ctDNA low groups. P-values were calculated using the 

log-rank test. HR = hazard ratio. (e) Table summarizing the results of univariable and 

multivariable Cox proportional hazards models. Metabolic tumor volume (MTV) measured 

by PET-CT and ctDNA measurements (mean SNV VAF) were log transformed. Significant 

P-values (< 0.05) are bolded. For univariable analysis of ctDNA level and stage, all patients 

(n=85) were considered. For the univariable analysis of MTV, and for all multivariable 

analysis, only patients with MTV measurements available (n=81) were considered. 

Univariable and multivariable P-values were assessed using the log-likelihood test. (f) 
Example patients with stage I adenocarcinoma. On the left are two patients with high 

pretreatment ctDNA levels who developed distant metastases following surgery. On the right 

are two patients with undetectable ctDNA who achieved long term remissions following 

surgery.

Chabon et al. Page 29

Nature. Author manuscript; available in PMC 2021 June 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Figure 8. Biological features of cfDNA mutations reflecting clonal hematopoiesis.
(a) Flow chart depicting the fraction of WBC+ and WBC- cfDNA mutations affecting 

canonical CH genes in NSCLC patients and controls. WBC+ cfDNA mutations present at ≥ 

1% VAF in matched leukocytes more frequently affect canonical CH genes than those below 

1% (51/64 vs. 223/460 WBC+ cfDNA mutations present at ≥ 1% vs. < 1% VAF in matched 

leukocytes affect canonical CH genes, respectively; P = 1.9×10−6 Fisher’s Exact Test). Only 

mutations identified de novo in the cfDNA for which presence in the matched WBCs could 

be confidently assessed are considered (Methods). (b) The percent of mutations genotyped 

de novo from WBC DNA at VAFs < 2% and ≥ 2% affecting canonical CH genes in patients 

and controls (all patients and controls are considered. Comparison was performed by 

Fisher’s Exact Test. (c) The percent of controls (left) and patients (right) with one or more 
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mutations in the 10 genes that most frequently contained WBC+ cfDNA mutations. NSCLC 

patients and controls with only WBC+ mutations, only WBC- mutations, or both WBC+ and 

WBC- mutations in a gene are depicted in red, grey, and pink, respectively. The numbers 

next to each bar represent the percent of all cfDNA mutations in that gene that are WBC+ in 

NSCLC patients (right) or controls (left). NSCLC patients had significantly more WBC- 

cfDNA mutations in TP53 than controls (19/32 vs. 0/4 in patients vs. controls, respectively. 

* = Fisher’s Exact Test, P = 0.04). (d) Mutation frequency by gene for WBC+ cfDNA 

mutations observed across all NSCLC patients (n=104) and controls (n=98). The y-axis 

depicts the percent of the combined cohort with WBC+ cfDNA mutations affecting a given 

gene. All genes with mutations in 4 or more individuals in the combined cohort are depicted. 

(e) Scatterplot comparing the VAFs of WBC+ cfDNA mutations across multiple timepoints 

in NSCLC patients (left panel, n=54 mutations, n=8 individuals) and controls (right panel, 

n=12 mutations, n=6 individuals). Statistical comparison was performed by Pearson 

correlation on mutations detected at both time points. (f) Positive selection analysis was 

carried out on all synonymous and nonsynonymous WBC+ (n=693 mutations, red) and 

WBC- (n=526 mutations, grey) cfDNA mutations observed in NSCLC patients and controls 

using the dNdScv R package with a modification to account for the fraction of a given gene 

covered by our sequencing panel. The x-axis indicates the dNdScv adjusted P-value (Q-

value) for all substitution types. Genes were considered under positive selection if the Q-

value was < 0.05. All genes meeting this threshold are displayed. Additional details are 

provided in the Methods. (g) distribution of WBC+ and WBC- cfDNA mutations across the 

p53 protein in NSCLC patients and controls. (h) Short fragment enrichment of WBC+ and 

WBC- cfDNA mutations in NSCLC patients and controls, defined as the fold change in VAF 

for a given mutation following in silico size selection for the cfDNA fragment sizes found to 

be ctDNA-enriched in Fig. 1e. The center line denotes the median, the box contains the 

interquartile range, and the whiskers denote the 10th and 90th percentile values.
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Extended Data Figure 9. Feature importance and performance of Lung-CLiP.
(a) Biological and technical parameters specific to each individual variant used as features in 

a dedicated logistic regression ‘SNV model’. The feature names are depicted on the y-axis 

and the negative log10 of the P-value derived from comparing all post-filtered SNVs in 

