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ABSTRACT Lanthipeptides are ribosomally synthesized and posttranslationally modi-
fied peptides, with modifications that are incorporated during biosynthesis by dedi-
cated enzymes. Various modifications of the peptides are possible, resulting in a highly
diverse group of bioactive peptides that offer a potential reservoir for use in the fight
against a plethora of diseases. Their activities range from the antimicrobial properties
of lantibiotics, especially against antibiotic-resistant strains, to antiviral activity, immu-
nomodulatory properties, antiallodynic effects, and the potential to alleviate cystic fi-
brosis symptoms. Lanthipeptide biosynthetic genes are widespread within bacterial
genomes, providing a substantial repository for novel bioactive peptides. Using ge-
nome mining tools, novel bioactive lanthipeptides can be identified, and coupled with
rapid screening and heterologous expression technologies, the lanthipeptide drug dis-
covery pipeline can be significantly sped up. Lanthipeptides represent a group of bio-
active peptides that hold great potential as biotherapeutics, especially at a time when
novel and more effective therapies are required. With this review, we provide insight
into the latest developments made toward the therapeutic applications and produc-
tion of lanthipeptides, specifically looking at heterologous expression systems.

KEYWORDS antimicrobial agents, antimicrobial peptides, antiviral agents, drug resist-
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Lantibiotics, first described in 1988, are ribosomally synthesized and posttranslation-
ally modified peptides (RiPPs) with antimicrobial activity that contain meso-lanthio-

nine and 3-methyl-lanthionine (1, 2). While most lanthionine-containing RiPPs are lanti-
biotics, there are some that lack antimicrobial activity. To account for the few
lanthionine-containing RiPPs without antimicrobial activity the overall term “lanthipep-
tides” is used (3). Modification occurs at the precursor peptide, which consists of an N-
terminal leader peptide, important for recognition by modification enzymes, and a C-
terminal-modified core peptide (1, 2, 4, 5) (Fig. 1; see Fig. S1A, S2A, S3, and S4 in the
supplemental material). Lanthionine cross-links form as result of a sequence of dehy-
dration and cyclization reactions catalyzed by specific (dedicated) lanthionine synthe-
tases, such as LanB and LanC in class I lantibiotics, or by single multifunctional synthe-
tases, such as LanM, LanKC, and LanL described for classes II, III, and IV, respectively
(Fig. 1) (reviewed in references 6 and 7). The class I LanB dehydratases are aminoacyl-
tRNA dependent, with initial glutamylation of Ser/Thr, followed by glutamate elimina-
tion and generation of Dha/Dhb (8, 9). The multifunctional synthetases (LanM, LanKC,
and LanL) require (d)NTPs for dehydration to phosphorylate Ser/Thr residues, followed
by elimination and generation of Dha/Dhb (10–13). The class II LanMs consist of two
domains (an N-terminal dehydratase and a C-terminal cyclase domain), whereas the
multifunctional synthetases in classes III and IV have three domains consisting of a N-
terminal lyase domain, central kinase domain, and C-terminal cyclase domain (5,
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10–13). The N-terminal dehydratase domain of class II synthetases is responsible for
the phosphorylation and elimination steps, and in classes III and IV, this is carried out
by two different domains, namely, the kinase and lyase domains, respectively.
Dehydrated Ser/Thr (i.e., Dha/Dhb) are subsequently cyclized by the addition of a Cys
thiol through a Michael-type addition: the resulting enolate intermediate undergoes
protonation to form either Lan (Dha-Cys) or MeLan (Dhb-Cys) cross-links (14). The main
differentiating factor between class III and class IV synthetases is in their C-terminal cy-
clase domains, with class IV featuring the conserved zinc-binding domain, also present
in class I and II cyclases, while this feature is lacking in class III cyclase representatives
(5, 11, 15). Furthermore, in the case of some class III lanthipeptides, the enolate inter-
mediate formed during the first nucleophilic attack is not protonated and undergoes
an additional Michael addition, with a second Dha yielding a bicyclic structure termed
labionin (Lab) (15, 16). Based on these synthetase differences, lanthipeptides are
grouped into four classes, with further division into subclasses based on differences
in the amino acid sequences and tertiary structures of the mature lanthipeptides
(Fig. 1; Fig. S1 to S4) (3, 17). Lantibiotics may undergo additional posttranslational

FIG 1 Biosynthesis and classification of lanthipeptides. (A) Generalized scheme of lanthipeptide biosynthesis (precursor peptide made up of leader and
core peptides). (B and C) Four main classes of synthetases (B) and additional modification enzymes (C) involved in PTM of lanthipeptides. (D) Sequence
similarity network of lanthipeptide core peptides generated with the Enzyme Function Initiative-Enzyme Similarity Tool (EST-EFI [https://efi.igb.illinois.edu/
efi-est/]) (E value cutoff, 1023) and visualized in Cytoscape (v.3.8.0). Abbreviations: LanN, lysinoalanine synthase; LanD, flavin-containing Cys decarboxylase;
LanJA/B, dehydrogenase (A indicates Zn21 dependent and B indicates flavin dependent); LanO, oxidoreductase; PaeN, acetylation (paenibacillin); CinX,
a-ketoglutarate (a-KG)/iron(II)-dependent hydroxylase (cinnamycin); GarO, flavin-dependent monooxygenase (actagardine); MibO, hydroxylase (microbisporicin);
MibH, Trp halogenase (microbisporicin); and Zn-BM, zinc binding motif.
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modifications (PTMs), such as the introduction of D-amino acids, oxidative decar-
boxylation of the C terminus, formation of a lysinoalanine ring, and formation of an
N-terminal lactate group (Fig. 1) (18–21). This results in the formation of a diverse
number of lantibiotics and lanthipeptides. In most cases, the structural genes of
lantibiotics form part of a biosynthetic gene cluster and contain the biosynthetic
machinery for modification, export, leader processing, and regulation. This was first
shown for the lantibiotics nisin (22), epidermin (23), and subtilin (24) and has subse-
quently been illustrated for numerous other lanthipeptides.

Since the first description of lantibiotics, numerous lantibiotics have been identified
and characterized, with nisin, first reported in 1928, being the most well known: nisin
has been used as a food preservative for over 50 years, which is currently the only
industrial application of a lantibiotic (1, 25, 26). Although the antimicrobial properties
of lantibiotics, especially against antibiotic-resistant and clinically relevant strains of
Staphylococcus (27–35), Enterococcus (27–30, 33, 35), and Clostridium (28, 36–40) spp.,
have been reported in several studies (Table 1), very few clinical studies have been
published (reviewed in reference 41). This may be changing, as more recent studies
have shown that some lantibiotics have broader applications than initially appreciated
due to activities in addition to their antibacterial properties, such as antiviral activity
(42–45), immunomodulatory properties (46, 47), antiallodynic effects (16, 48), and the
ability to alleviate cystic fibrosis (49–54) (Table 1). Lanthipeptide biosynthetic genes
are widespread within the genomes of taxonomically distinct bacterial species, provid-
ing a substantial repository for peptides with a wide range of potentially novel struc-
tures and bioactivities (26). More recent interrogation of the genomes of understudied
phyla suggests that lanthipeptides are likely much more diverse than is currently
appreciated, and many novel posttranslational modification mechanisms have yet to
be described (55). Such genome mining efforts have indicated that lanthipeptide syn-
thetases have been repurposed for production of natural products other than lanthi-
peptides, thereby expanding natural product diversity. The development of rapid
screening methods of large lantibiotic/lanthipeptide libraries further adds to the

TABLE 1 Lanthipeptide producers and applications

Lanthipeptide(s) Producer strain Class, subclass Type testeda Bioactivity (reference[s])
Nisin Lactococcus lactis I, nisin-like In vivo, in vitro, TC Antimicrobial (160), anticancer (129),

immunomodulatory (46)
Subtilin Bacillus subtilis I, nisin-like In vitro, in vivo Antimicrobial (161, 162)
Ericin Bacillus subtilis I, nisin-like In vitro Antimicrobial (163)
CMB001 Paenibacillus kyungheensis I, nisin-like In vitro Antimicrobial (33)
Gallidermin/epidermin Staphylococcus gallinarum/

