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Abstract: While morphologic magnetic resonance imaging (MRI) is the imaging modality of choice
for the evaluation of ligamentous wrist injuries, it is merely static and incapable of diagnosing
dynamic wrist instability. Based on real-time MRI and algorithm-based image post-processing
in terms of convolutional neural networks (CNNs), this study aims to develop and validate an
automatic technique to quantify wrist movement. A total of 56 bilateral wrists (28 healthy volunteers)
were imaged during continuous and alternating maximum ulnar and radial abduction. Following
CNN-based automatic segmentations of carpal bone contours, scapholunate and lunotriquetral gap
widths were quantified based on dedicated algorithms and as a function of wrist position. Automatic
segmentations were in excellent agreement with manual reference segmentations performed by two
radiologists as indicated by Dice similarity coefficients of 0.96 & 0.02 and consistent and unskewed
Bland—-Altman plots. Clinical applicability of the framework was assessed in a patient with diagnosed
scapholunate ligament injury. Considerable increases in scapholunate gap widths across the range-of-
motion were found. In conclusion, the combination of real-time wrist MRI and the present framework
provides a powerful diagnostic tool for dynamic assessment of wrist function and, if confirmed in
clinical trials, dynamic carpal instability that may elude static assessment using clinical-standard
imaging modalities.

Keywords: magnetic resonance imaging; scapholunate ligament injury; carpal instability; real-time;
deep learning; dynamic instability

1. Introduction

Intercarpal ligament injuries are frequent clinical entities, lead to malalignment of
the carpal bones, and constitute the most common cause of carpal instability [1-4], thus
increasing the risk of developing osteoarthritis [5,6]. To prevent irreversible joint damage,
timely diagnosis of carpal instability is crucial.
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Morphologic magnetic resonance imaging (MRI) is the most sensitive imaging modal-
ity for carpal soft tissue evaluation. While static carpal instability becomes evident in the
neutral position and can be readily diagnosed using morphologic MRI, assessment of more
complex carpal instability patterns that manifest only during active wrist movement re-
mains difficult [7-10]. In clinical MRI exams, the wrist is immobilized to prevent movement
artefacts and insufficient image quality and, consequently, imaged in a merely static config-
uration, which renders the diagnosis of complex carpal instability patterns impossible [1].
To overcome these diagnostic shortcomings, several dynamic and fast-imaging techniques
have been introduced such as parallel imaging methods such as generalized autocalibrating
partial parallel acquisition (GRAPPA) [11] and sensitivity encoding (SENSE) [12], under-
sampling techniques combined with special image reconstruction pipelines such as k-t
GRAPPA and k-t SENSE [13] as well as the so-called real-time MRI technique. These tech-
niques enable very fast image acquisition, even of moving tissues and in real time [14-16],
including active joint movement and joint kinematics [1]. For real-time MRI data acquisi-
tion, different sequences such as VIBE (volumetric interpolated breath-hold), as true fast
imaging with steady state precession (TrueFISP) or highly under-sampled FLASH (fast
low-angle shot) sequences with a radial encoding scheme, have been used for dynamic
image acquisition [1,17,18]. However, as of today, only a few studies have reported the use
of real-time MRI for the visualization of carpal kinematics. Recently, Shaw et al. assessed
carpal instability using the VIBE sequence at a temporal resolution of 365 ms per image,
which may not be sufficient to detect fine alterations in wrist movement. Even though
in their study, the temporal resolution could be principally decreased to 135 ms, this ac-
celeration was realized at the cost of the increased noise and decreased signal-to-noise
ratio (SNR), which compromised the ability to accurately measure the scapholunate (SL)
gap width [1]. Given the potential benefits of the FLASH sequence for real-time MRI—i.e.,
non-linear inverse reconstructions with temporal regularization that allows autocalibra-
tion during parallel imaging by simultaneously estimating coil sensitivities and image
content [14]—it is principally possible to improve the temporal resolution to an effective
100 ms without time averaging, while upholding the spatial resolution [19]. This has
been demonstrated in FLASH-based real-time MRI of the temporomandibular joint [17,18],
aorta [20], and vocal tract during speech [21]. An overview of the basic principles of the
MRI techniques cited previously has been added to appendix Table S1. In real-time MRI,
the abundance of images acquired throughout the range-of-motion (ROM) brings about
particular post-processing challenges. In the context of dynamic wrist evaluation at high
temporal resolution, this necessarily entails tedious and labor-intensive measurements of
inter-carpal joint gap widths as surrogates of carpal instability patterns. Consequently,
there is a clear need to automatize carpal bone segmentations (that allow subsequent
algorithm-based configurational measures to be derived) to position real-time MRI as a
clinically useful technique. Convolutional neural networks (CNNs) lend themselves to
such automatic segmentation tasks and have been applied in various medical fields by
providing automatic segmentations of different entities and structures [22-27].

Against this background, our study’s objectives were to develop a CNN-based frame-
work for automatic segmentation and quantification of wrist configuration during dy-
namic movement, to validate these measures against manual reference measures, and to
demonstrate clinical applicability in volunteers and a patient. Our hypotheses were that
(i) CNN-based segmentations of the carpus and forearm and their quantitative evaluation
are as precise and accurate as manual reference measures, yet significantly faster, and that
(ii) alterations in carpal bone configuration as a sign of complex carpal instability can be
demonstrated in a patient based on the developed framework.

