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Abstract: The conventional oral administration of many nutraceuticals exhibits poor oral bioavailabil-
ity due to the harsh gastric conditions and first-pass metabolism. Oral mucosa has been recognized
as a potential site for the delivery of therapeutic compounds. The mucoadhesive formulation can
adhere to the mucosal membrane through various interaction mechanisms and enhance the retention
and permeability of bioactive compounds. Absorption of bioactive compounds from the mucosa can
improve bioavailability, as this route bypasses the hepatic first-pass metabolism and transit through
the gastrointestinal tract. The mucosal administration is convenient, simple to access, and reported
for increasing the bioactive concentration in plasma. Many mucoadhesive polymers, emulsifiers,
thickeners used for the pharmaceutical formulation are accepted in the food sector. Introducing
mucoadhesive formulations specific to the nutraceutical sector will be a game-changer as we are
still looking for different ways to improve the bioavailability of many bioactive compounds. This
article describes the overview of buccal mucosa, the concept of mucoadhesion and related theories,
and different techniques of mucoadhesive formulations. Finally, the classification of mucoadhesive
polymers and the mucoadhesive systems designed for the effective delivery of bioactive compounds
are presented.

Keywords: bioavailability; mucosal delivery system; nutraceuticals; bioactive compounds; films;
wafers; 3D printing; personalized formulation

1. Introduction

Nutraceutical, a hybrid term for denoting “nutrition” and “pharmaceutical”, was
coined in 1989 by Stephen L. DeFelice, founder and chairman of the Foundation for Inno-
vation in Medicine (FIM). DeFelice defined nutraceutical as “any substance that is a food
or a part of the food and provides medical or health benefits, including the prevention and
treatment of disease” [1,2]. Recently, nutraceuticals have gained much attention for the ben-
efits of reducing lifestyle-associated diseases, including arthritis, asthma, type II diabetes,
obesity, cardiovascular disease, and hypertension. However, the nutraceutical compound
may possess poor physical stability, permeability, and bioavailability, which limits the
absorption from the GI tract. This poor absorption pattern of conventional nutraceuti-
cal formulation put pressure on the research scientist to deliver nutraceutical/bioactive
products more bioavailable through oral administration [3].

Among many administration routes of therapeutic formulation, consumers prefer
oral administration as it does not need any supervision. However, the oral route of
administration of nutraceuticals possesses major disadvantages such as degradation of
therapeutic activity by gastrointestinal enzymes and first-pass metabolism, leading to
poor bioavailability [4]. The oral mucosal delivery system is a widely accepted novel
administration route for pharmaceutical formulations. Thus, the oral mucosal delivery
system is appreciated for avoiding the first-pass metabolism and enzymatic degradation
in the GI microflora and achieves immediate and controlled release action. This review
is aimed to narrate the application of mucoadhesive dosage in nutraceutical aspects that
might be a useful tool for designing novel mucoadhesive delivery systems.
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2. Mucoadhesion

The mucoadhesion concept has attracted much attention in the pharmaceutical sector
and is effectively used as a route of administration. The mucus membrane (also called
mucosa) is a moist tissue lining that covers the organs and cavities such as the mouth,
nose, eyelid, gut, and rectum. Leung and Robinson [5] describe mucoadhesion as the
interaction between a mucous surface and a synthetic or natural polymer. The polymer
carrier containing therapeutic material will adhere to the targeted mucosa for an extended
period, thereby increasing its permeation and bioavailability [6]. Many readers may confuse
the term “mucoadhesion” with “bioadhesion”. In mucoadhesion, the polymer is attached
to mucus surface (substrate), whereas in bioadhesion, the polymer is attached to the
biological surface (it may be epithelial tissue or mucus coat on the surface of the tissue) [7].
Oral mucosal delivery is further classified into three categories: (i) sublingual delivery,
systemic delivery of therapeutic compounds through the mucosal surface of the mouth;
(ii) buccal delivery, administration through the mucosal linings of cheeks (buccal mucosa);
and (iii) local delivery, administration through the oral cavity. The buccal mucosa is widely
applicable for drug administration, and sublingual delivery is useful for the fast onset of
therapeutic action (ex: sublingual nitroglycerin for the treatment of Angina pectoris).

2.1. Oral Mucosa

A deep understanding of the histology of mucosa is necessary for fabricating the
mucoadhesive nutraceutical formulation. Oral mucosa is a moist membrane lining on the
surface of the oral cavity apart from teeth. It occupies a total surface area of 200 cm2 and
consists of two anatomical and functional layers: (i) stratified squamous epithelium at the
outermost layer, and (ii) an underlying basement membrane of mesodermal origin, lamina
propria (see Figure 1) [8].
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Figure 1. (A) Schematic diagram of the oral mucosa; (B) histological section of the hard palate to
show the tissue components (Reprinted with permission from Chen et al., 2015 [9]).

The epithelium (a protective layer) of the oral mucosa comprises approximately
40–50 cell layers thick, and it is divided into the nonkeratinized and keratinized epithelium.
The differentiation of keratinized and nonkeratinized epithelia is due to the presence or
absence of a cornified surface layer. Keratinized epithelium is found in the hard palate
and non-flexible regions (subject to mechanical stress) of the oral cavity, containing neutral
lipids (ceramides and acylceramides) for barrier function. In contrast, nonkeratinized ep-
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ithelium found in the soft palate, sublingual, and buccal region, originating from the basal
cells, containing a small amount of neutral polar lipids (cholesterol sulfate and glucosyl
ceramides) with a lack of acylceramides [10,11]. These nonkeratinized epithelia received
considerable attention among researchers for delivering their therapeutic formulation for
their low enzymatic activity, highly vascularized, and permeability characteristics than
keratinized epithelia [12]. Pramanik et al. [13] measured the thickness and protein concen-
tration of mucosal fluids at four mucosal surfaces (anterior hard palate, buccal mucosa,
anterior tongue, and lower labial mucosa). Anterior hard palate and the labial mucosa
were reported for thin mucosal surface and high concentration of protein (Table 1).

Table 1. Thickness and protein content of oral mucosa collected from the healthy volunteers (Reprinted with permission
from Pramanik et al., 2010 [13]).