S. epidermidis
I, epidermin-like In vitro, TC Antimicrobial (164),

immunomodulatory (47)
Clausin Bacillus clausii I, epidermin-like In vitro, in vivo Antimicrobial (27)
Mutacin 1140 Streptococcus mutans I, epidermin-like In vitro, in vivo, TC Antimicrobial (40, 165)
Mutacin B-Ny266 Streptococcus mutans I, epidermin-like In vitro, in vivo Antimicrobial (98, 166)
Planosporicin Planispora alba I, planosporicin-like In vivo, in vitro Antimicrobial (28, 82)
NAI-107 (microbisporicin) Microspora corallina I, planosporicin-like In vivo, in vitro Antimicrobial (28, 29)
Mersacidin Bacillus amyloliquefaciens II, mersacidin-like In vitro, in vivo Antimicrobial (31, 34)
Actagardine Actinoplanes liguraie II, mersacidin-like In vivo, in vitro Antimicrobial (79, 167)
Duramycin/cinnamycin Streptomyces cinnamoneus II, cinnamycin-like In vitro, in vivo, TC Antimicrobial (168), antiviral (141,

168), anticancer (135, 136), ion
channel regulator (50, 51),
immunomodulatory (121)

Lacticin-3147 Lactococcus lactis II, mersacidin-like;
II, Ltn2-like

In vivo, in vitro Antimicrobial (32, 169)

Amyloliquecidin Bacillus amyloliquefaciens II, mersacidin-like;
II, Ltn2-like

In vivo, in vitro Antimicrobial (27)

Pinensins Chitinophaga pinensins I, pinensin-like In vitro Antimicrobial (170), antifungal (170)
Labyrinthopeptins Actinomadura namibiensis III, labyrinthopeptin-like In vivo, in vitro, TC Antiviral (44), antiallodynic (16)
NAI-112 Actinoplanes sp. strain

DSM 24059
III, labyrinthopeptin-like In vivo, in vitro Antimicrobial (mild) (48), antiallodynic

(48), antinociceptive (48)
aTC, tissue culture.
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discovery pipeline (56–58). With current advances in heterologous gene expression,
these peptides may be produced by laboratory strains at high levels (Table 2).
Heterologous expression of unusual biosynthetic systems identified through (meta)ge-
nome mining efforts could result in the discovery of natural products with new scaf-
folds that potentially have interesting biological activities.

In this review, we evaluate advances made in heterologous gene expression and
report on progress made in the medical application of lanthipeptides.

APPLICATIONS OF LANTHIPEPTIDES

Due to the diversity and complex nature of lantibiotics, they have been explored
for use in various medical applications, with some in clinical trials (Table 1). Lantibiotics
have mainly been studied for their application as antimicrobials. However, they have
bioactivities that extend beyond antimicrobial. Furthermore, their modification ma-
chinery can be used to stabilize peptides, improving their in vivo efficacy under a vari-
ety of conditions, such as stroke and diabetic nephropathy (59, 60). An increase in the
number of sequenced genomes, including data from unculturable organisms, has led
to an increase in the in silico analyses of genomic data that may yet reveal lantibiotics/
lanthipeptides with more diverse bioactivities (26). With the help of in vitro/in vivo en-
gineering, these putative peptides can then be functionally expressed, increasing the
arsenal of candidates with potential medical applications. The development of efficient
in vitro/in vivo strategies for screening and expressing these peptides makes large-scale
production a realistic possibility.

TREATMENT OF INFECTIONS

Although a substantial arsenal of antibiotics is currently available for the treatment
of a wide range of infections, antibiotics are losing efficacy against once treatable
infections—a phenomenon accelerated by the incorrect use of antibiotics and the
resulting microbial multidrug resistance (61, 62). A pessimistic view may be that we are
treating ourselves back into an era without antibiotics. The World Health Organization
(WHO) reports the high rates of resistance to antibiotics commonly used to treat seri-
ous bacterial infections, and the Centers for Disease Control and Prevention (CDC) esti-
mates that in the United States more than 2.8 million people contract infections that
are caused by microorganisms resistant to one or more of the prescribed antibiotics
(61, 62). Although antibiotic resistance is on the increase, challenges faced by drug dis-
covery programs have led to an antibiotic discovery void, with the introduction of very
few new antibiotic classes in the last 2 decades (63). However, new technologies in bio-
informatics, structural and chemical biology, and high-throughput screening techni-
ques can aid in novel antibiotics making it into the drug discovery pipeline.

Lantibiotics are attractive antimicrobials as they are active at low concentrations
and mostly target high-value targets, such as lipid II (Fig. 2). The majority of lantibiotics
bind to the cell wall precursor lipid II, preventing cell wall biosynthesis and facilitating
the disruption of the bacterial membrane (64). As an example, the prototypical lantibi-
otic nisin binds to the pyrophosphate moiety of lipid II, with its two N-terminal rings
crucial for this interaction (65). Formation of the pore complex results in cell membrane
permeabilization and dissipation of the proton motive force (64). The ability of certain
globular lantibiotics such as epidermin-like lantibiotics to form pores is dependent on
membrane thickness. These peptides are much shorter than nisin-like lantibiotics and
cannot form pores in cell membranes exceeding 40 Å (66). However, due to their ability
to bind to lipid II, they are still able to disrupt cell wall biosynthesis.

Lantibiotics are mainly produced by Gram-positive organisms and as a result are
very effective against closely related Gram-positive bacteria, with limited activity
against Gram-negative bacteria. This is due to the structural design of the of Gram-neg-
ative bacterial outer membrane, which prevents access to the peptidoglycan layer
(home of lipid II) and cytoplasmic membrane. Furthermore, the anionic cell surface of
Gram-negative bacteria results in binding of the cationic lantibiotics, where such an
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interaction potentially increases the stability of the outer membrane through electro-
static interactions (67). This is not surprising considering that most lantibiotics are pro-
duced by Gram-positive bacteria. Despite this, lantibiotics have shown promising activ-
ity against several of the pathogens on the WHO priority list (63). As such, lantibiotics
have been exhaustively tested in vitro against various bacteria, with several also tested
for their in vivo efficacy (Table 1). This review discusses some of these examples regard-
ing lantibiotic antimicrobial activity and other potential bioactivities to illustrate the
versatility of lantibiotics/lanthipeptides in their application for human health.

LANTIBIOTICS AGAINST GRAM-POSITIVE BACTERIA
Staphylococci and streptococci. Some of the most promising in vivo antimicrobial

results for lantibiotics have been obtained against staphylococci. Staphylococci repre-
sent one of the main genera represented on the skin, either as commensals or patho-
gens, with Staphylococcus aureus most commonly presenting as a pathogen.
Unsurprisingly, the vast majority of skin and soft tissue infections (SSTIs) are caused by
S. aureus and are usually associated with boils, abscesses, carbuncles and localized
wound sepsis (68).