NSCLC patients (n=574 mutations from n=104 individuals) vs. those in risk-matched 

controls (n=64 mutations from n=56 individuals) in a univariable linear model in the training 

set is shown on the x-axis. All features with a P-value < 0.01 are shown, P-values were 

calculated using an un-paired two-sided t-test. Additional information about each feature is 

provided in the Supplemental Methods. (b) Receiver operator characteristic (ROC) curves 

for the Lung-CLiP model depicting performance stratified by tumor stage in the training set 

(n=104 NSCLC patients and n=56 risk-matched controls). (c) Spectrum of clinicopathologic 
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correlates and selected features observed across the 46 early-stage NSCLC patients and 48 

risk-matched controls undergoing annual lung cancer screening in a prospectively enrolled 

independent validation cohort. (d) ROC curves for the Lung-CLiP model depicting 

performance stratified by tumor stage in the validation set (n=46 NSCLC patients and n=48 

risk-matched controls). (e) Comparison of the specificity observed in the validation cohort at 

different thresholds defined in the training cohort. Dots denote the median specificity across 

1,000 bootstrap re-samplings and error bars depict the interquartile range. Statistical 

comparison was performed by Pearson correlation on the non-bootstrapped data. (f-i) 
Comparison of (f) metabolic tumor volume, (g) cfDNA input to library preparation, (h) 

plasma volume used, and (i) unique sequencing depth in NSCLC patients correctly classified 

at 98% specificity (“Positive”) to those in patients incorrectly classified (“Negative”). All 

NSCLC patients in the training and validation cohorts were considered (n=103 patients with 

metabolic tumor volume measurements in f and n=150 patients in g-i and). In box plots the 

center line denotes the median, the box contains the interquartile range, and the whiskers 

denote the extrema that are no more than 1.5 × IQR from the edge of the box (Tukey style).
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Extended Data Figure 10. Technical reproducibility and benchmarking of CAPP-Seq and the 
Lung-CLiP model.
(a-j) Blood was drawn from each of three healthy donors into two STRECK tubes and two 

K2EDTA tubes and processed using the protocols used in our study. cfDNA extraction and 

library preparation were performed as described in the Methods with 25 ng of cfDNA input 

for each sample. Sequencing and data processing were performed as described in the 

Methods and each sample was downsampled to 80 million reads prior to barcode-

deduplication to facilitate comparison. (a) The Lung-CLiP model was trained on the 104 

NSCLC patients and 56 risk-matched controls in the training cohort and applied to the 

cfDNA samples extracted from plasma drawn into STRECK and K2EDTA tubes. The 

fraction of donors classified as negative by Lung-CLiP at the 98% (blue bars) and 80% (red 

Chabon et al. Page 34

Nature. Author manuscript; available in PMC 2021 June 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



bars) specificity thresholds defined in the training data are depicted. (b-h) Comparison of (b) 

median cfDNA fragment size, (c) cfDNA concentration in ng/ml, (d) deduped depth, (e) 

duplex depth, and (f-h) error metrics in cfDNA samples extracted from plasma drawn into 

the two tube types. cfDNA samples from the same donor are connected with dashed lines, 

comparisons were performed using a paired two-sided t-test. (i) Comparison of the fragment 

size distribution of cfDNA samples extracted into the two tube types. (j) Genotyping was 

performed as described in the Methods on cfDNA samples extracted from plasma drawn into 

the two tube types from the three donors. Donor #1 and donor #3 each had one mutation 

identified in cfDNA which was present in samples extracted from plasma drawn into both 

tube types and was also present in matched WBCs (WBC+). Donor #2 had no mutations 

identified in cfDNA samples extracted from plasma drawn into either tube type. (k) 

Orthogonal validation of WBC+ cfDNA mutations (n=15) using droplet digital PCR 

(ddPCR). Comparison of the VAF of WBC+ cfDNA mutations as measured by CAPP-Seq 

(x-axis) and ddPCR (y-axis). ddPCR was performed in triplicate on cfDNA (left) or WBC 

DNA (right) sequencing libraries. All 15 mutations (100%) were validated by ddPCR in 

both the cfDNA and WBC compartments. Triangles represent recurrent “hotspot” mutations 

in canonical CH genes and squares represent private mutations in non-CH genes. Statistical 

comparison was performed by Pearson correlation. (l-n) Tumor-informed ctDNA levels in 