2. Materials and Methods
2.1. Study Design and Population

The study was designed as a descriptive observational in-vivo imaging study and
approved by the local ethics committee (Ethics Committee, Faculty of Medicine, Heinrich-
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Heine-University Diisseldorf, Germany, study number 2019-590). Written informed consent
was obtained from all participants prior to study initiation.

For the development of the framework, 56 bilateral wrists (28 healthy volunteers,
mean age: 30.7 £ 13.6 years; age range 22 to 66 years; seven females, 21 males) were
recruited among coworkers and students within the department and university. To assess
principal clinical applicability following the framework’s thorough validation on healthy
volunteers, a 42-year-old male patient with a partial SL ligament injury of the right hand as
determined by morphologic MRI was included and assessed versus a size- and gender-
matched healthy volunteer.

For the healthy volunteers, the exclusion criteria were as follows: history of surgery or
trauma to the wrist, acute or chronic wrist pain, or established diagnosis of osteoarthritis,
rheumatoid arthritis or other degenerative or inflammatory conditions of the upper ex-
tremity. Moreover, structural osseous and ligamentous integrity of the wrist and adjacent
structures was assessed using morphologic MRI prior to the real-time MRI measurements
as detailed below.

2.2. Image Data Acquisitions

MRI measurements were performed on a clinical 1.5-Tesla MRI scanner (MAGNETOM
Avantoft, Siemens Healthineers, Erlangen, Germany). All participants were positioned
prone and head-forward with the imaged upper extremity outstretched above their head
(“superman position”).

For static MRI, a four-channel flex coil (small, Siemens Healthineers) was wrapped
around the wrist for optimized SNR (Figure 1A). All volunteers underwent clinical-
standard MRI using T2-weighted (T2w) and proton density-weighted fat-saturated (PDw
fs) sequences in the three main orientations (Table 1) to reliably rule out any pre-existing
structural disorders of the wrists. D.B.A. (radiologist with five years of experience in
musculoskeletal imaging) evaluated the sequences and confirmed the absence of relevant
wrist pathologies in all volunteers.

Figure 1. Coil and measurement setups during static reference and dynamic real-time MRI measurements. (A) For static
measurements, a four-channel flex coil (Siemens Healthineers) was wrapped around the wrist to acquire the morphologic
sequences. Shown are a left forearm and hand that were immobilized and imaged for reference purposes. (B) Positioning
of a right wrist on the custom-made MRI-compatible movement device. The device has a mobile sliding tray (§) with
a predefined range and trajectory of movement (x) onto which the hand was placed. (C) Tourniquets (*) were used to
fix the forearm and prevent adaptive movement. The underside of the mobile sliding tray was coated with synthetic
polytetrafluoroethylene (“Teflon”) to reduce friction. Centered underneath the wrist is the pivot point (#), which connects the
mobile sliding tray and the fixed base plate. For dynamic measurements, a 24-channel spine matrix coil and an 18-channel
body coil (both from Siemens Healthineers) were positioned underneath (spine matrix coil) and on top of the device (body
coil) [not shown].

For dynamic real-time MRI during active radial and ulnar deviation, a custom-made
MRI-compatible movement device was used for radial and ulnar deviation during active
wrist movement (Figure 1B,C). A 32-channel spine matrix coil (direct connect spine 32,
Siemens Healthineers) underneath and an 18-channel body coil (Body 18, Siemens Healthi-
neers) on top of the wrist-loaded device that was centrally positioned in the scanner’s bore
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were used for imaging. Individually adjustable spacers allowed the coils to be placed as
close as possible to the wrist without restricting movement or being displaced through
movement. Placing the coils as close to the wrist as possible was essential for a sufficiently
high SNR. The wrist was loosely positioned on a sliding plate along the measurement
plane and the sliding plate was guided by a circular full-thickness grooved trajectory that
predefined the ROM from maximum ulnar abduction (30 to 35°) to maximum radial abduc-
tion (10 to 15°) and could be set individually by means of mechanical stoppers. To allow a
frictionless movement, the underside of the sliding plate was coated with synthetic polyte-
trafluoroethylene (“Teflon”, DuPont, Wilmington, DE, USA). Adaptive forearm movement
was prevented by two tourniquets attached to the movement device.

Table 1. Acquisition parameters of MR sequences. For the PD-weighted fat-saturated sequences,
duration refers to the acquisition of a single orientation. Total measurement time for the acquisition
of the three orientations was 8:42 min.

T2-Weighted PD-Weighted fs Radial Real-Time

Sequence type TSE TSE FLASH
Turbo Factor 10 10 n.a.
Orientation ax cor, ax, sag cor
Repetition time (ms) 5820 3200 4.5
Echo time (ms) 114 33 2.5
Field of View (mm) 150 x 150 120 x 120 168 x 168
Image matrix (pixels) 384 x 384 256 x 256 168 x 168
Pixel size (mm/pixel) 04 x04 0.5x 05 1.0 x 1.0
Flip angle (°) 15 180 7
Slices (n) 20 20 1
Slice thickness (mm) 3 2 6
Examination time (sec) 194 174 30

Abbreviations: cor—coronal, ax—axial, sag—sagittal, PD—proton density, fs—fat-saturated, TSE—turbospin-
echo, FLASH—fast low-angle shot, n.a.—not applicable.