Several lantibiotics are effective against even antibiotic-resistant S. aureus in vitro
and in vivo (27–34, 69). However, there are limited published studies evaluating lantibi-
otics as topical treatments. A relatively recent study used a promising system compris-
ing the incorporation of nisin into nanofibers (69). This approach proved to be effective
in the treatment and prevention of S. aureus in mice. After 7 days (with dressings
changed on days 2 and 4), the nisin-eluting nanofibers reduced the amount of viable

FIG 2 Lanthipeptide antimicrobial and antiviral modes of action. (A) Antimicrobial mode of action of lipid II binding lantibiotics. The peptidoglycan
precursor lipid II (1) is the binding site for lipid II binding lantibiotics, which bind to the pyrophosphate cage of lipid II (2). Once bound, the lantibiotics can
undergo a conformational change, resulting in insertion into the membrane and subsequent pore formation (3). Additionally, binding of lantibiotics to lipid
II can result in inhibition of cell wall biosynthesis (4). (B) Proposed antiviral mechanism of lanthipeptides. Envelope viruses harbor lipids in their virus
envelope derived from the host cell membranes, including phosphatidylethanolamine (PE) (1). Lanthipeptides effective against envelope virus bind to PE
distributed on the outer virus envelope (2), which can interfere with viral entry into host cells (3) and virolysis (4). The figure was created with BioRender.
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S. aureus in wounds to 4.3� 102 CFU/wound, compared to 2.2� 107 CFU/wound for
the control nanofibers. The nisin-eluting and control nanofibers also had a positive
effect on wound healing and closure compared to the gauze control, with up to 90%
wound closure compared to 74% closure, respectively. The use of nanofibers as a deliv-
ery vehicle for lantibiotics has potential as it provides controlled release over a pro-
longed period as well as provides a scaffold for improved wound healing. In another
study, nisin, clausin, and the two-component lantibiotic amyloliquecidin were shown
to be just as effective as a commercially available antimicrobial (mupirocin) in the treat-
ment of S. aureus-induced skin infections in vivo (27). Lantibiotics were administered as
polyvinyl alcohol formulations and along with the mupirocin control were able to sig-
nificantly reduce the viable S. aureus numbers in wounds to 2.1� 104 CFU/wound for
mupirocin, 6.5� 104 CFU/wound for amyloliquecidin, and 1.6� 105 CFU/wound for ni-
sin and clausin after 7 days (treatments on days 2, 4, and 6) compared to the control
treatment (1.4� 107 CFU/wound). In this study, the positive effect on wound closure
was also observed, indicating a beneficial effect, potentially involving the activation of
the hosts’ immune system (46, 47). An alternative mechanism for the delivery of lantibi-
otics may be via administration of an organism producing them as a probiotic. It is
hypothesized that lantibiotics produced by commensal bacteria may play a role in
maintaining microbial balance, through direct antimicrobial activity (reviewed in refer-
ence 70). This was demonstrated, to some extent, using lantibiotic-producing staphylo-
coccal commensals to provide resistance against colonization by S. aureus (71). The
authors identified antimicrobial-producing coagulase-negative Staphylococcus (CoNS)
isolates collected from healthy human skin. These isolates produced known lantibiot-
ics, including epidermin and Pep5, as well as the novel lantibiotics Sh-lantibiotic-a and
Sh-lantibiotic-b produced by Staphylococcus hominis A9. Using this lantibiotic-produc-
ing strain, complete eradication of S. aureus colonized on the backs of mice could be
achieved after twice-daily applications for 1 week. Furthermore, these lantibiotics were
shown to synergize with the human cationic peptide LL-37, increasing activity against
S. aureus 16- and 32-fold for Sh-lantibiotic-a and Sh-lantibiotic-b , respectively. To fur-
ther investigate the potential of CoNS to treat skin diseases associated with S. aureus,
such as atopic dermatitis (AD), the authors used formulations of antimicrobial-produc-
ing CoNS in autologous microbiome skin transplants. Using their formulation, the
amount of S. aureus that could be isolated from the skin of AD patients was signifi-
cantly reduced after 24 h. These results illustrate that the use of lantibiotic-producing
strains for autologous microbiome skin transplants holds potential and should be
investigated further. However, although the lantibiotic-producing capability of com-
mensal staphylococci may provide a host benefit, the opposite may also be true for
pathogenic strains. An example is growth attenuation of S. aureus in a mouse abscess
model through the disruption of the lantibiotic gene, indicating a potential role in
pathogenesis (72). In both of these cases, antimicrobial activity undoubtedly plays a
role in terms of competitive exclusion: their potential immune-regulatory roles cannot
be overlooked.

In addition to their application in the treatment of topical S. aureus infections, sev-
eral lantibiotics have shown potential for use in other applications related to staphylo-
coccal infections. This includes both preventative and therapeutic approaches to pro-
tect against Staphylococcus colonization and formation of biofilms on medical devices,
such as catheters, cardiac devices, and prosthetic implants, which can complicate treat-
ment (73–75).

Lantibiotics are susceptible to low bioavailability when used systemically: perhaps
due to the ability of some to activate the immune system, resulting in rapid degrada-
tion/inactivation in vivo, or the binding to host components (29, 40, 47, 76). Despite
this, some success has been reported for the systemic use of lantibiotics for the treat-
ment of infections. For example, the class I lantibiotic microbisporicin (NAI-107) has
shown promise, with equivalent or superior activity compared to reference treatments
(e.g., penicillin, vancomycin, and linezolid) in methicillin-resistant S. aureus (MRSA) and
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glycopeptide-intermediate S. aureus infections (28, 29). In a rat granuloma pouch
model, two 20-mg/kg doses (at 12 or 24 h) of microbisporicin, administered directly af-
ter infection with MRSA, resulted in a 3-log reduction in bacterial cell counts after 72 h,
with no regrowth up to 96 h (29). Similar results were also obtained in a rat endocardi-
tis model, and in both models, microbisporicin performed similar to or better than
treatment with 100mg/kg vancomycin (29). Interestingly, microbisporicin was more
effective when administered intravenously compared to subcutaneously (1.5 to 2.5
times higher), suggesting that not all lantibiotics are equally capable of crossing host
membrane or tissue barriers (29, 76). Similarly, the class II lantibiotic mersacidin has
also shown potential with superior activity over vancomycin against MRSA in an in vivo
infection model (50% effective doses [ED50s] of 2.59 to 10.81mg/kg of body weight
and 7.20 to 18.98mg/kg, respectively) where mice were injected intraperitoneally with
lethal amounts of S. aureus (MRSA and methicillin-sensitive S. aureus) and treated sub-
cutaneously (34). Mersacidin also has reduced bioavailability when injected subcutane-
ously, which only improves after using the more water-soluble potassium mersacidin
(34). This supports our interpretation that there may be an interaction between the
peptide and host components when administered into tissue rather than intrave-
nously. A combination of mutacin 1140 analogs have recently been used to improve
the efficacy of lantibiotics in the treatment of systemic S. aureus infection (77). The two
analogs had substitutions at positions 2 (K2A) and 13 (R13A) resulting in improved ac-
tivity and stability (77). The two analogs were more active than native mutacin, with 2-
and 8-fold increases in activity (MIC) against MRSA (S. aureus ATCC 33591) for K2A and
R13A, respectively, compared to the native peptide. In vivo stability was also increased,
with up to 4.1- and 5.7-fold higher peak plasma concentrations (K2A and R13A variants,
respectively) compared to the native mutacin 1140 after 60min (administered intrave-
nously at 10mg/kg in mice). Further investigation revealed that the K2A mutacin
exhibited the lowest clearance levels and highest AUC (area under the concentration-
time curve), while R13A had the longest half-life and highest Vss (volume of distribution
at steady state) in vivo. Efficacy against MRSA in a murine systemic infection model
also proved promising, with intravenous administration of the combined analogs (1:1
ratio at 10 mg/kg, with 5mg/kg of each analog), resulting in 100% survival of animals
after 5 days, compared to 100% mortality in the vehicle group. Furthermore, bacterial
loads in the liver and kidneys were significantly reduced compared to the vehicle
group. Using a combination of either different lantibiotics or analogs with distinct
pharmacokinetic and activity profiles can be advantageous, as this can increase both
efficacy as well as antimicrobial spectrum in vivo.