NSCLC patients with and without adjustments for copy number state and clonality of tumor 

mutations. (l) VAFs of individual mutations (n=323) observed in cfDNA with different SNV 

VAF adjustment strategies. Comparisons were performed using a paired two-sided t-test. (m) 

The mean cfDNA VAF across all tracked mutations tracked in patients with detectable 

ctDNA (n=48) with the different adjustment strategies. Comparisons were performed using a 

paired two-sided t-test. (n) The same data as in m separated by stage. In box plots the center 

line denotes the median, the box contains the interquartile range, and the whiskers denote 

the extrema that are no more than 1.5 × IQR from the edge of the box (Tukey style). In l-n, 

copy number and clonality adjustment was performed as described in the Supplementary 

Methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Biological and clinical correlates of ctDNA burden in early-stage lung cancer patients.
(a) Summary of key methodical improvements to the CAPP-Seq workflow. (b) Tumor-

informed ctDNA detection rates across all patients (grey bars, n=85) and the subset of 

patients with an analytical limit of detection (LOD) < 0.01% (blue bars, n=43). (c) 

Pretreatment ctDNA levels, quantified as the mean variant allele frequency (VAF) across all 

mutations tracked, summarized by stage in NSCLC patients with detectable ctDNA or a 

LOD < 0.01%. (d) Fragment size distribution of cfDNA molecules containing mutations 

present in matched tumor samples (red line) and wild-type molecules overlapping the same 

genomic positions in the same patients (black line). Size distributions were compared by the 

Kolmogorov-Smirnov test. Fragment size regions enriched for ctDNA are shaded in red. (e) 

The relative enrichment of mutant vs. wild-type cfDNA molecules (i.e. “ctDNA 
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enrichment”) calculated from the data depicted in panel d. Fragment size regions enriched 

for ctDNA are shaded in red. (f) Pretreatment ctDNA levels summarized by stage in patients 

with detectable ctDNA. Brackets depict comparison of stage I (n=20) vs. stage II-III (n=28) 

patients. (g) Relationship between metabolic tumor volume (MTV) and pretreatment ctDNA 

level. All patients with detectable ctDNA and MTV measurements available were 

considered (n=46). Comparison performed by Spearman correlation. (h) ctDNA detection 

rates in patients with adenocarcinoma and non-adenocarcinoma histology. Comparison 

performed by Fisher’s Exact Test. (i-j) Kaplan–Meier analysis for freedom from recurrence 

stratified by pretreatment ctDNA level in (i) all stage I-III patients (n=85) and (j) stage I 

patients only (n=48). The median ctDNA level across the cohort (0.0031%) was used to 

stratify patients into ctDNA low and ctDNA high groups. HR=hazard ratio. (k) Results of 

multivariable Cox proportional hazards model for freedom from recurrence in patients with 

MTV measurements available (n=81). Points denote the hazard ratio and error bars depict 

the 95% CI.
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Figure 2. Clonal hematopoiesis (CH) is a major source of cfDNA variants and molecular features 
distinguish CH-derived from tumor-derived cfDNA variants.
(a) Left: Count of total, WBC+, and WBC- nonsynonymous cfDNA mutations in NSCLC 

patients, risk-matched controls, and low-risk controls. (*, P < 0.01; **, P < 0.001; ***, P < 

0.0001). Right: Percent of each cohort with one or more WBC+ cfDNA mutations in a 

canonical CH gene or in any gene. Comparisons performed using Fisher’s Exact Test (***, P 
< 1×10−5). (b) Percent of WBC+ cfDNA mutations that were private vs. those observed in 

two or more individuals. All NSCLC patients and controls were considered (n=202). (c) 

Percent of WBC- and WBC+ cfDNA mutations affecting canonical CH genes vs. other 

genes in controls. Comparison performed using Fisher’s Exact Test between WBC+ (n=200) 

and WBC- (n=22) cfDNA mutations. All controls were considered (n=98). (d) Variant allele 
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frequencies (VAFs) of cfDNA mutations observed in controls (left), and NSCLC patients 

(right). The color denotes whether a cfDNA mutation was WBC- (red) or WBC+ (blue) and 

the shape denotes the type of gene. Individuals with one or more cfDNA mutations are 

shown. Pie charts display counts of WBC- and WBC+ cfDNA mutations pooled by cohort. 