Practically, all participants were instructed to perform continuous and alternating
radioulnar movement and to avoid any pronation, supination, flexion, or extension. Fol-
lowing out-of-scanner demonstrations, all participants trained to perform continuous
movement before the actual measurements. During the acquisition period of the FLASH
sequences of 30 s, each volunteer performed continuous radial to ulnar abduction and vice
versa, i.e., waving, for approximately 15 s (for one full radial to ulnar abduction).

In preparation of this study, optimization of the radial FLASH real-time MRI sequence
was performed to improve its temporal resolution while maintaining optimal SNR as well
as bone and soft tissue contrast. After thorough optimization and validation [data not
shown], sequence parameters of the real-time MRI sequence were selected as detailed
in Table 1. Data acquisition was based on 21 radial spokes. These spokes were applied
at complementary positions in five consecutive data sets. With the optimized real-time
MRI sequence, a temporal resolution of approximately 95 ms (corresponding to 21 times
TR = 4.5 ms) was realized without time averaging.

2.3. Manual Annotations and Reference Measurements

During each real-time FLASH sequence of 30 s, 300 images were acquired at a tempo-
ral resolution of approximately 95 ms per image. Consequently, only slight variations were
expected between consecutive images. To facilitate manual segmentations of the wrist, the
number of images was reduced considerably. To this end, all images acquired during one
complete movement cycle, ranging from maximum radial abduction to maximum ulnar
abduction, was selected by M.B. (radiologist with two years of experience in musculoskele-
tal imaging, reader 1) to be representative of the movement pattern of each volunteer and
wrist. Of the entire image set (approximately 80 images), 15 individual images at equal
temporal interval were selected for downstream analyses.



Diagnostics 2021, 11, 1077

50f17

A special graphical user interface, developed in-house and implemented in Python
(v3.8.4, Python Software Foundation, Wilmington, DE, USA), was used for manual labeling
and reference measurements by reader 1 and L.M.W. (radiologist with five years of experi-
ence in musculoskeletal imaging, reader 2). The following bone structures were segmented
along their outer bone cortices: (1) distal radius, (2) distal ulna, (3) scaphoid, (4) lunate,
(5) triquetrum, (6) hamate, (7) capitate, (8) trapezium and trapezoid (Figure 2) and served
as ground truth.

O distal radius
O distal ulna
B scaphoid

E lunate

[ triquetrum
[ hamate
O capitate

[ trapezium &
trapezoid

Figure 2. Exemplary color-coded manual segmentations of the wrist bones, i.e., carpal bones and distal
forearm (left). These manual segmentations served as the ground truth for subsequent automatization.
Uncolored anatomic structures are not part of the wrist and were considered as background.

In addition, wrist angle and SL and lunotriquetral (LT) gap widths were manually
measured in each selected image along the entire ROM by both radiologists (reader 1 and
reader 2). The wrist angle was determined by manually drawing two vectors with the first
vector placed centrally along the forearm and wrist (to represent the central axis of radius,
ulna, and carpus), and the second vector placed along the long axis of the capitate. The long
axis of the capitate connected the centers of the proximal and distal poles of the capitate.
In our study, radial deviation was defined by negative wrist angle values, while ulnar
deviation was defined by positive values. The SL gap width was defined as the distance
between the ulnar cortex of the scaphoid and the radial cortex of the lunate and measured
at the centers of both bones between the proximal and distal articular surfaces along
the proximal carpal row [1,8]. Accordingly, the LT gap width was defined as the central
distance between the ulnar cortex of the lunate and the radial cortex of the triquetrum.

2.4. Framework for Measurements of Carpal Configurations during Dynamic Wrist movement
2.4.1. Data Pre-Processing and Augmentation
For preparation of the image data, intensity normalization with adaptive window

fitting based on the image histogram was performed. The 10th and 99th percentiles
were determined for each image and the intensities were cropped above and below these
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thresholds. The images were then adjusted using the Z-score intensity normalization [28].
To increase spatial resolution for refined SL and LT gap definition, the MRI data were
biquadratically interpolated from 168 x 168 pixels to 336 x 336 pixels using a Gaussian
anti-aliasing filter. The size of the vector polygon masks was doubled accordingly.

The performance of deep neural networks directly correlates with the amount of data
available for training [29]. Systematic data augmentation and variation by transforming
the existing image datasets are important to improve the algorithm’s performance. To
this end, the acquired images were subject to systematic noising (i.e., Gaussian noise
o € [0, 0.2]), mirroring (along the x-axis), shifting (along the x-axis by up to £10%),
rotating (in the image plane by a € [—15°, 15°]), and zooming (by up to 10% in and
out). The manually defined segmentation masks were adjusted analogously based on the
corresponding transformations. When zooming and rotating, the images were interpolated
using the nearest-neighbour algorithm [30].