Several lantibiotics have also proved effective against pathogenic streptococci.
Streptococci include several pathogenic strains and are divided into alpha- and beta-
hemolytic streptococci. Alpha-hemolytic streptococci includes Streptococcus pneumo-
niae, which is the cause of pneumococcal infections, including otitis media, sinusitis,
pneumonia, and meningitis. Mice infected intraperitoneally with S. pneumoniae, at con-
centrations sufficient to result in death, were treated with either nisin or vancomycin
(78). Two intravenous treatments with nisin (0.16mg/kg) resulted in survival of all ani-
mals, whereas the survival of mice treated with vancomycin was only 83% when
treated with 1.25mg/kg, and 100% survival was only achieved after treatment with 2.5
or 5.0mg/kg. Nisin had low blood and tissue levels (serum half-life of 0.9 h), but this
was still sufficient to prevent death of the mice (78). Like microbisporicin, nisin was
also more effective when administered intravenously (0.16 versus 2.5mg/kg for 100%
survival). In another study, carboxamides of actagardine were generated (79). The
monocarboxamides were more active than other variants in vitro, and a more water-
soluble derivative was effective in a murine septicemia model, with effective dose val-
ues (ED50, 0.23 to 3.5mg/kg/day) comparable to those of the reference antibiotics used
(0.03 to 26mg/kg/day) (79). Compared to nisin, the actagardine derivative was, how-
ever, eliminated faster, with a serum half-life of 0.3 h (78). Microbisporicin also proved
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highly effective against S. pneumonia, with ED50 values lower than those of linezolid
(0.51 versus 15.9mg/kg, respectively) (29).

Beta-hemolytic streptococci are divided into groups A and B. Group A streptococci
are found on the skin and inside the throat and are responsible for most beta-hemo-
lytic streptococcal infections. Common infections caused by group A beta-hemolytic
streptococci (GAS [Streptococcus pyogenes]) include impetigo, cellulitis, pharyngitis,
and scarlet fever. Several lantibiotics, including microbisporicin, mersacidin, actagar-
dine, and lantibiotics produced by streptococci (e.g., salivaricin 9 and streptin) are
active against GAS (80, 81). The same water-soluble derivatives of mersacidin and acta-
gardine successfully used against S. aureus and S. pneumoniae also proved effective in
the treatment of S. pyogenes in vivo (34, 79). Planosporicin (ED50, 3.75mg/kg) has also
been reported to be effective in preventing septicemia caused by S. pyogenes in mice
when administered intravenously or subcutaneously (82).

Enterococci. Enterococcal infections, and specifically those caused by vancomycin-
resistant enterococci (VRE), are characterized as a serious threat by the CDC and
resulted in 54,500 cases (5,400 deaths) in the United States in 2017 (61). Lantibiotics,
including lacticin 3147, nisin, mersacidin, epidermin, haloduracin, amyloliquecidin,
clausin, and microbisporicin, have promising in vitro activity against enterococci,
including drug-resistant strains (27–30, 33, 35). In vivo efficacy in mice has also been
illustrated for microbisporicin, where intravenous and subcutaneous administration
exhibited the lowest ED50 values (2.3 and 2.8mg/kg) against two VRE strains compared
to linezolid (5.1 and 22.4mg/kg) (29). Recently, a novel approach using synthetic biol-
ogy was used to generate a peptide with two lipid II binding motifs (N-terminal do-
main of nisin and C-terminal domain of haloduracin a) (83). This variant, termed TL19,
displayed increased activity (MIC, 0.9 to 15mM) against several multidrug-resistant
(MDR) Enterococcus faecium strains in vitro compared to nisin (MIC, 1.9 to 3.8mM) and
the C-terminally truncated nisin(1–22) variant (MIC, 30 to 60mM). Although this variant
does not form pores, the additional lipid II binding motif is sufficient to counteract this.
Using synthetic biology approaches such as this can be invaluable to generate more
effective and stable lantibiotics.

Similar to lantibiotic-producing strains effective against S. aureus on skin, lantibi-
otic-producing probiotics have also shown promise in inhibiting VRE colonization of
the gastrointestinal tract (GIT) (84). Kim et al. (84) used a four-strain formulation con-
sisting of Clostridium bolteae, Blautia producta (nisin-like lantibiotic producer),
Bacteroides sartorii, and Parabacteroides distasonis and reported significant reductions
in VRE growth in the gastrointestinal tract of mice compared to the controls (phos-
phate-buffered saline [PBS] and consortia without a lantibiotic producer). Interestingly,
the use of consortia was found to be essential for colonization of the lantibiotic-pro-
ducing Blautia producta strain (85). In the same study, Kim et al. also showed that
microbiomes with a high abundance of lantibiotic genes were associated with a lower
abundance of Enterococcus faecium (84). Furthermore, colonization of germfree mice
with microbiomes containing a great abundance of lantibiotic genes resulted in signifi-
cantly smaller amounts of VRE compared to microbiomes with a low abundance of lan-
tibiotic genes. These results further illustrate the potential of using lantibiotic-produc-
ing strains as a delivery vehicle for the treatment or prevention of diseases caused by
pathogenic bacteria.

Although VRE is a threat, the emergence of carbapenem-resistant enterococci
(CRE)—which are resistant to all treatments evaluated to date—is even more serious
(61). To our knowledge, lantibiotics have not been specifically tested against CRE, but
given the beneficial effects reported in the context of VRE, investigation of lantibiotic
activity against these strains is warranted.

Clostridia. An important foodborne pathogen, involved in severe GIT infections, is
Clostridium difficile. Clostridium difficile-associated diarrhea (CDAD) is one of the major
causes of hospital-associated diarrhea, with more than 220,000 hospitalizations in 2017
in the United States alone, with at least $1 billion in excess medical costs (61). Current
treatment of CDAD includes oral administration of vancomycin and metronidazole;

Minireview Applied and Environmental Microbiology

July 2021 Volume 87 Issue 14 e00186-21 aem.asm.org 10

https://aem.asm.org


however, vancomycin treatment can lead to secondary colonization of VRE in the GIT
or even the spread of vancomycin resistance within a hospital environment. Several
lantibiotics are effective against C. difficile, with some preventing spore outgrowth (28,
36–40). Prevention of spore outgrowth can help in curbing the growth and spread of
C. difficile, which may contribute to the successful treatment of CDAD. Actagardine
(NVB-302) is currently being developed for treatment of C. difficile and has successfully
completed phase I clinical trials. In an in vitro GIT infection model, actagardine com-
pared well with vancomycin in the treatment of C. difficile, with less deleterious effects
on Bacteriodes fragilis (a GIT commensal) (38). Combination treatment with actagardine
and ramoplanin was especially effective against multiple C. difficile strains (39). The
two-component lantibiotic lacticin 3147 has also shown in vitro potential for use as a
treatment for CDAD (36). In a fecal fermentation model, it completely eliminates C. dif-
ficile (36). However, in a porcine model, neither of the lacticin 3147 peptides could be
detected in digesta of pigs 2 h after oral administration (86). Use of the producing
strain has also been investigated (87). While the strain was capable of surviving pas-
sage through the GIT, no lacticin 3147 or antimicrobial activity could be detected in
the feces of pigs, with the producer strain also incapable of preventing Listeria monocy-
togenes infection in mice. This further illustrates a potential pitfall of using a peptide
antibiotic, which may be prone to proteolytic degradation. Degradation can potentially
be addressed by encapsulation of the peptides or by using a genetically tailored probi-
otic strain overexpressing the peptide (69, 88, 89). Additionally, stability is an important
factor to consider when evaluating two-component lantibiotics for therapeutic use, as
this can be different for the respective peptides.