Saliva/Mucosal Surface Mucosal Surface Condition Thickness of Mucosal Fluid (µm) Protein Concentration (mg mL−1)

Unstimulated whole-mouth saliva n/a n/a 3.07 ± 0.27
Anterior hard palate Wet 9.6 ± 3.0 22.0 ± 5.5

Buccal mucosa
Wet 39.5 ± 7.4 7.1 ± 0.6
Dry 17.1 ± 3.4 19.6 ± 7.4

Anterior tongue Wet 54 ± 5.8 3.3 ± 0.7
Dry 12.3 ± 2.2 12.5 ± 2.6

Lower labial mucosa
Wet 20.8 ± 2.5 22.2 ± 4.3
Dry 6.0 ± 0.6 41.3 ± 13.5

Oral mucosa was reported for its high deformation under compression and exhib-
ited dynamic response over time under loading and unloading, attributed to the fluidic
components within the mucosa matrix. Stiffness of the mucosa is attributed to both the
solid matrix structure (e.g., epithelial layer, fibrous network, blood vessel, etc.) and fluid
components (e.g., interstitial fluid, blood) [9]. Further, the permeability of buccal mu-
cosa is 4–4000 times greater than that of skin [14], and there is a considerable difference
in permeability between regions of the oral cavity in the order of sublingual > buccal >
palatal [15]. The permeability barrier function is responsible for protecting endogenous and
exogenous molecules. Permeability of oral mucosa is ensured by the intercellular spaces
of superficial epithelial layers and submucosa. The intercellular lipid content is migrated
to the apical cell surface to fuse with cell membrane and the lipid content is discharged
into intercellular space to form a barrier of 200 µm superficial layer [11]. Marxen et al. [16]
reported that epithelium acts as a strong barrier for the permeation of nicotine and manni-
tol across the porcine buccal epithelium and buccal submucosa. Nicotine permeability at
submucosa (Papp,submucosa = 2.41 × 10–5 ± 0.17 × 10–5 cm/s; thickness = 635 ± 55 µm) was
significantly higher than the epithelium (Papp,epithelium = 1.20 × 10–5 ± 0.24 × 10–5 cm/s;
thickness = 423 ± 46 µm), irrespective of the thickness. On the other hand, the submucosal
permeation of mannitol (Papp,submucosa = 1.96 × 10–5 ± 0.16 × 10–5 cm/s) is similar to
nicotine, however the permeation across epithelium is negligible. These findings revealed
that epithelium contributes a major barrier property for the permeation of drugs and the
requirement of choosing the right mucoadhesive enhancers for effective delivery.

2.2. Absorption Mechanism

Oral epithelial cell membranes are lipophilic; however, the space between the ep-
ithelial cells is hydrophilic and results in hydrophilic and lipophilic regions. Accordingly,
the penetration of drugs across the oral mucosa follows a passive diffusion process by
paracellular route (transport of drug through the intercellular spaces between the cells)
and transcellular route (transport of molecule across the cells). Figure 2 depicted the
transport pathways in the oral mucosa. Researchers suggested that hydrophilic molecules
choose a paracellular route, and lipophilic molecules preferentially penetrate through the
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transcellular route [17,18]. Fick’s law of diffusion can be applied for the drug absorption
process (Equations (1) and (2)):

P =
D·Kp

h
(1)

A = P·C·S·t =
D·Kp

h
·C·S·t (2)

where P, D, Kp are permeability coefficient, diffusion coefficient, and partition coefficient of
a drug in the mucosal formulation to the oral mucosa, respectively. “A” is the amount of
drug absorbed, “C” is the free drug concentration in the delivery medium. “S” and “t” are
the surface area and duration time of formulation contacting the oral mucosa [19].
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Lipid matrix between the extracellular space act as an important barrier for the
paracellular pathway, especially for high molecular weight compounds. Recently, [20]
revealed the increase in drug release from the buccal films at lower pH attributed to the
faster release characteristics of organic acid from the buccal films. Further, the ability of a
drug to penetrate the oral mucosa depends on the lipid solubility, denoted by the oil/water
partition coefficient [21]. Commercial formulations for oral transmucosal delivery have a
log p valve (octanol/water) above 2.0, representing the drugs are 100 times more readily
soluble in octanol than in water. At the same time, the drug with suitable water solubility
allows the drug to diffuse across the cytoplasm (hydrophilic) of the cells. However, highly
lipophilic drugs tend to have poor water solubility, which brings the concept of the pKa
value of a drug. The pKa value of the drug determines the degree of ionization of the drug
at different pH. The ideal candidate for buccal delivery needs to be unionized at the site for
better absorption [22].

2.3. Mucoadhesion Theories

Mucoadhesion is a complex process initiated from the connection between mucoadhe-
sive material (formulation) and mucous membrane by three stages [23,24]:

1. Contact stage: The first stage in the mucoadhesion, initiating the contact between
mucoadhesive formulation and the mucous membrane. Wetting and/or spreading of
the material enhances the contact stage and increases the surface area.

2. Interpenetration stage: Diffusion of mucoadhesive polymer into the mucus layer
through spreading and deep contact with the mucus layer.

3. Consolidation stage: Strengthening of mucoadhesive joints through mechanical
and/or chemical interactions for prolonged adhesion (see Figure 3). Mechanical
bonds are physical interactions relating to the penetration of mucoadhesive poly-
mer into the mucus layer. Chemical bond includes strong primary bond and weak
secondary bonds, based on the polymer structure.



Foods 2021, 10, 1362 5 of 22

Foods 2021, 10, x FOR PEER REVIEW 5 of 24 
 

 

into the mucus layer. Chemical bond includes strong primary bond and weak sec-
ondary bonds, based on the polymer structure. 

 
Figure 3. Stages of Mucoadhesion (Reprinted with permission from Smart, J.D, 2005 [23]). 

Various theories are proposed to explain the mucoadhesive phenomenon. However, 
many theories were failed to explain the diverse range of adhesive interactions. The fol-
lowing theories were widely accepted by formulation scientists: 
• Mechanical interlocking: According to this theory, adhesion is by interlocking the 

adhesives into the rough surface. Such irregular surface offers a higher surface area 
available for interaction between the adhesive and mucus[25]; 

• Electronic theory: The formation of an electrical double layer at the adhesive-mucus 
interface due to electron difference between adhesive and mucus layer facilitates the 
attractive force [26]; 

• Diffusion theory: Also called interpenetration theory. Adhesive material penetrates 
in-depth into the mucus layer and creates a semi-permanent adhesive layer. The pen-
etration depth of adhesive polymer depends on the molecular weight (polymer chain 
length) and diffusion coefficient. The adhesion will not be a simple two-dimensional 
surface phenomenon; it will be a three-dimensional process [27]; 

• Adsorption theory: Adhesive material sticks to the surface through hydrogen bond-
ing, van der Waals, and hydrophobic interactions. Though they are secondary weak 
forces, the sheer number of interactions provides intense adhesive strength [26]; 

• Wetting theory: This theory applies to the liquid adhesives, considering the interfa-
cial tensions to predict spreading and adhesion [23]; 

• Fracture theory: Above theories were developed based on the joining behavior of 
adhesive material with the mucus layer. Fracture theory defines the force required to 
detach after adhesion, and the fracture is assumed to occur at the mucoadhesive in-
terface. Further, the fracture strength strongly depends on the length of the polymer 
chain and the degree of cross-linking [28]. 
Apart from the above-mentioned theories, chemical interactions such as electrostatic, 

hydrophobic, hydrogen bonding, etc., play a crucial role in the mucoadhesion phenome-
non. 
• Electrostatic interactions (also called as van der Waals interaction) appear if the charges 