2.4.2. Segmentation Framework

For the semantic segmentations of the carpus and forearm in each image, a dedicated
framework was developed based on convolutional neural networks (CNNs). The structure
of our CNN was based on a classic symmetric U-Net [31,32]. The contracting path (left
side in Figure 3) consisted of repeated applications of two 3 x 3 convolutional layers, each
followed by batch normalization and rectified linear unit layers. For down-sampling, a
2 x 2 max-pooling layer with a step size of 2 was used. The expanding path (right side
in Figure 3) was symmetrically constructed. To fit the output of 64 feature vectors to the
given number of eight classes, we used a 1 x 1 convolutional layer at the end.

1021 1020\

@ two 3 x 3 convolutional layer @ 2 x 2 max-pooling layer ' 2 x 2 up-convolutional layer @ 1 x 1 out-convolutional layer

Figure 3. Convolution of an input MR image (left) inside the U-Net architecture and visualization of resultant bone

segmentations as its output (right). The number of channels is indicated under each convolutional layer. The reduction and

increase of the image resolution are indicated at the end of a block normalized to I = input size. Color-codes of the output

image correspond to the different classes of semantic segmentations.

2.4.3. Post-Processing

Although U-Nets perform well in pixel-level segmentation, inaccurate segmentations
may occur at the edges of the region-of-interest due to the loss of spatial information, i.e.,
spatial relations to the nearest neighbors, through the convolutions [32]. To improve the
CNN’s ability to accurately segment the carpal bone cortices, a conditional random field
(CRF) was applied. CRFs are widely used to combine the class values determined by the
CNN with the low-level information (direct neighbor pixel information) [33,34]. Therefore,
a CRF using mean-field approximation and convolutional approximation in the pairwise
potential term was applied alongside the U-Net for semantic segmentation of the data.
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The CNN-based segmentation framework segmented individual images independent
of their k-nearest temporal neighbors. To further stabilize the segmentations, an additional
post-processing algorithm was developed and implemented that corrected the segmenta-
tions of each pixel depending on four neighboring images (i.e., two images before and two
images after the current image). To this end, pixel allocations to distinct classes following
preliminary segmentations were weighted using Gaussian distributions of pixel allocations
over time. Each pixel’s cumulative allocations over time ranged from 0 (pixel was not
assigned to any class at any image over time) to 5 (pixel was assigned to a class at all time
points), with the weighting favoring the influence of nearest temporal neighbors. Then,
the mean value over time was calculated for each pixel. Using an empirical threshold of
0.6, any pixels above were assigned to the class, while any pixels below were assigned
to the background. The calculation was performed separately for each image and class.
Following the temporal post-processing, binary opening and closing operators (consid-
ering five connected pixels) were used to smooth the segmentation edges and fill holes
within the segmentations [35]. Finally, only the pixels that formed the largest connected
region for each class were included in the final segmentation mask. The dedicated post-
processing strategy also stabilized the determination of the wrist angles (see Section 2.4.5)
as it decreased sensitivity to isolated false-positive pixel segmentations and edges.

2.4.4. Training and Evaluation

The developed framework was trained on a computer workstation with a Ryzen 9
3900X central processing unit (AMD, Santa Clara, CA, USA), 32 GB of main memory and
a RTX 2070 Super graphics processing unit (NVIDIA, Santa Clara, CA, USA) with 8 GB
of video random access memory. Training and evaluation routines were implemented in
Python (v3.8.4) and the model was implemented in PyTorch, which is a library consisting of
machine learning models [36]. For training, the Adam optimizer [37] was employed using
an initial learning rate of 0.1 and a weight decay of 1 x 10~8. During training, the learning
rates were reduced by gamma 0.1 using multi-step scheduling. The model was trained
over 500 epochs with a batch size of 4 and the milestones of multi-step scheduling were set
at epochs 10, 50, 100, 150 and 250. Image datasets of 42 bilateral wrists (i.e., 21 volunteers)
were used for training, while image datasets of 14 bilateral wrists (i.e., seven volunteers)
were used for testing. Based on the 15 selected images per wrist (as detailed above), the
training and test datasets consisted of 630 images and 210 images, respectively.

Using the dice similarity coefficient (DSC) [38] that quantifies similarity between
two samples and ranges between 0 (i.e., no overlap) and 1 (i.e., complete overlap), our
framework’s segmentation performance was evaluated against the manual reference seg-
mentations. A sum loss function of the dice error function [39] and the Hausdorff distance
loss function [40] were used.