More recently, promising in vivo results have been reported for various variants of
mutacin 1140 (40, 89, 90). Of specific interest is variant OG716 (amino acid substitu-
tions Phe1Val and Arg13Asn), showing superior activity against C. difficile in hamster
models of CDAD (90, 91). Oral administration of OG716 three times a day (days 2 to 5)
resulted in 100% survival of animals, with C. difficile spore and toxin levels near or
below detection limits. Furthermore, considering the sizes of OG716 (2.2 kDa) and van-
comycin (1.4 kDa), the ED50 values of OG716 are very promising (10.97 and 13.3mmol/
kg/day for OG716 and vancomycin, respectively) (91). Importantly, the various mutacin
1140 variants had low toxicity against human cell lines and in animal models (40, 89,
91). As mentioned earlier, the stability of these peptides in the GIT is an important as-
pect to consider, and although amino acid substitutions resulted in increased stability
of mutacin 1140 variants, they are still susceptible to proteolytic degradation (40, 90).
To address this, the use of target-specific enteric-coated capsules is currently being
investigated (89).

Mycobacteria. Mycobacterium tuberculosis is the causative agent of the respiratory
tract infection known as tuberculosis. Worldwide an estimated 10 million people have
contracted the disease, with a fatality rate of 11 to 15% (92). Cases of multiple- and
extensively-drug-resistant M. tuberculosis place an immense burden on the efforts to
try and control the spread of M. tuberculosis, especially in developing countries (92).
The unique cell wall and slow-growth nature of M. tuberculosis may make it difficult for
lantibiotics (and other treatments) to exert antimicrobial activity. However, the ability
of lantibiotics to bind to lipid II gives them an advantage over treatments such as
rifampin, which need to be transported across the plasma membrane. The lipid II struc-
ture of mycobacteria does differ from those of other bacteria, due to modifications on
both N-acetylmuramic acid (MurNAc) and the peptide side chain (93). Despite these
differences, nisin has activity against the nonpathogenic mycobacteria M. smegmatis
and M. bovis, with intracellular ATP leakage and dissipation of the proton motive force:
additionally, hinge mutants were shown to have enhanced activity (94, 95). Nisin,
CMB001, and lacticin 3147 are also active against clinical mycobacterial isolates in vitro,
with lacticin 3147 (MIC90, 7.5mg/ml) and CMB001 (MIC, 0.3mg/ml) showing the best ac-
tivity against M. tuberculosis (33, 96). Although these lantibiotics have potential, in vivo
studies are still required, and an appropriate delivery system still needs to be
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developed to reach M. tuberculosis residing within tissues. For example, in the context
of M. tuberculosis-infected macrophages in the distal lung, promising results have been
reported for the in vivo efficacy of class IIa bacteriocins complexed with phosphatidyl-
choline-cardiolipin liposomes (97). Given the rise of drug-resistant mycobacteria, fur-
ther research is warranted to establish the feasibility and use of lantibiotics as an anti-
mycobacterial treatment.

LANTIBIOTIC ACTIVITY AGAINST GRAM-NEGATIVE BACTERIA

Lantibiotics are not particularly active against Gram-negative bacteria, mainly due
to the inability of the peptides to cross the outer membrane of these organisms, but
several reports of their limited antimicrobial activity are available. This includes activity
against Helicobacter pylori, Neisseria meningitidis, Neisseria gonorrhoeae, Haemophilus
influenzae, Campylobacter jejuni, Serratia marcescens, Proteus vulgaris, and Escherichia
coli (98–100). Activity against Gram-negative bacteria has been shown to be improved
by combination with colistin (polymyxin E) or addition of chelating agents such as
EDTA (30, 99). Recently a nisin-like lantibiotic (CMB001) with a similar structure to subti-
lin was shown to have in vitro activity (10 to 15 mg/ml) against MDR Acinetobacter bau-
mannii (33). Furthermore, studies have also shown that lantibiotic (specifically nisin)
fusion with peptides capable of penetrating Gram-negative outer membranes results
in increased potency (100). Addition of these penetrating peptides to the C-terminal
domain of nisin resulted in a significant improvement (up to 12-fold) in activity against
several MDR Gram-negative pathogenic bacteria (100). The potential of bioengineering
lantibiotics with increased activity against Gram-negative pathogens may further
expand the antimicrobial arsenal of lantibiotics. Additionally, the immunomodulatory
properties of some lantibiotics can also result in their indirect activity against Gram-
negative pathogens (47).

RESISTANCE AGAINST LANTIBIOTICS

The discovery of novel antibiotics is limited by several steps, including target selec-
tion, which is important if a novel antibiotic is to remain effective for a prolonged pe-
riod after administration. In this respect, several lantibiotics target cell wall compo-
nents, including lipid II, and/or possess dual modes of action. Despite this, lantibiotics,
as with any antibiotic, are still susceptible to the development of resistance, and this is
an important aspect to consider when evaluating their application as antimicrobial
therapies. Changes in the cell wall or alterations in membrane composition are some
of the major mechanisms employed by target organisms to protect themselves against
lantibiotics.

The cationic nature of lantibiotics is a crucial element in their initial interaction
with susceptible bacteria; as such, any change in their charge or the charge of their
membrane targets would result in altered attraction. Bacterial membranes are overall
negatively charged, and in the case of Gram-positive bacteria, this is because of tei-
choic acids in their cell wall (101). Due to this anionic nature, cationic antimicrobial
peptides (ctAMPs), including lantibiotics, are attracted to the bacterial cell wall. The
dltA operon, found in numerous bacteria, has been identified as an innate defense
against lantibiotics (102–104). The different genes in this operon are responsible for
the D-alanylation of teichoic acids, resulting in the incorporation of positive charges
and consequentially alternating the electrostatic interaction of ctAMPs with the cells
(102, 104). Additionally, it has been proposed that D-alanylation of lipoteichoic acids
decreases the flexibility and permeability of the cell wall, protecting the host from
ctAMPs (105).

Alterations in the lipid composition of the bacterial cell membrane can also affect
the efficacy of lantibiotics. Nisin has been shown to have high affinity for anionic phos-
pholipids (106), such as phosphatidylglycerol and diphosphatidylglycerol, which coinci-
dentally are the most common phospholipids in bacterial membranes (reviewed in ref-
erence 107). Changes in the anionic nature of phospholipids in the bacterial
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membrane would influence resistance. The phosphatidylglycerol lysyltransferase MprF
is a mechanism employed by bacteria to alter their membrane charge through altera-
tion of phosphatidylglycerol (108). This protein catalyzes the transfer of a lysine residue
from lysyl-tRNAs to phosphatidylglycerol resulting in lysylphosphatidylglycerol. The
addition of positively charged L-lysine can subsequently result in the repulsion of
ctAMPs, including lantibiotics (108).

Another interesting mode of resistance is that of immune mimicry, whereby resist-
ant target strains harbor an immunity protein (LanI) or immune-specific ABC trans-
porter [LanFE(G)] that confers immunity to a specific lantibiotic (109). Immunity pro-
teins (LanI) and immune-specific ABC transporters [LanFE(G)] are present in most
lantibiotic operons and provide protection to the host from its own mature lantibiotic.
The immunity protein LanI is a cell-associated lipoprotein and acts by intercepting the
mature lantibiotic, rendering it inert (109, 110). The ABC transporters LanFE(G) act
through transporting mature lantibiotics from the membrane, thereby preventing pore
formation (109). Usually cross-immunity is rare as these immunity elements are specific
to a certain lantibiotic. However, it has been shown that cross-immunity is possible,
even in strains that do not harbor lantibiotic biosynthetic genes (111). Additionally,
more nonspecific ABC transporters have also been identified that are capable of con-
ferring resistance (112, 113). In general, these transporters can be grouped as either
CprABC- or BceAB-type transporter families (reviewed in reference 114). These observa-
tions are concerning as these immunity elements can also potentially be horizontally
transferred, resulting in the increased resistance to lantibiotics.

Resistance mechanisms are especially important to consider as lantibiotics migrate
into the clinical setting, where such resistance can be devastating. For additional infor-
mation on these and other lantibiotic resistance mechanisms, the reader is referred to
the comprehensive reviews by Clemens et al. from 2018 (114) and Draper et al. from
2015 (115).