(either positive or negative) are separated by a distance due to ionization or attach-
ment of ionic species. Sialic acid and ester sulfates in the mucus layer provide a neg-
ative charge, which creates strong electrostatic interaction with the positively 
charged mucoadhesive polymers such as chitosan [29]. On the other hand, the nega-
tively charged molecules (acrylates) can affix with mucins through the positively 
charged amino acids in the terminal domains; 

• Hydrophobic interactions: The hydrophobic interactions can form between the naked 
protein core of mucin or lipids of mucus and the diffusion compounds created 
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Various theories are proposed to explain the mucoadhesive phenomenon. However,
many theories were failed to explain the diverse range of adhesive interactions. The
following theories were widely accepted by formulation scientists:

• Mechanical interlocking: According to this theory, adhesion is by interlocking the
adhesives into the rough surface. Such irregular surface offers a higher surface area
available for interaction between the adhesive and mucus [25];

• Electronic theory: The formation of an electrical double layer at the adhesive-mucus
interface due to electron difference between adhesive and mucus layer facilitates the
attractive force [26];

• Diffusion theory: Also called interpenetration theory. Adhesive material penetrates
in-depth into the mucus layer and creates a semi-permanent adhesive layer. The pene-
tration depth of adhesive polymer depends on the molecular weight (polymer chain
length) and diffusion coefficient. The adhesion will not be a simple two-dimensional
surface phenomenon; it will be a three-dimensional process [27];

• Adsorption theory: Adhesive material sticks to the surface through hydrogen bonding,
van der Waals, and hydrophobic interactions. Though they are secondary weak forces,
the sheer number of interactions provides intense adhesive strength [26];

• Wetting theory: This theory applies to the liquid adhesives, considering the interfacial
tensions to predict spreading and adhesion [23];

• Fracture theory: Above theories were developed based on the joining behavior of
adhesive material with the mucus layer. Fracture theory defines the force required
to detach after adhesion, and the fracture is assumed to occur at the mucoadhesive
interface. Further, the fracture strength strongly depends on the length of the polymer
chain and the degree of cross-linking [28].

Apart from the above-mentioned theories, chemical interactions such as electrostatic,
hydrophobic, hydrogen bonding, etc., play a crucial role in the mucoadhesion phenomenon.

• Electrostatic interactions (also called as van der Waals interaction) appear if the charges
(either positive or negative) are separated by a distance due to ionization or attachment
of ionic species. Sialic acid and ester sulfates in the mucus layer provide a negative
charge, which creates strong electrostatic interaction with the positively charged
mucoadhesive polymers such as chitosan [29]. On the other hand, the negatively
charged molecules (acrylates) can affix with mucins through the positively charged
amino acids in the terminal domains;

• Hydrophobic interactions: The hydrophobic interactions can form between the naked
protein core of mucin or lipids of mucus and the diffusion compounds created between
the mucus and diffusing drugs. The hydrophobic interaction plays a key role in the
tail-to-tail aggregation of mucins. For effective hydrophobic interaction to occur,
it requires high energy and low sensitivity to the surrounding conditions. Thus,
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hydrophobic interaction is effective in gastric conditions where pH is very low and
suppresses the electrostatic interactions [30].

3. Mucoadhesive Dosage Formulations

The oral mucoadhesive delivery system includes tablets, film and patches, semisolids/
liquids, and particulates. Unlike the oral therapeutic formulation, mucoadhesive dosage
forms need to address a list of challenges presented in Table 2 [31].

Table 2. Challenges associated with the mucoadhesive dosage formulation.

Challenges Description and Impact

Mucosal structure It varies at different regions in the oral cavity, and the mucosal
epithelial barrier act as a barrier

Saliva flow The continuous secretion and flow of saliva may detach the
formulation base

Variation Mucosal surface vary person to person attributed to the tongue
movements and variation in saliva secretion amount

Application region Surface area available for the mucoadhesive formulation is very
limited, which affects the loading capacity

Comfortability The design of mucoadhesive formulation ensures easy
installation/removal and accounts for the consumers’ comfortability

3.1. Buccal Tablets

Buccal tablets are the first choice of formulation scientists for the delivery of thera-
peutic compounds. Buccal tablets are compact, small, oval with the size of approximately
5–8 mm diameter [32]. The main advantage of this tablet is, it can be placed/applied at
different regions in the oral cavity including, the palate, cheek mucosa, and the region
between upper lip and gum. These buccal tablets are aimed to retain at the same position
until there is a complete dissolution and/or complete release from the formulation. The
retention time of the buccal tablets can be triggered between 4–6 h and 7–12 h depending
on the oral location [26]. The major disadvantage of the buccal tablets includes the accept-
ability (children, elderly, and people wearing dentures may feel discomfort), detachment of
tablet from the mucosa, migrating to the esophagus, and swallowing. The buccal tablets are
usually produced by direct compression technique, so it is important to understand the pre-
and post-compression parameters. Pre-compression parameters mainly include the flow
properties including tapped and bulk density and the related Carr’s Index and Haunser’s
Index. Angle of repose is an important pre-compression parameter used for storage and
conveying system of particulate matters [33]. If the “angle of repose” is high (>55 degrees),
it represents the particulates are sticky, and the low “angle of repose” (<30 degrees) repre-
sents the smooth and spherical particulate. Thus, lower the “angle of repose”, it is easier for
the material to travel with little energy or even by gravitational force [33]. Post-compression
parameters include thickness (maintain uniformity in each tablet), hardness (withstand
physical/mechanical stress), mucoadhesion strength (how effective the formulation adhe-
sive with the mucosal surface), swelling index, retention time, dissolution studies (release
characteristics), diffusion study (nutrient diffusion into the mucosa) and pharmacokinetic
study. Post-compression parameters are tested in vitro (physical test such as thickness,
hardness, etc.), ex vivo (goat mucosa is used for studying the mucoadhesive strength and
retention time), and in vivo (pharmacokinetic study in animals).