2.4.5. Algorithm-Based Measurements of Carpal Configurations

Based on the automatic segmentations of our framework, the diagnostic measures SL
and LT gap widths were derived as a function of wrist angle. Methodologically, measure-
ment of the SL and LT gap widths and the wrist angle were implemented in close emulation
of the manual reference measurements (see Section 2.4.2). First, the bone masks of the
scaphoid, lunate, and triquetrum were smoothed and connected for better generalization.
Second, the centerline along the scaphoid, lunate, and triquetrum was determined along
the carpal arcs of the proximal convexities and distal concavities of these structures [41].
Third, the distances between the intersections of this centerline with the ulnar cortex of the
scaphoid and the radial cortex of the lunate was defined as the SL gap width, while the
distances between the intersections of this centerline with the ulnar cortex of the lunate and
the radial cortex of the triquetrum was defined as the LT gap width (Figure 4A). Fourth, to
calculate the wrist angle, the minimum bounding boxes around the segmentation masks
of the distal row of the carpal bones as well as the radius and the ulna were determined.
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The wrist angle was then determined between the centers of the two bounding boxes
(Figure 4B).

1
{
[}
I
1
|
i
]
]
I
I
|
;
I

Figure 4. Graphical visualization of the algorithm-based measurements of carpal configuration. (A) Determination of
scapholunate (SL) and lunotriquetral (LT) gap widths. First, the bone masks of the scaphoid, lunate, and triquetrum were
connected (left). Then, the centerline of the three bones was determined along the carpal arcs (center). Eventually, the
SL (red) and LT (blue) gap widths were determined based on the intersections of this centerline and the bone contours.
(B) Determination of the wrist angle. The minimum bounding boxes around the bone contours of the forearm, i.e., radius
and ulna (red, left), as well as around the distal row of the carpal bones (blue, center) were determined. Then, the wrist
angle was calculated as the angle between the centers of the two boxes (yellow, right).

2.5. Statistical Analysis

Statistical analyzes were performed in R software (v4.0.3, R Foundation for Statistical
Computing) by K.L.R. For the calculation of the linear mixed model (LMM) as detailed
below, the statistical software SPSS (v27, SPSS Inc., Chicago, IL, USA) was used.

Descriptive statistics for the SL and LT gap widths, wrist angles, and DSCs were cal-
culated for all volunteers. Unless otherwise specified, data are given as means =+ standard
deviations (SDs).

To evaluate segmentation performance, the following comparisons were made: frame-
work vs. manual segmentation 1 (reader 1), framework vs. manual segmentation 2
(reader 2), and manual segmentation 1 vs. manual segmentation 2.

Bland—-Altman plots were used to visualize and comparatively evaluate automatically
and manually determined SL and LT gap widths as well as wrist angles.

An LMM was used to evaluate the SL and LT gap widths based on multivariable
statistics. The model included a subject-specific factor, the factors gender and wrist side,
and the covariates age and height. The measurement repetition of each hand was calculated
using the first-order autoregressive moving average model [42]. The model was fitted
using the constrained maximum likelihood approach [43,44].

Due to the exploratory design of this study and the large amount of statistically rele-
vant data, the significance level was set to p < 0.01. In addition, alpha error accumulation
was countered using the strict Bonferroni correction. This “lower-than-usual” significance
level was chosen to prevent inflation of the alpha error while maintaining statistical power
and reducing the false-negative rate.
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3. Results
3.1. Segmentation Performance

Automatic segmentations of the carpus and forearm were in excellent agreement
with the manual reference segmentations. The mean DSCs across the eight classes were
0.966 £ 0.017 (automatic vs. reader 1) and 0.953 + 0.016 (automatic vs. reader 2), respec-
tively (Table 2). Overall, DSC values between training and test datasets were closely related,
indicating the framework’s sufficient generalization. In comparison, the mean inter-reader
DSC was 0.962 + 0.018 (reader 1 vs. reader 2). Quantitative inter-reader and inter-method
similarity in terms of DSC values is detailed as the function of class, i.e., bone, and pair-wise
comparison in Table 2.

Table 2. Similarity of manual and automatic segmentations as indicated by dice similarity coefficients (DSC, mean +

standard deviation) for each of eight classes, i.e., anatomic forearm or carpal bones. Manual reference segmentations were

performed by two radiologists, i.e., reader 1 and reader 2.

Reader 1 vs. Reader 2 Automatic vs. Reader 1 Automatic vs. Reader 2

Training Data Test Data Training Data Test Data Training Data Test Data
Distal Radius 0.962 £0.060 0972 £0.014 0968 £0.061  0.969 +0.054 0964 +0.025 0.957 & 0.057
Distal Ulna 0.952 £0.044 0954 £0.025 0.960 £0.039  0.957 £0.056 0.948 £0.029  0.964 & 0.025
Scaphoid 0.964 £0.019 0957 £0.022 0970 £0.020 0.970 £0.022  0.952 £0.020  0.952 & 0.024
Lunate 0.966 £0.016 0964 £0.013 0.975£0.014 0972+£0.040 0958 £0.018  0.954 & 0.040
Triquetrum 0.964 £0.021  0.960 £0.019  0.969 £0.018  0.970 £0.021  0.955£0.017  0.950 & 0.026
Hamate 0.966 £ 0.018  0.964 £0.016 0968 £0.021 0971 £0.015 0.955+0.022  0.956 &+ 0.018
Capitate 0.969 £0.014 0969 £0.011 0976 £0.016 0977 £0.017 0963 +£0.017  0.963 & 0.017
Trapezium and Trapezoid ~ 0.960 £ 0.027  0.942+0.035 0.953 £0.026  0.924 £0.048  0.942+0.024 0919 £ 0.044

Evaluation of a complete real-time MRI sequence of 30 s duration that consisted of
300 images—i.e., automatic segmentation and determination of the SL and LT gap widths
and wrist angles—required 1:23 min based on the hardware configuration as detailed above.