OTHER THERAPEUTIC APPLICATIONS OF LANTIBIOTICS AND LANTHIPEPTIDES

In addition to the antimicrobial potential of lantibiotics, lanthipeptides (including
lantibiotics) have shown a diverse range of bioactivities. This is likely due to the diverse
nature of these peptides and the unique properties that the various PTMs can confer.
Examples are presented below to illustrate the diversity of lantibiotic bioactivity.

Immune modulation. Several ctAMPs (such as LL-37 and a- and b-defensins) play
a crucial role in modulating the immune system during infection and injury (116). Most
complex species have ctAMPs, which interact with the innate immune system and are
generally short overall and positively charged, with a large proportion of hydrophobic
residues, making them very similar to lanthipeptides.

Lantibiotics have shown immune-regulatory properties, with nisin, gallidermin, and
Pep5 being capable of inducing the release of multiple chemokines at levels similar to
that of LL-37, with nisin modulating multiple signaling pathways (47). The protective
effect as a result of the immune-modulatory properties of nisin pretreatment provides
effective protection for mice infected with Salmonella enterica serovar Typhimurium
and E. coli (47). In line with this interpretation, nisin has also been shown to activate
neutrophil release of neutrophil extracellular traps (NETs), a mechanism used by neu-
trophils to trap, contain, and kill pathogenic organisms and which is thought to be par-
ticularly important in the immune response to pathogens too large to be destroyed by
phagocytosis alone (46), as reviewed in reference 117. The formation of NETs may
thus—apart from contributing to the reduced loads of S. Typhimurium and E. coli
reported in mice pretreated with nisin—also contribute to immune activity against
larger pathogens, such as fungi (118). Although the antimicrobial properties associated
with NET formation can be advantageous, chronic NET formation, which entails cellular
release of large amounts of free radicals as well as nuclear material such as histones, is
also associated with chronic inflammation and increased risk for autoimmune diseases,
such as rheumatoid arthritis (reviewed in reference 119). This should be considered
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when evaluating nisin (or potentially other lanthipeptides) as a chronic therapeutic
strategy. In addition to effects on the innate immune system, nisin has also been
shown to have effects on the adaptive response in mice (120). This was demonstrated
through the addition of nisaplin (a commercially available nisin preparation) to the
feed of mice, resulting in the short-term increase of CD41 and CD81 cells and T lym-
phocytes. The nature and significance of this modulation remain to be further
elucidated.

Other immune-regulatory properties of lantibiotics come in the form of indirect mod-
ulation of phospholipase A2. Phospholipase A2 plays an important role in inflammatory
responses, resulting from its role in the release of arachidonic acid. The oxidative metab-
olism of arachidonic acid results in eicosanoids, such as prostaglandins and leukotrienes,
which are strong mediators of the immune system. Cinnamycin-like lantibiotics can indi-
rectly inactivate phospholipase A2 by sequestering phosphatidylethanolamine (PE; sub-
strate for phospholipase A2), thereby having the potential to indirectly mediate inflam-
matory responses (121). The cinnamycin-like lantibiotic ancovenin is also an inhibitor of
angiotensin-converting enzyme (ACE) (122), which is responsible for the poor stability of
angiotensin II in circulation and which has been implicated in hypertension and diabetic
inflammation and fibrosis (123). On the topic of ACE inhibition and maintenance of an-
giotensin II function, peptidase-resistant lanthionine-stabilized angiotensin-(1–7), was
recently shown to confer benefit in the context of experimental diabetic nephropathy
and cerebral stroke (59, 60). Interestingly, streptocollin, which has a similar structure to
cinnamycin-like lantibiotics (although forming part of the venezuelin-like class IV lanthi-
peptides) (Fig. S2G and S4) is unable to inhibit phospholipase A2, although its PE binding
has yet to be evaluated (124). This peptide is, however, able to partially inhibit protein ty-
rosine phosphatase 1B (PTP1B). Protein tyrosine phosphatase 1B is a regulator of various
signaling pathways and is best known for its role in insulin signaling, but it also has roles
in immune cell signaling (125). Inhibition of PTP1B has been identified as a potential
strategy to improve insulin sensitivity and also has therapeutic potential in the treatment
of Alzheimer’s disease and diabetes (126).

These results suggest that lantibiotics can interact and modulate the immune sys-
tem, potentially using similar mechanisms employed by human and other ctAMPs.
Additional cell biology research is required to fully understand how lantibiotics/lanthi-
peptides interact with cells of the immune system. This will give further insight into
the roles these peptides might play in host-microbe interaction and potential thera-
peutic application.

Neuropathic pain relief. Labyrinthopeptin-like lantibiotics have limited antibacte-
rial activity. However, labyrinthopeptin A2 and NAI-112 have been shown to have anti-
allodynic and antinociceptive properties in mice (16, 48). Labyrinthopeptin A2 adminis-
tered intravenously at concentrations ranging from 0.01 to 3.0mg/kg resulted in
significant attenuation of tactile allodynia (ED50, 50mg/kg). Efficacy remained stable
over 6 h posttreatment, with loss of efficacy after 24 h (16). Similarly, NAI-112 was also
able to significantly reduce allodynia and hyperalgesia 2 h after administration, albeit
at much higher doses (.10mg/kg) (48). Significant antinociceptive effects could be
observed at somewhat lower doses (from 3mg/kg). At this point, due to differences in
experimental procedures, the efficacies of these two lanthipeptides cannot be directly
compared. More research is warranted in this context, as the mechanisms of action of
these peptides have not been elucidated, although a potential interaction with the
vanilloid pathway has been suggested for NAI-112 (48).

Ion channel regulation. Duramycin has potential in the treatment of cystic fibrosis,
which is caused by abnormal chloride ion transport into cells. It has been demon-
strated in tissue culture that the efflux of chloride observed after duramycin treatment
is associated with a decrease in intracellular calcium levels (49). It was therefore pro-
posed that the efflux of chloride from epithelial cells is likely due to the interaction
duramycin has with cell membranes. This is supported by the interaction that duramy-
cin has with PE, whereby it can be deposited into the cell membrane and indirectly
affect ion channel function (49–51). Duramycin has undergone phase I and II clinical
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trials, with phase II clinical trials reporting it to be safe, with overall positive results on
the pulmonary function of cystic fibrosis patients (52–54). This effect of duramycin to
lower cellular calcium levels may also have broader application in health, given the
known association between intracellular accumulation of calcium and a variety of dis-
eases linked to cumulative oxidative damage and chronic inflammation, such as neuro-
degenerative disease, cancer, accelerated aging, and type II diabetes (reviewed in refer-
ence 127).

Anticancer treatment. Nisin (nisins A and Z) has been shown to be effective in
vitro and in vivo against head and neck squamous cell carcinoma (HNSCC) (128, 129).
Nisin appears to preferentially induce apoptosis in HNSCC cells in a dose-dependent
manner, with minimal effect on primary keratinocytes. This may be due to the struc-
tural differences in the plasma membrane, specifically the phospholipid content, of
the different cell types. This is supported by the observation that nisin binds to phos-
phatidylcholine, which is known to be increased in cancer cells (along with PE)
(reviewed in references 130 to 132). The mechanism by which nisin induces apopto-
sis has been proposed to be calcium dependent (influx of calcium) (129). The subse-
quent influx of calcium results in the activation of calpain-1, resulting in caspase 3-in-
dependent apoptosis (128). This is further supported by the observation that nisin
affects plasma membrane integrity through the release of lactose dehydrogenase
(LDH) (76). Additionally, the potency of nisin in vitro and in vivo can be further
increased in combination with 5-fluorouracil or doxorubicin (133, 134). The involve-
ment of calcium in this context and the increased efficacy by addition of doxorubicin,
which is known to exert anticancer effects via induction of free radical damage in
cancer cells, again suggest that lantibiotics may have a role in the modulation of re-
dox status, although the nature of this modulation varies between lantibiotics.