Gowthamarajan et al. [34] developed the curcumin buccal tablets using natural gum
from a cashew nut tree. The authors evaluated the buccal residence time and buccal accep-
tance for the placebo buccal tablets (without curcumin) with human volunteers and studied
the comfort, acceptability, salivation, irritation, and disintegration. The authors found that
by increasing the concentration of mucoadhesive polymer (cashew nut tree gum) there is
a significant increase in mucoadhesive strength. Increasing the concentration of cashew
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nut tree gum, it forms a secondary bioadhesion bond with mucin and undergoes extensive
interpenetration with the mucus layer. In a recent study, Mohamad et al. [35] developed
buccal vitamin B12 tablets by direct compression and employed different concentrations of
hydroxypropyl methyl cellulose (HPMC), Carbopol (CP), and chitosan (Cs). Carbopol (CP)
is a trademark owned by Lubrizol Corporation, USA. Carbopol is a high molecular weight,
hydrophilic acrylic acid polymer, widely used for its aqueous solubility, biodegradability,
and bioadhesive property [36]. Bioadhesive strength of Carbopol-based buccal tablets
showed higher bioadhesive strength of 150 ± 0.5 mN (90% Carbopol in the formulation).
Authors revealed the sustained release characteristics of vitamin B12 from buccal tablets
and a 2.7-fold increase in bioavailability of vitamin B12 buccal tablet formulation than that
of intramuscular administration. It was surprising to see that the Cmax of I.M administered
rabbits with 109.29 ± 9.39 pg/mL at 15 min, 43.23 ± 2.034 pg/mL at 30 min, and decreased
gradually. On the other hand, the plasma concentration of buccal formulations showed a
gradual increase in Cmax till 30 min (40.25 ± 5.23 pg/mL) and decreased with a constant
rate. Area under the curve (AUC) data are quite helpful in analyzing the bioavailability
properties; AUC for buccal formulation and injection was 35706 ± 1.375 pg mL−1 min−1

and 13842 ± 1.689 pg mL−1 min−1, respectively. It is important to note that the polyanionic
polymer (Carbopol) contains many carboxylic groups and provides strong H-bonding with
mucosa and achieves better mucoadhesion. In addition, Carbopol-based formulations
increase the viscosity after contacting with saliva and lead to sealing of the surface pores
and thereby preventing the rapid release. Some of the notable research work on differ-
ent mucoadhesive dosage formulations related to nutraceutical ingredients and their key
findings are presented in Table 3.

Table 3. Recent application of mucoadhesive dosage form for nutraceutical ingredients.

Sl. No Bioactive
Compound

Mucoadhesive
Polymer

Mucoadhesive
Formulation Study Objective Study Method Research Findings Reference

1 Zinc sulfate Carbopol 940 +
sodium alginate Tablets

Zinc sulfate for
the treatment of

recurrent
aphthous

stomatitis (RAS)

Human clinical
trial conducted

with
46 participants

having RAS

Conducted clinical trial with mouth
ulcer patients, and authors found

that the zinc tablets can reduce the
pain, diameter of ulcer wounds and

its inflammation, and accelerates
the recovery time of ulcer.

[37]

2 Chitosan Polyurethane +
chitosan Films

Chitosan
mucoadhesive

film for the
treatment of RAS

Human clinical
trial.

72 participants
were recruited

for the study and
conducted data
analysis with

66 subjects

Chitosan film promoted the healing
of RAS, and the pain score was

significantly reduced from day 4 to
day 6. Chitosan films shielded the

ulcer from external stimuli and
thereby reduced the related pain

from the ulcer region.

[38]

3 α-mangostin Chitosan +
alginate Hydrogel films

α-mangostin
hydrogel film for

the treatment
of RAS

In vitro release
and

mucoadhesive
study in mouse

mucosa

Chitosan +alginate +α-mangostin
hydrogel films were adhesive
toward the mouse mucosa for

46.7 min, and showing burst release
characteristics, which is necessary

for the treatment of RAS.

[39]

4 Ginger extract Tragacanth
gum Films

Ginger extract
for the treatment

of RAS

Clinical study in
15 patients

The mucoadhesive ginger
formulation can relieve the pain of
RAS patients; however, there is no

statistical difference in the ulcer
diameter, healing time

with placebo.

[40]
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Table 3. Cont.

Sl. No Bioactive
Compound

Mucoadhesive
Polymer

Mucoadhesive
Formulation Study Objective Study Method Research Findings Reference

5 Curcumin
Hydroxypropyl
methylcellulose

+ glycerin

Patches of
2 × 3 cm

containing 2%
curcumin

Curcumin for the
treatment of oral

submucous
fibrosis (OMSF).

OSMF is a
chronic

inflammatory,
and immune-

mediated disease
occurs

commonly by
chewing
arecanuts

Forty patients
with OMSF in

two groups. One
group of patients

was
administered

with curcumin
gel and another

group was
administered

with curcumin
mucoadhesive

patches

All patients were relieved from a
burning sensation in the oral cavity,

and the patients can open the
mouth by 5.9 ± 2.00 mm. The
curcumin patches were easy to

apply and provided a non-invasive
mode of treatment for OSMF.

[41]

6 Curcumin Zein + beta-
cyclodextrin

Curcumin
loaded

nanoparticles

Develop
Mucoadhesive

zein NPs for
curcumin

buccal delivery

Ex vivo study.
Mucoadhesive
properties were
conducted with
buccal mucosa

from freshly
killed pigs

Curcumin permeation study
revealed the highest curcumin

permeation for zein cyclodextrin
mucoadhesive formulation than the

curcumin nanoparticles.

[42]

7 Curcumin Gellan gum +
Pectin Films

The efficiency of
gellan gum and

pectin
mucoadhesive
formulation for

delivering
curcumin

In vitro release
kinetics and

disintegration

The mucoadhesive film was not
disintegrated after 24 h exposed to
simulated saliva. That means the

film can remain in the target site for
a prolonged time and release the
therapeutic compounds. In vitro

release study showed that there was
an initial burst release till the first
10 min of exposure and then the

release rate lowered up to 60 min of
the test. Fast swelling of the film

and rapid liquid uptake attributed
to initial burst release behavior.

[43]

8 Curcumin
Poloxamer 407

+ Carbopol
974P

Films

Develop
nanostructured

curcumin
incorporated in
films to target
oral squamous
cell carcinoma

In vitro release
study, and ex
vivo mucosal
permeation in

the porcine oral
mucosa

A complete release of curcumin
after 8 h exposure in the in vitro

simulated condition, which makes
it a suitable formulation for a

buccal application.

[44]

9 Curcumin Poly (L-lactic
acid) Patch

Develop
mucoadhesive

patch containing
curcumin

nanofibers using
electrospinning

techniques

In vitro release
study and ex
vivo adhesive
properties in

porcine
buccal mucosa

Curcumin patch showed the least
adhesion force of 0.14 ± 0.01 N,

attributed to the non-mucoadhesive
characteristics of polymer PLLA.

[45]

10 Resveratrol Chitosan + Zein Nanoparticles

Effectiveness of
chitosan-coated

zein
nanoparticles for
the oral delivery

of resveratrol

In vitro
mucoadhesion
study in mucin

solutions

Particle diameter was increasing
with increasing mucin

concentration as more mucin
adsorbs on the nanoparticle surface.
Thus, chitosan-coated nanoparticles
were showing a higher increment in

size than the uncoated particles.

[46]

11 Resveratrol
Hydroxypropyl

cellulose +
ethyl cellulose

Films

Optimize the
polymer

concentration on
the

mucoadhesive
strength,

swelling, and
in vitro release

In vitro release
study and ex

vivo permeation
study with goat
buccal mucosa

Ex vivo permeation study revealed
that there was a restriction in

resveratrol permeation due to the
low wetting and hydration of

polymer matrix. In addition, the
low aqueous solubility of

resveratrol limited the release and
penetration characteristics.