3.2. Inter-Method and Inter-Reader Reliability Analysis

Bland—Altman plots were generated to systematically and comparatively evaluate
inter-method and inter-reader reliability in the quantification of the diagnostic measures,
i, SL and LT gap widths and wrist angle, on the test dataset. The distributions of
measurement differences between readers and the framework were found to be largely
balanced. No systematic differences or outliers were detected and the mean differences
were determined as 0 or close to 0 (Figure 5). Qualitative evaluation of segmentation
accuracy and coherence across the entire ROM was correct and is exemplified in Figure 6
and Video S1. The derived clinical measures SL and LT gap widths as well as wrist angles
were plausible, too.

3.3. Multivariable Comparative Analyses of the SL and LT Gap Widths

Based on the LMM, we found that in the healthy volunteers, the factors wrist angle,
side, and height significantly influenced the SL or LT gap widths, respectively, across the
ROM (Table S2). For the comparisons of wrist side and gender, the covariances were cor-
rected to their mean (wrist angle: 9.65°, height: 1.79 m, age: 30.74 years). The calculations
were based on the fully automated analyses of our framework. In total, 16,800 real-time MR
images (56 wrists from 28 volunteers) were analyzed. In the following, the mean values
refer to the estimates of the LMM; therefore, the standard error is given instead of the
standard deviation. Furthermore, the 99% confidence intervals (CI) refer to the distribution
of the estimated means.

For the SL gap width, we found significant associations with the factors side (p < 0.001)
and wrist angle (p = 0.002.) (Table S2). The estimated mean SL gap width was 1.25 mm (99%
CI 1.12; 1.40) for the left hand and 1.88 mm (99% CI 1.75; 2.02) for the right hand (Table 3).
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For the covariate wrist angle, the estimated fixed parameter was —0.002 &= 0.001 mm/degree
(Table S1); therefore, we found a slight but significant decrease of the SL gap during ul-
nar abduction. No significant dependence on the factors gender, height or age could be
observed (Table S2).
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Figure 5. Bland—Altman plots to evaluate inter-method and inter-reader reliability. Automatic segmentations and subse-

quently determined diagnostic measures, i.e., scapholunate (SL) gap width (A,D,G), lunotriquetral (LT) gap width (B,E H),

and wrist angle (C F I), were evaluated against the manual reference measurements by two radiologists (reader 1, reader 2).

Y-axes indicate the respective measures’ inter-method or inter-reader differences, while x-axes indicate the mean measure.

Visualized are the 210 values of the test datasets as derived from 15 representative images across the entire range-of-motion.
Red lines indicate the mean of the differences and gray dashed lines the 95% confidence intervals.

For the LT gap width, there was a significant influence of wrist angle (p < 0.001) and
body height (p < 0.001). The fixed parameters were —0.003 £ 0.001 mm/degree for the
wrist angle and 0.019 & 0.005 mm/cm for the body height. In contrast, the factors gender,
side, and age had no significant influence (Table 3 and Table S2).

3.4. Assessment of Clinical Applicability in a Patient

To demonstrate clinical applicability of the developed framework, SL and LT gap
widths were assessed as a function of ROM in a patient with an established diagnosis of SL
ligament injury (male, 42 years) and compared with a gender- and height-matched healthy
volunteer (male, 42 years). The patient had sustained a partial SL ligament injury (dorsal
component of the SL ligament) of his right wrist four years earlier and was still symptomatic
with pain under stress and subjectively decreased ROM. Despite his symptoms, he was
able to move his wrist continuously in the device. For ligament-intact wrists (i.e., left wrist
(patient), both wrists (volunteer)), limited variability in SL gap width was observed as
a function of wrist angle and along the entire ROM with stable SL and LT gap widths
of approximately 1.5 to 2 mm and 1 to 1.5 mm, respectively (Figure 7A). In contrast, the
patient’s injured wrist exhibited SL and LT gap widths that changed considerably with
wrist angle, in particular in pronounced ulnar abduction. While between 10° of radial
abduction and 10° of ulnar abduction, the SL and LT gap widths remained about constant
at approximately 4 mm and 0.7 mm, respectively; the gap widths decreased to 1 mm
(SL gap width) and increased above 1 mm (LT gap width) with further ulnar abduction
(Figure 7A). In addition, the injured wrist’s ulnar abduction was decreased compared to
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the contralateral side (Figure 7A). Alongside dynamic changes of the carpal configuration,
constitutively higher SL and lower LT gaps were demonstrated throughout the entire active
ROM when compared to the matched healthy wrist (Figure 7B).

Figure 6. Consecutive still images of a left wrist across the entire range of active radioulnar movement that ranged from

maximum radial abduction to maximum ulnar abduction (A-H). The carpus and forearm are color-coded as in Figure 2

and overlaid onto the morphologic images. Inset (lower left) are the resultant wrist angles (“angle”), LT gap width (“LT”),

and SL gap width (“SL”). The corresponding video that visualizes fluent movement across the entire range-of-motion is

appended as Video S1.