(e) Scatterplot depicting the VAFs of mutations in cfDNA and matched WBCs. The color 

denotes the type of gene and the shape denotes whether the mutation was observed in a 

NSCLC patient or control. All mutations genotyped de novo in the cfDNA or WBCs for 

which presence in the other compartment could be confidently assessed are shown. Marginal 

histograms display the VAF distribution of all mutations in cfDNA or WBCs. Comparison 

performed by Pearson correlation on mutations detected in both compartments (n=575). (f) 
Association between age and number of WBC+ or WBC- cfDNA mutations. All patients 

(n=104) and controls (n=98) were considered. Comparison performed by Pearson 

correlation on the un-binned data. (g) Mutational signature contributions in WBC+ and 

WBC- cfDNA mutations in NSCLC patients and controls compared to the CH and lung 

cancer literature17–19. Statistical significance was assessed for differences in signature 4 

(smoking) as described in the Methods (*, P = 0.005; **, P < 1×10−8). (h) Smoking 

signature contribution in WBC+ (n=13) vs. WBC- (n=19) TP53 mutations in NSCLC 

patients. (i) Fragment size distributions of cfDNA molecules containing mutations present in 

matched WBC DNA (“CH mutations,” top) or matched tumor samples (“tumor-

adjudicated,” bottom) compared to wild-type cfDNA molecules overlapping the same 

genomic positions in the same patients. Size distributions compared using the Kolmogorov-

Smirnov test.
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Figure 3. Development of the Lung Cancer Likelihood in Plasma (Lung-CLiP) method.
(a) Schematic of the Lung-CLiP classification framework. (b-c) Sensitivity of detection by 

stage at (b) 98% and (c) 80% specificity as determined in a leave-one-out cross validation in 

the training cohort. Bars denote the median sensitivity across 1,000 bootstrap re-samplings 

and error bars depict the interquartile range. (d) Clinicopathologic correlates and selected 

molecular features observed in the NSCLC patients and risk-matched controls undergoing 

annual lung cancer screening in the training cohort. (e) Sensitivity of ctDNA detection 

summarized by stage using tumor-informed CAPP-Seq and Lung-CLiP in patients with 

matched tumor tissue (n=67). Detection thresholds achieving ≥ 98% specificity were used 

for both approaches. Data is depicted as in panels b-c. Sensitivity comparisons performed by 

Fisher’s Exact Test on the non-bootstrapped data. (f) Relationship between ctDNA level and 

Lung-CLiP score in patients with detectable ctDNA by tumor-informed CAPP-Seq (n=39). 

The x-axis depicts the mean variant allele frequency (VAF) across all mutations tracked by 

tumor-informed CAPP-Seq and the y-axis depicts the log odds of the Lung-CLiP score. 

Comparison performed by Spearman correlation. (g) Metabolic tumor volume in NSCLC 

patients correctly classified at 98% specificity (“Positive,” n=40) and those incorrectly 

classified (“Negative,” n=40). (h) Sensitivity of detection by Lung-CLiP at 98% specificity 

in patients with adenocarcinoma vs. non-adenocarcinoma histology. Comparison performed 

by Fisher’s Exact Test.
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Figure 4. Validation of Lung-CLiP in a prospectively collected independent cohort.
(a-c) Comparison of (a) AUC and sensitivity at (b) 98% and (c) 80% specificity stratified by 

stage in the training (blue) and validation (red) cohorts. Bars denote the median value 

observed across 1,000 bootstrap re-samplings and error bars depict the interquartile range. 

AUC comparisons were performed using Delong’s method and sensitivity comparisons were 

performed using Fisher’s Exact Test on the non-bootstrapped data. The 98% and 80% 

specificity thresholds were defined in the training data. (d) Relationship between metabolic 

tumor volume (MTV) and sensitivity of Lung-CLiP at 98% specificity. Using 1,000 

bootstrap re-samplings, sensitivity was calculated over a 25-patient sliding window of MTVs 

(lower x-axis). The upper x-axis depicts the theoretical tumor diameter of a single lesion 

corresponding to the MTVs on the lower x-axis assuming a spherical geometry. All NSCLC 

patients with MTV measurements in the training (n=80) and validation (n=23) were 

considered. The blue line represents a linear fit of log10(MTV) vs. sensitivity and red shaded 

regions depict the 95%, 85%, 75%, 65%, and 55% confidence intervals. Comparison of 

sensitivity in a given window to the average MTV in that window was performed by 

Spearman correlation using the non-bootstrapped data.
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