[47]

12 Peanut skin
extract

Gelatin +
hydroxypropyl
methylcellulose

Films

Develop
polyphenol

enriched films
using the casting

technique

In vitro release
technique

Mucoadhesive films followed the
initial burst release of phenolic
content about 1.2 mg gallic acid

equivalent, attributed to the
hydrophilic polymer,

hydroxypropyl methylcellulose.

[48]
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Table 3. Cont.

Sl. No Bioactive
Compound

Mucoadhesive
Polymer

Mucoadhesive
Formulation Study Objective Study Method Research Findings Reference

13 Pomegranate
fruit extract

Carboxymethyl
cellulose Films

Produce
multilayered oral

films using
printing

techniques
incorporating

phenols

In vitro release
technique

The release of polyphenols from the
films showed a Fickian diffusion

pattern, and the phenolic
compounds were stable for

196 days at room temperature.

[49]

14 Vitamin B-12
Chitosan +
Polyvinyl

alcohol
Films

Develop vitamin
B-12

mucoadhesive
hydrogel films

In vivo
pharmacokinetic

study with
rabbits

Compared the release of vitamin
B12 from the buccal films and

commercial Neuroton I.M. injection.
The area under the curve (AUC0–8h)

showed a 1.5-fold increase in
bioavailability from the buccal film
compared with the I.M. injection.

[50]

15 Vitamin B12

Hydroxypropyl
methyl

cellulose +
Carbopol +

chitosan

Tablets

Develop buccal
tablets of

vitamin B12 and
improve the oral

bioavailability

In vivo
pharmacokinetic

study with
rabbits

Rabbits injected with vitamin B12
(intramuscular) showed rapid

release till 15 min at a maximum
concentration of

109.29 ± 9.39 pg/mL and gradually
decreased to 43.23 ± 2.034 pg/mL

at 30 min. Rabbits administered
with buccal tablets were released
vitamin B12 in a sustained release

manner and showed a 2.7-fold
increase in bioavailability

compared to the I.M. injection.

[35]

16 Vitamin K Labrasol +
Transcutol

Self-nano
emulsifying
lyophilized

tablets

Improve the oral
bioavailability of

vitamin K

Human clinical
trial.

A group of
volunteers

administered
buccal tablets
and another
group with

intramuscular
injection

Pharmacokinetic study in human
volunteers revealed the buccal

tablets enhanced vitamin K
absorption and relative

bioavailability. Interestingly, there
was no significant difference in the
vitamin K in systemic circulation
for the two groups of volunteers.

[51]

17

B-complex
vitamins:
thiamine

hydrochloride
(THCl) and

nicotinic
acid (NA)

Propylene
glycol Films

Develop vitamin
B-complex

buccal films by
inkjet printing

technique

In vitro
technique

Both vitamins are released within
10 minutes from the buccal film. For

increasing vitamin content, there
was an increase in permeation

across the cellulosic membrane.

[52]

3.2. Buccal Films

Buccal films are a thin, flexible sheet of material composed of polymer, therapeutic
compounds, sweetener, and flavor [53]. Buccal films are the potential formulations for the
effective delivery of nutraceuticals due to their versatility and flexibility. Further, these
mucoadhesive films can remain in contact with the oral mucosa and provide prolonged
release in the direction of the oral mucosa or toward the oral cavity [54]. Food and Drug
Administration (FDA) defined three different types for films [55]:

• Film: A thin layer or coating;
• Film for extended-release: Films releasing the embedded therapeutic compounds over

an extended period and maintains the constant level in the blood or target tissue;
• Film, soluble (also called orodispersible films): Thin layer or coating, being dissolved

when in contact with saliva.

Mucoadhesive buccal films are manufactured by the following methods: solvent
casting method, hot-melt extrusion, and printing method.

3.2.1. Solvent Casting Method

Solvent casting is the most widely used technique for the preparation of films due
to the simple process, and it can be fabricated at a laboratory scale. The manufacturing
process of buccal films involves three steps [55]: (i) preparation of the homogenous mixture
of components containing bioactive compounds, mucoadhesive polymers, taste-masking
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compound, permeability enhancer, and plasticizers in an appropriate solvent; (ii) casting
the resulted suspension/solution on molds to assure constant thickness of the film and
uniformity of bioactive content; and (iii) drying and cutting of the casted film containing the
desired amount of formulation. During the manufacturing process, rheological properties,
uniformity of bioactive compounds, and residual solvents in the final dosage form are
the critical steps for film performance. Because rheology determines the drying rates
and the presence of organic solvents possessing undesired hazards for health. For this
reason, researchers prefer to use water as a solvent during the manufacturing process. It is
important to note that the introduction of air bubbles during the mixing of components
(step 1 of the manufacturing process) and leads to an uneven surface with heterogeneous
thickness. Removal of air before casting is a crucial step for maintaining homogeneity [56].
In addition, the translation of buccal film production from lab scale to production scale is
one of the bigger challenges because of the involvement of many unit operations, including
heating and mixing. Figure 4 depicted the commercial machine used for the production of
buccal films based on solvent casting technique.
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3.2.2. Liposomal Buccal Film

Liposomes are lipid-based vesicular systems and recognized as an effective delivery
system of nutraceuticals/bioactive compounds. Further, lipid-based delivery systems are
reported for (1) better protections, (2) control release characteristics, (3) biodistribution,
(4) targeted delivery, and (5) improving solubility and bioavailability [58]. Combining
the two techniques viz. liposomes and mucoadhesive buccal delivery will address both
solubility and permeability of a bioactive compound. Abd El Azim et al. [59] reported the
prolonged release of a class 3 BCS (Biopharmaceutics Classification System) compound
(vitamin B6-VB6) possessing high water solubility and poor permeability by combining
two techniques: (1) liposomal formulation of vitamin B6 (improve the permeability) and
(2) formulation of buccal films from the liposomal formulation (improve the residence time
and release profile). The formulated VB6 buccal films possess the mucoadhesive strength
of 20.55 ± 0.2 g for 0.2 N force of adhesion and able to attach in the buccal mucosa for
4.43 ± 0.07 h in three human volunteers. Liposomal buccal films reduced the cumulative
permeated amount of vitamin B6 corresponding to the liposomal vitamin B6 formulation
(1.2 times higher than the buccal films). Similarly, there is 36.89% reduction in flux be-
tween the liposomal buccal film (113.10 µg cm−2 h−1) than the liposomal formulation
(179.20 µg cm−2 h−1).