Table 3. Estimated mean values of scapholunate (SL) and lunotriquetral (LT) gap widths (mm)

as a function of gender and side based on a linear mixed model. The model included the fixed

effects gender and side as well as the covariates wrist angle, height, and age. For the calculation,

16,800 real-time MR images of 56 wrists (28 healthy volunteers) were included.

Model Estimates 1

Factors Subfactors 3
Mean Value 99% Confidence Interval
! 1.52 1.41 1.62
Gender mate
SL gap width female 1.62 1.38 1.86
ight 1. 1.7. 2.02
Side rig 88 5 0
left 1.26 1.12 1.40
! 1.2 1.1 1.37
Gender mate 8 o 3
LT gap width female 1.42 1.22 1.63
ight 1.37 1.25 1.49
Side e
left 1.33 1.22 1.45

! The covariates were corrected for a wrist angle of 9.65°, a height of 1.79 m, and an age of 30.74 years.
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Figure 7. Quantitative and qualitative changes in carpal configurations in a patient with a partial scapholunate ligament

rupture and a gender- and size-matched healthy volunteer during active radioulnar movement. (A) SL and LT gap widths

are given as a function of wrist angle across the range-of-motion. The gap widths are indicated as means (dots) and standard

deviations (whiskers). A total of 300 MR images per wrist were analyzed and quantified by our framework. Indicated

are the measured SL and LT gap widths of the wrist-injured patient (partial SL ligament rupture, “patient right”, red), the
contralateral wrist (“patient left”, purple), and the corresponding wrists of the matched and healthy volunteer (“volunteer
right”, green; “volunteer left”, yellow). For the sake of visualization, the wrist angles are grouped at intervals of 5°. (B) Three

exemplary MR images are shown for the patient and the volunteer at various positions throughout the active radioulnar

movement range. The increased dehiscence of the SL gap of the injured wrist (white arrows) is particularly obvious in the

neutral position and ulnar abduction and at the proximal portion of the SL gap.

4. Discussion

In our study, we could successfully image, process, analyze, and quantify active
radioulnar wrist movement to automatically determine the SL and LT gap widths as a
function of wrist angle using CNN-based semantic segmentation of the carpus and forearm.
With a total acquisition time of the real-time FLASH MRI sequence of only 30 s, sufficient
image data of active wrist movement could be acquired to derive diagnostic measures.
In addition, a dedicated post-processing pipeline was implemented based on a cohort of
healthy volunteers and demonstrated to be applicable in a patient with SL ligament injury.
With the diagnostic capabilities of morphologic MRI limited in the detection of complex
carpal instability patterns, there is a clinical need for dynamic imaging modalities. Wrist
cinematography assesses altered carpal kinematics in patients with suspected SL injury,
yet the use of ionizing radiation, lack of standardization, and inability to visualize soft
tissues limit its clinical application [9]. Our approach systematically improved dynamic
imaging of the wrist based on real-time MRI with regards to image acquisition and post
processing. This was realized by bringing together an optimized morphologic FLASH
sequence with high temporal resolution, standardized active radioulnar movement of
the wrist, and sophisticated CNN-based segmentation and algorithmic determination of
diagnostic measures. However, the high temporal resolution resulted in more than 10
images being acquired per second, which rendered manual segmentation and evaluation
impractical, even in controlled research contexts, and necessitated further automatization.
As suggested by earlier studies that indicated the potential of CNNs in the automated
and reliable segmentation of clinical MRI datasets in recent years [27,28,45,46], this study
confirmed the high accuracy and reliability of CNN-based semantic segmentations in the
context of dynamic wrist imaging.

Previous studies reported that radial sampling schemes are less sensitive to movement
artifacts (due to the inherent averaging of low spatial frequencies) and are therefore well
suited for the assessment of active movement [1,8]. In a recent study by Shaw et al. [1],
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real-time MRI was used to assess dynamic changes in carpal configuration during active
movement. Using a temporal resolution of 315 ms, Shaw et al. proved that accurate manual
measurements of diagnostic measures of carpal configurations were feasible. However,
while their gradient-echo sequence’s temporal resolution could be reduced to 135 ms per
image, this acceleration came at the cost of similarly reduced image quality that may
compromise the ability to accurately measure carpal configurations. Our optimized real-
time radial FLASH sequence allows the quantification of the SL and LT gap width using a
temporal resolution of approximately 95 ms. This acceleration did not induce a relevant
loss of image quality and, consequently, the CNN-based post-processing quantification
technique was able to segment and evaluate all acquired images without additional user
input. Unlike other real-time MRI techniques, the FLASH sequence used in our study is
characterized by “true” temporal resolution, which means that the images are determined
based on the nonlinear inverse reconstructions without temporal averaging. Other real-
time MRI techniques are based on the “sliding window technique”, which means that
the k-space lines are only partially updated for spatial resolution. Consequently, the high
spatial resolution is thus ensured by temporal averaging; the true temporal resolution
is therefore considerably longer. The FLASH sequence, on the other hand, is based on
a nonlinear inverse reconstruction technique; thus, the high temporal resolution is not
lost [19]. Our framework requires 1:23 min for complete processing of a complete real-time
MRI sequence of 30 s duration. Thus, the post-processing pipeline is unlikely to lead
to any significant delays if used in the clinical routine, and is thus well poised to be of
diagnostic assistance.