Duramycin has also shown potential for the treatment of cancer and has been
shown to induce apoptosis and reduce proliferation in tumor cells (135, 136).
Furthermore, due to its high affinity for PE, duramycin can be more selective toward
cancerous cells. An interesting application of duramycin as an anticancer treatment is
its fusion to IgG, generating a new duramycin-IgG variant (137, 138). Fusion of IgG to
duramycin does not influence its PE binding capability and has the advantage of
reducing duramycin cytotoxicity. The IgG fused to duramycin helps guide the host
immune cells to apoptotic cells, resulting in enhanced phagocytosis. Furthermore, tu-
mor growth (MethA tumors) is inhibited in mice after treatment with duramycin-IgG
(138). Since duramycin binds to PE and the Fc region on (fused) IgG antibodies inter-
acts with phagocytic cells to enhance phagocytosis, duramycin is likely cleared from
the site effectively soon after inducing apoptosis in cancer cells, via phagocytosis,
which would explain its lower cytotoxicity to surrounding normal cells.

The urokinase plasminogen activator (uPA) is a serine protease responsible for the
conversion of plasminogen to plasmin. The urokinase plasminogen activator system
has been implicated in activities associated with tumor progression and metastasis
and has been identified as a potential target for anticancer therapy (reviewed in refer-
ence 139). Using a phage display system, Urban et al. screened a lanthipeptide library
for peptides capable of binding to uPA (57). Using this system, they identified several
novel lanthipeptides capable of inhibiting the catalytic ability of uPA. The application
of these peptides was not specifically evaluated for their anticancer capabilities, but
they do show potential. More importantly, this study has highlighted techniques that
could vastly increase the efficiency with which potential candidates may be screened
for anticancer activity or, in fact, other bioactivities.

Antiviral capacity. Various lantibiotics, including nisin, labyrinthopeptin, and dura-
mycin, have been evaluated for their antiviral properties (42–45, 140, 141). Of interest
are the antiviral properties of labyrinthopeptin A1 and duramycin, which show antiviral
activity through their ability to bind PE (Fig. 2). The PE binding capability of duramycin
has proven useful once again, with duramycin being able to inhibit the entry of filo-
and flaviviruses into host cells (42, 141). Phosphatidylethanolamine is a ligand for the
T-cell Ig mucin domain (TIM) protein TIM1, and together they are involved in
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phosphatidylserine (PS)-dependent phagocytosis of apoptotic cells (42). Additionally,
TIM family proteins have also been shown to promote infection of enveloped viruses
as a result of virion lipid content, specifically PS and PE (42). Duramycin was therefore
evaluated for its ability to inhibit TIM1-mediated virus entry through blocking virus
attachment to TIM1 (42). Duramycin was reported to be most effective at the entry
phase of the viral infection, with no effect observed when duramycin was administered
postinfection, and was effective in inhibiting viral entry into human TIM1-expressing
cells (hTIM1-293T) as well as cells naturally expressing TIM1 (Vero and A549 cells). This
inhibitory effect was shown to be specific for TIM1-mediated entry of viruses through
interaction of duramycin with PE present in the viral membrane (42). Through inhibi-
tion of Zika virus binding to TIM1, duramycin has also been shown to be effective in
reducing infection of placental cells and explants (141).

Labyrinthopeptin A1 has shown promising antiviral activity against several viruses,
including human immunodeficiency virus (HIV) and herpes simplex virus (HSV), with
activity against laboratory-adapted strains and clinical isolates (including drug-resistant
strains) (43). Labyrinthopeptin was able to inhibit cell-free viral infection as well as in-
hibit cell-to-cell spread of HIV in vitro. This inhibitory activity was dependent on time of
drug administration and was only effective if the drug was administered within 1 h af-
ter infection. Like duramycin, these results suggest that labyrinthopeptin A1 likely also
interferes with the viral entry process. Labyrinthopeptin A1 was shown to interact with
the virus (interaction with envelope protein gp120) and not receptors on the host cell.
However, binding to the virus is highly likely to be via interaction with lipids (specifi-
cally PE) in the viral membrane (44). A moderate degree of synergism when combined
with other commonly used antiretroviral therapies was seen (43). An advantage of not
having significant antibacterial activity is that labyrinthopeptin A1 does not have a
negative effect on host microbiota, such as vaginal lactobacilli, reducing the risk of dys-
biosis (43). Importantly, labyrinthopeptin A1 did not stimulate targeted immune cells
(peripheral blood mononuclear cells [PBMCs]), as expression of CD69 and CD25
remained unchanged and did not result in significant induction of inflammatory cyto-
kine secretion from these cells (43). Additionally, labyrinthopeptin A1 was not cytotoxic
against vaginal epithelial cells or other nonepithelial cells at effective antiviral concen-
trations (43).

Labyrinthopeptin A1 and A2 have also been tested against a variety of other envel-
oped viruses, with labyrinthopeptin A1 being the most effective, conferring broad-
spectrum antiviral activity (44). Of interest is the observation that labyrinthopeptins
bind to PE and may be responsible for labyrinthopeptin binding to viral membranes.
Furthermore, it was shown that the antiviral effect was a result of virolysis (viral mem-
brane disruption), although similar effects on TIM1-mediated entry to those reported
for duramycin cannot be excluded (42, 44). Additionally, labyrinthopeptins are effective
against respiratory syncytial virus (RSV) in vitro and have shown promising results in
vivo (45). Moreover, the labyrinthopeptins are not affected by resistance mutations
usually detrimental toward RSV entry inhibitors. The mode of action against RSV is sim-
ilar to that reported for other viruses (i.e., interaction with the virus-associated PE) (45).
Although promising results were reported using an in vivo murine model, treatment
was not as effective compared to in vitromodels and requires additional research (45).

Efforts at generating lanthipeptides new to nature have also shown promise for
generating lanthipeptides capable of inhibiting HIV budding from cells (142). A bacte-
rial reverse two-hybrid (BRTH) system was used to screen potential lanthipeptide ana-
logues for their ability to inhibit the interaction of the HIV p6 protein with the ubiquitin
E2 variant (UEV) domain of human TSG101 (important for budding of HIV from infected
cells). Using prochloricin A2.8 as a backbone, the amino acids between the two rings
were randomized and modification performed by ProcM (LanM). In vitro testing using
the BRTH system resulted in the identification of one peptide, XY3-3, capable of dis-
rupting the interaction between HIV p6 and UEV. Further in vitro testing revealed that
the lanthipeptide had more than 10-fold increase in activity compared to a previously
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identified inhibitor and specifically binds to UEV (142, 143). Both lanthionine bridges
were also shown to be crucial for activity. To access the peptides’ ability to prevent
Gag-mediated budding of virus-like particles in cell-based assays, the cell-penetrating
Tat peptide was fused to the N terminus of XY3-3. The newly generated XY3-3-Tat was
not toxic to cells at concentrations up to 500 nM and inhibited viral budding by 65% at
100 nM. The peptide interfered with the degradation of the epidermal growth factor
receptor (at 500 nM), which is mediated by the UEV domain of TSG101, further support-
ing binding of XY3-3-Tat to UEV. Although further testing is required, lanthipeptides
such as XY3-3-Tat and labyrinthopeptins may prove useful in antiviral therapy.
Furthermore, methods based on BRTH and phage display systems provide a platform
for identifying and testing novel lanthipeptides (57, 142).