In mucoadhesive delivery systems, various temperature-responsive materials have been
employed during the manufacturing process. These thermoresponsive polymers such as
poly(N-isopropylacrylamide (PNIPAAm) derivatives, poly(ethylene oxide)-poly(propylene
oxide) (PEO–PPO) pluronic copolymers) can be triggered by a small variation in tempera-
ture. Pluronic copolymer (also called poloxamer) consists of blocks of hydrophilic PEO
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and hydrophobic PPO blocks in the form of A-B-A triblock structure, which turns liquid
into gel form at physiological temperature [60]. These thermoresponsive characteristics
of poloxamer help in preventing the formulation to be removed from the oral cavity due
to mucociliary clearance [61]. A combination of bioadhesive polymer (Carbopol) and
thermoresponsive polymer (poloxamer) is a suitable choice for buccal film formulation. In
a recent study, curcumin buccal film containing Carbopol (C974P) and poloxamer (P407)
showed complete release (100%) of curcumin after 8 h from the formulation, following
time-dependent anomalous release behavior. Further, the cytotoxicity potential of the for-
mulation was conducted on two carcinoma cells (FaDu and Cal27) and oral keratinocytes
(FNB6), revealing an increase in the cytotoxic effects of Cal 27 and a decrease in cytotoxic
effects in healthy cells [44].

Though solvent casting is a simple technique for producing buccal films, it is important
to consider some of the hidden drawbacks:

• Solvent casting is a multistep process, which brings variation in the final product for
each batch;

• Air entrapment is a crucial flaw in this process, which leads to dose variation;
• Application of organic solvent during the production process, because solvent removal

from the buccal film and subsequent disposal is a tedious process.

Hot-melt extrusion could be an effective alternative for the solvent casting method,
which provides a solvent-free, continuous manufacturing one-step process [62].

3.2.3. Hot-Melt Extrusion

In the mid of 19th century, hot-melt extrusion (HME) was first introduced for the insu-
lation of electric wires and became a widely used technique in the plastic industries. The
major difference between the extruders used for the plastic industry and the pharmaceutical
industry is the regulatory requirement of extruder contact parts. Because the contact parts
are usually corrosive, reactive, or absorptive with the formulation. Thus, all contact sur-
faces are coated with stainless steel to provide non-corrosive, non-reactive features. HME is
a suitable alternative for the solvent casting method. In the HME process, the raw materials
(such as nutraceuticals/ bioactive compounds, mucoadhesive polymers, plasticizers) are
transported through the rotating screws under elevated temperature through a die into a
product of uniform shape. The hot-melt extrusion process is a four-step process [63]:

1. Feed the formulation ingredients and bioactive compounds to the extruder through
a hopper;

2. Mixing, grinding, and kneading;
3. The molten ingredient conveyed to the through the rotating screw;
4. Extrusion through the die and mold the desired shape.

The extruder screw contains one or two rotating screws, which can provide co-rotating
or counter-rotating options. Figure 5 depicted the hot-melt extrusion process equipped
with a hopper, extruder screw, film die, and roller. HME process operates in the complete
absence of solvents, and the therapeutic compounds with other ingredients are in the
molten stage to obtain the homogeneous mixture. Thus, HME is not recommendable for
heat-sensitive bioactive compounds.

3.3. Printing Technology

In the previous film production techniques (solvent casting and HME), therapeutic
compounds, mucoadhesive polymers, and other excipients need to be mixed prior. Such
premixing of ingredients with polymer matrix might produce solid amorphous dispersion.
If the therapeutic compound is super-saturated in the polymer matrix, then there is a chance
of phase separation during storage by crystallization. Further, crystallization could alter the
dissolution of the therapeutic compound from the film and its mechanical properties [64].
The printing technique (also called inkjet printing) is a non-contact approach, where the
ingredients are sprayed to create 2D and 3D structures. Broadly, inkjet technology can be
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classified either as continuous inkjet printing (CIJ) or drop-on-demand (DoD) printing. In
CIJ, the liquid stream is passed through the orifice and piezoelectric transducer behind the
nozzle “steer” the droplets and create a printed pattern. In DoD printing, the liquid ejects
from the nozzle only when the drop is required [65].
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Printing a mucoadhesive buccal film is an innovative platform to produce the for-
mulation for the individual’s requirements and provide customized formulations and
personalized medication at the point of care [66]. Ref. [67] reported the application of five
different 3D printing techniques in the pharmaceutical sector: fused deposition model
(FDM), binder jet printing, stereolithography, selective laser sintering, semi-solid extru-
sion. Two-dimensional printers are limited to X and Y direction printing; therefore, the
carrier (sheet containing mucoadhesive polymers and other excipients) is pre-produced
and holds/sorb the deposited ink in a predefined pattern, whereas 3D printers enable an
additional Z direction by creating layer-by-layer structure and produce a 3D dosage form.

3.3.1. Inkjet Printing (2D)

Inkjet printing (IJP) is a versatile, relatively inexpensive method of printing to produce
dosage forms with remarkable accuracy and is suited for manufacturing low-dose medi-
cation and rapid production. Lord Rayleigh first described the mechanism by which the
liquid stream is breaking up into droplets [68]. In the IJP technique, ink droplets (containing
bioactive compound/nutraceuticals) jetted through a nozzle to create a pattern of dots
on a given substrate (containing mucoadhesive polymers). This technique can be distin-
guished as continuous (dispense a continuous stream of droplets) and drop-on-demand
mode (release droplets when required). Further, the IJP technique is equipped with single
or multiple nozzles with a transducer, and the two main technologies employed for the
IJP include: piezoelectric inkjet (PIJ) and thermal inkjet (TIJ) printing. For more detailed
working principles on the piezoelectric and thermal inkjet printers, readers can refer the
Edinger’s review manuscript [69].

3.3.2. Flexographic Printer (2D)

Flexographic printers (roll-to-roll printer) is most widely used for printing newspapers
and magazines due to its flexible substrate options including paper, plastic, acetate film,
and foil. The schematic representation of flexographic printing techniques is given in
Figure 6. For film formulation, the pharmaceutical ink is loaded to anilox rollers to provide
a measured amount of ink to the printing rollers. However, the use of flexographic printing
is difficult in the pharmaceutical sector due to the requirement of organic solvent (in higher
ratio) for drug solubilization and the inherent risk of precipitation and activity loss [70,71].
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3.3.3. Fused Deposition Modeling (3D)

3D printing is a digital process that involves the construction of a complex solid
matrix by layer-by-layer structure and binds them as a single matrix either by phase
transition or chemical reactions. Three-dimensional printing in food allows the user to
design, tailor their nutritional need, and fabricate their food with customized shape, color,
and flavor [73,74]. Several 3D printing technologies have been developed, including
fused deposition modeling (FDM), laser sintering, laser-assisted bioprinting, and micro-
extrusion technique. Fused deposition modeling is showing an extensive application
in food industries, as this technique works similar to hot-melt extrusion with the aid to
control /direct the position of the extrusion nozzle. In this technique, feedstock containing
thermoplastic material and the therapeutic compound is melted and extruded through the
nozzle at predetermined patterns to produce sequential layers of material [75].