Our framework is also characterized by an excellent segmentation performance with
mean DSC values of >0.96. Bland—-Altman plots showed no systematic and method-related
differences when comparing manual and automatic measurements. Based on the LMM,
28 healthy volunteers were compared for SL and LT gap width; here, the estimated mean
value for SL gap width was 1.52 mm in males (99% CI 1.41, 1.62) and 1.62 in females (99%
CI 1.38, 1.86), which is within the range published in the literature [47]. In comparison, the
SL gap width increased in a patient with a partial SL ligament rupture, which is consistent
with other literature data [9,48]. In addition, the patient showed a significantly stronger
dependence of the SL and LT gap width on wrist angle, i.e., hand position, as compared
with the matched healthy volunteer. Furthermore, we observed significantly (p < 0.001)
smaller mean SL gap widths for the left side (1.26 mm [99% CI1.12, 1.40]) than the right
side (1.88 mm (99% CI 1.75, 2.02)). Even though the exact reason for this difference remains
speculative, it may involve the handedness of the volunteers that, unfortunately, had not
been registered in this study and remains to be evaluated in larger clinical trials.

Although we found scientifically and clinically encouraging results, some limitations
should be mentioned. First, our optimized real-time MRI framework for image acquisition
and post-processing can only indirectly assess ligament integrity. While direct imaging
of the SL ligament has already been performed using longer repetition times [49,50], this
modification would decrease temporal resolution, and thus could possibly compromise
the evaluation of dynamic wrist movement. Second, clinical use of real-time MRI may
be limited in patients with posttraumatic limitations of mobility due to pain, swelling,
tension, or haemarthrosis so that indications may be limited to more chronic cases. Due
to the inability to directly assess the carpal soft tissues as outlined above, the current
real-time MRI technique may not visualize ligament tears or strains or other non-bony
stabilizers of the wrist. Third, our healthy wrist cohort was relatively young and may not be
representative of the full age spectrum of clinically relevant wrist pathologies. Fourth, our
multivariable analyses were based on an LMM and assumed that the dependent variables
SL and LT gap widths behave linearly with the fixed factors and covariates. However,
due to the small number of participants, it is not possible to compare different higher-
order models with respect to their predictive performance. In addition, only the main
factors were compared; whether these factors are further conditional on each other was not
analyzed. Fifth, in patients with advanced carpal instability, aberrant rotational movement
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of the carpus during active movement could complicate the automatic segmentation
and algorithm-based measurements. While real-time MRI techniques that cover larger
volumes have already been implemented [1], such volumetric approaches come along
with lower spatial and temporal resolutions and limitations in SNR. For clinical use, it
may thus be beneficial to increase the number of slices measured so that the technique
is more robust to out-of-plane bone movement. Sixth, the framework we implemented
only acquires various clinical parameters. However, previous studies have shown that
systems such as support vector machines and CNNs can be used to automatically classify
the extracted features in terms of healthy and diseased and in terms of different clinical
conditions, respectively [51,52]. In the study by Dachena et al., such systems achieved over
95% accuracy [52]. In follow-up studies, it is therefore of interest to investigate different
clinical conditions of carpal instability and to divide them into groups with respect to
their features. Seventh, our proposed framework for assessing complex carpal instability
has been demonstrated on one patient only with static carpal instability that had been
diagnosed with clinical-standard static MRI. It remains to be seen in larger clinical studies
whether the framework can be used to assess more complex instability patterns including
dynamic carpal instability. Eighth, to sufficiently enable SNR for our MR measurements at
1.5 Tesla, 21 spokes were acquired per image. Increasing the field strength would enable
an increase of SNR or an acceleration of acquisition speed. For example, Krohn et al. was
able to acquire real-time images of the temporomandibular joint at 3 Tesla with 11 spokes
per image [18].

5. Conclusions

The combination of advanced image acquisition and post-processing techniques
renders dynamic wrist assessment across the entire range of radioulnar active movement
feasible, both in healthy volunteers and ligament-injured patients. By bringing together
standardized real-time MRI of the wrist at high temporal resolution with maintained
spatial resolution and a CNN-based semantic segmentation approach with subsequent
quantification of carpal configuration (in terms of SL and LT gap widths as a function of
wrist angle), our framework provides a powerful diagnostic tool for dynamic assessment
of wrist function. If confirmed in clinical trials, more complex carpal instability patterns
that may elude static assessment using clinical-standard morphologic MRI may eventually
be assessable non-invasively and without ionizing radiation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/diagnostics11061077/s1, Table S1: overview of a selection of fast MR sequences with a short
description of the basic principle, Table S2: summary of the linear mixed model; Video S1: continuous
alternating active radioulnar abductions (“waving”) of the left wrist of a healthy volunteer as imaged
and processed by the framework.
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