The process of 3D printing initiates from creating a digital template through 3D
drawing tools such as Autocad Fusion 360 (Free for academic institutions), FreeCAD
(OpenSource), and upload the model file in stl format to the commercial 3D printer. A
computer-aided design (CAD) program moves the nozzle head within the x- and y-axes
and the nozzle platform moves vertically (z-axis), creating 3D structures by fusing the
layers. The critical parameters for 3D FDM include the speed of the nozzle, operating
temperature, material density, and height of the layers [76]. Eleftheriadis et al. [77] proposed
a new approach for buccal film formulations by combining IP and FDM technologies,
whereas the dose accuracy and personalized dose were achieved by inkjet printing (IP),
and mucoadhesive substrate of precise dimension was fabricated using FDM technique
(see Figure 7). Such manufacturing facility will provide a key benefit for the in-situ
manufacturing of mucoadhesive buccal films at the points of care. For instance, the
nutraceutical requirement for athletics is different from an elderly person. The concept
of personalized formulation helps to provide nutraceutical dose for individuals to meet
their requirement.

3.4. Buccal Wafers

Buccal wafers are highly porous structured solid formulations produced by freeze-
drying the polymer gels in dispersion form or solution. Due to their porous structure,
wafers can easily disintegrate than conventional formulations. Many pharmaceutical and
nutraceutical wafers available in the market are fast-disintegrating formulations, and the
wafers for buccal administration are still in clinical trials, and there are no commercial
products [78]. Boateng et al. [79] compared the release characteristics between freeze-dried
wafers and solvent-cast film formulations. Scanning electron microscopy revealed the
porous architecture with an interconnecting network for the wafers and a non-porous
dense continuous sheet for the film. Interestingly, both wafer and film formulations fol-
lowed sustained release behavior initiated by matrix swelling and drug diffusion through
the swollen matrix. Later, the same group Boateng et al. [80] compared the release char-
acteristics of wafer and films for the insoluble drug. Usually, formulation of low soluble
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drug exhibits erosion behavior due to the presence of a drug in the hydrated layer near the
eroding front [81]. Surprisingly, the authors found that the sustained release characteristics
were similar to the water-soluble drugs due to the involvement of factors other than solubil-
ity and mass transfer phenomenon. Thus, the release of the therapeutic compound from the
buccal formulation depends on the physical properties (hydration, swelling, and erosion
properties), amount and type of excipients, polymer grade, and its hydration characteristics.
Later, Szabó et al. [82] developed vitamin B12 wafers and solvent-cast films by varying the
proportion of mucoadhesive polymer Carbopol (CP). Release from wafers shows the partial
diffusion from the swollen matrix and water-filled pores in the formulation. In addition,
it is important to note that increasing mucoadhesive polymer (Carbopol), freeze-drying
process, and storage decreased the rate of drug release from the mucoadhesive formula-
tion. Because Carbopol is insoluble in the dissolution medium (phosphate buffer) and the
authors revealed the swelling behavior of wafers is due to the COOH group hydrated by
forming hydrogen bonds by absorbing water. Further, freeze-drying process results in
porous network and increasing surface area of the polymeric system to swell when contact
with the dissolution media and forming a rate controlling barrier for the drug release.
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4. Mucoadhesive Polymers

Although diffusion of therapeutic compounds through the mucus is complex and
controlled by many variables, including the size, charge, and wettability of the drug, it is re-
quired to analyze the most influencing parameter for the mucoadhesive property. Based on
the mucoadhesion theories, readers can understand that the mucoadhesive property can be
tailored by altering the interaction between polymer and mucosal surface. Mucoadhesive
polymers are employed in pharmaceutical formulations since 1947 when Scrivener and
Schantz [83], was trying to formulate a penicillin delivery system using gum tragacanth and
dental adhesive powders. Later, the potential application of various polymers (e.g., sodium
alginate, sodium carboxymethylcellulose, guar gum, hydroxyethylcellulose, methylcellu-

Biorender.com
Biorender.com
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lose, poly(ethylene glycol) (PEG), retene and tragacanth) found to exhibit mucoadhesive
properties [84].

The main intention of mucoadhesive dosage formulation is to facilitate residence time
of drug at the absorption site, provide sustained release characteristics and minimize the
exposure of drug at various sites of the body [85]. Mucoadhesive polymers play a crucial
role in extending the residence time of dosage form in the buccal cavity, which is achieved
by the hydrophilic properties of the polymer. Both charged and non-ionic functional groups
showed excellent mucoadhesive properties through their strong hydrogen bonding with
the mucosal surface. Ideal polymer characteristics for mucoadhesive formulation should
possess the following features [86,87]:

â Strong anionic or cationic functional groups;
â Possess high molecular weight;
â Surface tension to induce spreading into mucus layer;
â High chain flexibility;
â Capacity to load bioactive compounds;
â Swell upon hydration;
â Interact with mucus for adequate adhesion;
â Provide controlled release of bioactives from the formulation;
â Should be biologically degradable.

Researchers classified the mucoadhesive polymers based on their origin (natural/synt-
hetic), aqueous solubility, site of mucosa (buccal/ocular/nasal), or their chemical structure
(cellulose/polyacrylates). Laffleur and Bernkop-Schnürch [88] classified them based on
their binding mechanism with the mucosa: non-covalent binding polymers (mechanism
of adhesion is due to the polymer’s surface charge) and covalent binding polymers (gen-
erate a covalent bond between mucus layer and polymer). In this review, the application
of starch and chitosan polymers was described elaborately because of their frequent ap-
plication in food science. Further, readers can refer following manuscripts [89–91] for
detailed descriptions of the mucoadhesive polymers. Figure 8 summarizes the classifica-
tion of mucoadhesive polymers based on their origin, charge characteristics, solubility, and
bonding mechanisms.
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4.1. Starch Buccal Films

Great attention to GRAS polymers made the researchers find an alternative for syn-
thetic polymers because most synthetic polymers were synthesized from petroleum-based
raw materials and showed a serious environmental problem. Biodegradable polymers
from natural resources are of great interest because of their sustainability and related
environmental benefits. Starch is considered a promising alternative due to its low cost,
sustainability, and complete biodegradability [93]. The starch of different sources and
different blends of copolymers were successfully employed for the mucoadhesive for-
mulation. However, the native form of starch limits its application in the mucoadhesive
systems due to its poor film-forming properties and semi-crystalline structure. Starch
modification (performed by enzymatic, chemical, and physical treatment) is a suitable
option for improving the mucoadhesive properties. Okonogi, Khongkhunthian, and Jat-
urasitha [93] revealed the amylose content in the rice starch has a significant effect on the
mucoadhesive property of buccal films. Authors developed buccal films from chemically
modified carboxymethyl rice starch (for two rice varieties) with an extreme difference in
amylose content and different levels of crystallinity. Buccal films from low amylose content
showed the halo patterns, which indicates the destruction of crystalline structure into
amorphous form, whereas high amylose buccal films showed crystalline peak. In addition,
low amylose films exhibited poor mucoadhesive strength (137.1 ± 5.1 kg m−2) than the
high amylose film (191.5 ± 6.2 kg m−2). This increase in mucoadhesive strength for the
high amylose buccal film is due to the formation of stiff network strands and entrapping
more water in the network pores, which strengthens the bond between buccal film and mu-
cosal surface. In a recent study, Miksusanti et al. [94] studied the mucoadhesive property
of buccal films developed using chitosan and modified tapioca starch complex. Authors
found that the developed buccal films can stick to the mucosal surface for 320 min owing
to the hydrophilic group of tapioca starch and electrostatic interaction between chitosan
(+ve charge) and mucin glycoprotein in the mucosa (−ve charge).

Few studies were investigated the physical modification of starch for improving its
mucoadhesive properties. Recently, Soe et al. [95] applied different mechanical forces
such as friction, collision, impingement, shear through ball milling to modify the starch
structure (modified glutinous rice starch-MGRS). Authors developed buccal tablets us-
ing MGRS as mucoadhesive polymer and compared the mucoadhesive capabilities with
commercial hydroxypropyl methylcellulose (HPMC) and sodium carboxymethylcellulose
(NaCMC) tablets. HPMC and NaCMC are well-known mucoadhesive polymers following
non-covalent binding mechanisms. Mucoadhesive strength was measured by calculating
the force required to detach the tablets from porcine esophageal mucosa. Mucoadhesive
strength of the buccal tablets was in the order of HPMC < MGRS < NaCMC. The native
glutinous rice starch was not showing any mucoadhesive properties, and the modification
improved the mucoadhesive properties with a detachment force of 0.2 N. The amorphous
structure and improved hydration and swelling property of MGRS attributed to its mu-
coadhesive properties.

4.2. Chitosan

Chitosan (CS) is widely used in mucoadhesive dosage form, composed of N-acetyl-D-
glucosamine and D-glucosamine, and its units are linked by 1-4-β-glycosidic bonds. CS is
derived from chitin (abundant natural polysaccharide) by the deacetylation process. CS is
a biocompatible and biodegradable polymer with interesting biological properties such
as wound healing and antimicrobial properties. The presence of -OH and -NH2 groups
facilitate the hydrogen and covalent bonding of chitosan (chemical structure is shown in
Figure 9. At low pH (<6), these amino groups undergo protonation (addition of hydrogen
proton) and make the chitosan as cationic (positively charged) macromolecules. On the
other hand, mucins are negatively charged due to the presence of sialic acids and ester
sulfates, which easily attract the CNs by strong electrostatic interactions [29]. Further,
CN can transiently open the tight junctions and promote the paracellular transport of
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therapeutic compounds, but the signaling mechanism from chitosan to the tight junctions
remains unclear. Hsu et al. [96] first proposed that chitosan activates the integrin receptors
on cell membranes. Integrins are cell surface receptors comprising α/β heterodimeric
complexes and interact with the signaling proteins. The direct interaction between the CN
and integrin receptors led to the conformation change of integrin receptors, clustering along
the cell border and initiating the cascade of tight junction openings. Authors confirmed
the electrostatic interaction between chitosan and integrin through the molecular dynamic
simulation studies and revealed -NH3+ groups of chitosan and the -COO- groups of
integrin forms a chitosan-integrin complex.
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The pKa value of the CS amino group is 6.5, which makes the CS chain protonated at
acidic pH and deprotonated at neutral pH. However, the physiological pH of an intestinal
segment is 6–7.4 [97], which reduces the ability of CS to open the tight junction of the
intestinal segment and confined the absorption [98]. Extending the application of CS in
the intestinal tract through chemical modification is a great opportunity to deliver the
nutraceutical formulation. The target sites for CS are amine and hydroxyl groups. Such
chemical modification increases the biocompatibility of CS and water-solubitliity at the
physiological range (6.8–7.2) [99]. Further, chitosan possesses amenable amine (NH) and
hydroxyl functional groups, which makes it possible to carry out chemical modification
without disturbing the degree of polymerization. DP is defined as the number of repeating
monomer units in the polymer, and it is calculated as the ratio of the molecular weight
of the polymer to the molecular weight of the repeating monomer. Various chitosan
derivatives, including carboxymethyl chitosan, trimethyl chitosan, glycol chitosan, and
methylpyrrolidinone chitosan, were reported for improved retention on the mucosal
surface [29]. Carboxymethyl chitosan is one of the most popular chitosan derivatives in
the food and pharmaceutical industries. Carboxymethylation is targeted to occur at C-6
hydroxyl groups or the amine group [100]. Dekina et al. [101] retained the therapeutic
activity of lysozyme in mucoadhesive films for three years using gelatin and carboxymethyl
cellulose polymers. These polymers have the ability to form ionic or hydrogen bonds
with bioactive compounds and provide non-covalent interaction with a lesser degree of
affecting the enzyme structure. The prepared mucoadhesive films able to release 75% of
the enzymatic activity after incubating for 30 min in Na-phosphate buffer solution, and the
maximum enzymatic activity was maintained for 90–180 min.

In a recent study, Paris et al. [102] developed a mucoadhesive patch to deliver the
protein using oppositely charged polyelectrolytes, chitosan, and hyaluronic acid. Au-
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thors visualized the distribution of ovalbumin from the conventional and mucoadhesive
formulation using in vivo tomography analysis of protein residence time in the tongue.
When the rats were administered with liquid ovalbumin formulation (conventional), the
OVA was distributed along the digestive tract within 2 minutes after administration (see
Figure 10), whereas mucoadhesive patches were showing a strong signal in the mouth for
30 min. Ovalbumin was penetrated rapidly into sublingual epithelium due to the chitosan
polymer, which permeabilizes the tissue and facilitates the passive diffusion of proteins.
Thus, 30-minute signals after administration with protein patch were decreasing its signal
due to the protein clearance from the patch and uptake by antigen-presenting cells.
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5. Conclusions

The mucoadhesive formulation for delivering bioactive compounds has a promis-
ing future in the food and nutraceutical industries. It is possible to use as the delivery
system for poorly soluble bioactive compounds. Mucosal sites are easy to access, easy to
remove, avoid enzymatic degradation, and provide rapid, controlled delivery of bioac-
tive compounds for both local and systematic applications. Mucoadhesiveness depends
on the structure, surface charge, hydration rate, molecular weight, surface tension, and
concentration of polymers. Recently, thiolated polymers and natural polymers are widely
investigated for their mucoadhesive properties. In addition to the conventional formulation
technique, electrospinning and electrospraying techniques are receiving great attention to
impart the nanofiber in mucoadhesive systems. The beauty of mucoadhesive formulation
is the ability to provide a personalized formulation with a combo of nutraceuticals, and
it should be explored further in commercial aspects. At the same time, it is important to
note that mucoadhesive formulations are entirely new to consumers. It is necessary to
educate them with a science-based approach. A thorough understanding of the oral mu-
cosa, keratinized and nonkeratinized epithelium, mucoadhesive mechanisms, formulation
techniques, and polymer interactions are necessary to formulate a novel mucoadhesive
nutraceutical formulation.
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