HETEROLOGOUS EXPRESSION OF LANTHIPEPTIDES

Most studies investigating lanthipeptides require pure peptide at relativity high
yields. This can be troublesome as some of the producing strains suffer from low pro-
duction yields and production of other contaminating peptides. Furthermore, for a lan-
thipeptide to be commercially viable, industrial-scale production would need to be fea-
sible. Additionally, lanthipeptides that are identified by genome mining are not always
readily produced by the native producer or the native producer is not available (144).
Furthermore, regulation of lanthipeptide and associated gene expression can be very
complex and, in some cases, has not been fully elucidated. The design and expression
of new-to-nature lanthipeptides are also not possible without the use of a heterol-
ogous expression system or chemical synthesis. Several heterologous expression sys-
tems have been investigated to produce lanthipeptides (Table 2). An important feature
of any lanthipeptide expression system is the inclusion of the appropriate modification
enzymes. In most cases, the precursor peptide is expressed to neutralize the bioactivity
of the core peptide, reducing potential toxic effects of the core peptide against the
expressing host. Furthermore, addition of affinity tags, such as multiple histidines, aids
in purification via affinity chromatography.

As the native producer of nisin, it is not surprising that Lactococcus lactis has been
used as a heterologous host to produce lantibiotics (Table 2). Additionally, the genes
involved in the regulation of nisin expression have also been incorporated into a com-
mercially available expression system, namely, the nisin-controlled gene expression
system (NICE). In the native nisin-producing bacterium L. lactis, nisin biosynthesis is
autoregulated by a two-component regulatory system made up of NisK (histidine sen-
sor kinase) and NisR (transcriptional activator) (145). Mature nisin acts as its own induc-
ing peptide, with NisK acting as its receptor. Once nisin is bound to NisK, a signal trans-
duction cascade is initiated that results in the autophosphorylation of NisK. This
subsequently results in the transfer of phosphate to NisR, which binds to the promoter
regions in the nisin operon resulting in induced expression. This regulatory machinery
is extremely sensitive and tightly controlled, which makes it ideal for use in a heterol-
ogous expression system. Using L. lactis as the heterologous host, yields of ;6.0mg/liter
(precursor peptide) have been reported (146). L. lactis peptides have been expressed
from class I and II by using modifications of enzymes from both classes (147). A rapid
screening system (nanoFlemming) using L. lactis has also been developed capable of
assessing peptide libraries at nanoliter scale (58). Systems like these allow for the rapid
screening of large peptide libraries that can significantly streamline the discovery
pipeline.

Escherichia coli is a molecular workhorse, and a wealth of resources are available,
ranging from different expression strains, cloning tools, and expression systems
reviewed in reference 148. Due to these advantages, E. coli has been utilized as a heter-
ologous expression host to produce lanthipeptides from all four classes (Table 2). From
these studies, it seems that the multifunctional synthetases (LanM, LanKC, and LanL)
are simpler to express in E. coli than the dedicated class I synthetases (i.e., LanB and
LanC). This may be due to the increased complexity of modification, specifically the
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requirement for two dedicated modification enzymes. Shi et al. (149) were the first to
report successful expression of a class I lantibiotic in E. coli with in vivo modification of
precursor nisin by LanB and LanC. Using this system, a yield of 24mg/liter modified
precursor nisin (13.8mg/liter core peptide theoretical) was obtained. To further
improve on this yield, the inclusion of optimized tRNAGlu sequences and glutamyl tRNA
synthetase can increase the efficiency of class I modification enzymes (9). Shi et al.
(149) also successfully expressed the class II lanthipeptides haloduracin (Hala and
Halb) and prochlorosins (1.7, 2.11, 3.2, and 3.3), modified using their respective LanM
synthetases. Yields of the various precursor prochlorosins ranged from 10 to 35mg/li-
ter and fully modified haloduracin precursor peptides from 1 to 2mg/liter (149).
Previously, precursor nukacin ISK was produced in E. coli at 1.5mg/liter, which is signifi-
cantly less than prochlorosins but similar to haloduracin (150). This seems to indicate
that the type of lanthipeptide as well as the modification enzymes used can influence
production yields. Interestingly, prochlorosins were obtained from the soluble fraction
when modified, but are mostly in the insoluble fraction when ProcM (LanM) is absent
(149). Sequestration of heterologously expressed peptides/proteins to inclusion bodies
is a potential limitation (151). To address this, fusion of precursor peptides to “solubility
enhancers” has been investigated, including green fluorescent protein (GFP) and man-
nose-binding protein (MBP) (56, 151, 152). Using these larger fusion tags has been
shown to improve stability and solubility of heterologously expressed proteins and can
reduce toxicity to the heterologous host (56, 151–153). Importantly, fusion to these
larger proteins does not interfere with the modification and may improve the contact
time of the precursor peptides with their respective synthetases. An additional advant-
age of using GFP is its fluorescence, which can help in optimization of expression
through real-time in vivo monitoring of expression and evaluation of purification
(151–153). Although using these larger fusion proteins can result in reductions of final
lanthipeptide yield, further optimization of these systems is required to unleash their
full potential. Another possibility is to secrete the lanthipeptides outside the cell. This
has been done successfully for the two-component lantibiotic lichenicidin, with yields
of 4 and 6mg/liter for the alpha- and beta-peptides, respectively (154). In this example,
secretion and cleavage are performed by the bifunctional LanT (LicT), with additional
cleavage performed by an extracellular protease LanP (LicP). This system has the
advantage of not having to cleave the precursor peptides in vitro after purification, but
removes the ability to utilize affinity chromatography during initial purification.
Secretion can, however, still be performed without leader peptide cleavage, using E.
coli secretion systems (e.g., the twin-arginine translocation [TAT] pathway) or by
removing/disrupting the protease domain of the bifunctional LanT (if using a bifunc-
tional LanT) (155).

Streptomyces spp. are known for their production of secondary metabolites and
RiPPs, making them an intriguing platform for heterologous lanthipeptide production
(156, 157). Streptomyces spp. have been used for the heterologous production of lan-
thipeptides represented in three of the four classes (II to IV), including cinnamycin, lab-
yrinthopeptins, and streptocollin (124, 158, 159). Using Streptomyces lividans, fully
modified labyrinthopeptides could be produced at yields of 86 and 14mg/liter for laby-
rinthopeptin A1 and A2, respectively (158). These values are lower than those pro-
duced by the wild type (90 and 36mg/liter for A1 and A2, respectively), but it should
be noted that this process was not optimized, and more importantly, copurification of
closely related peptides is eliminated when the peptides are heterologously expressed
(43, 158). Similarly, actagardine was also successfully expressed in S. lividans, with
yields of 50 to 80mg/liter (159). Expression of streptocollin in Streptomyces coelicolor
also proved fruitful, yielding a 5.5-fold increase in production over the wild-type strain
(from 1.8mg/liter to 10mg/liter) (124).

In addition to the use of these expression systems to produce lanthipeptides, they
can also be used for fundamental studies and as tools in the drug discovery pipeline.
To this end, heterologous expression has been used in several studies to investigate
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fundamentals of lanthipeptides, including structure-function relationships, gene func-
tion, and regulation of expression. This is, in part, made possible by genetic tools avail-
able for heterologous hosts, such as E. coli and L. lactis, which allow for specific manip-
ulation of genes involved in the modification and processing of the peptides or to
easily make changes to peptide structure and study the effect on bioactivity. The refac-
toring of promoters and transcriptional units for target gene clusters can be used to
improve expression in heterologous hosts and facilitate the expression of pathways
that are silent in the producing strain. Furthermore, rapid screening methods have also
been developed and are essential for testing of large libraries of potential lanthipepti-
des (56–58).

CONCLUDING REMARKS

Lantibiotics (and lanthipeptides in general) represent a diverse range of peptides
and make up the largest group of RiPPs. Due to this diversity, a plethora of bioactive
peptides have been discovered, with activities as diverse as the peptides themselves.
Recent studies illustrating the widespread nature of lanthipeptides in bacterial
genomes are promising, signifying an untapped source of potential biotherapeutics
with novel mechanisms of action. This is especially important in current times, given
the rise in resistance toward available therapeutic interventions. It is therefore promis-
ing to see the significant advances in the lantibiotic/lanthipeptide discovery pipeline
over the past few years. These include methods for rapid evaluation of large lanthipep-
tide libraries and development of more effective production systems.

However, there remains an innovation chasm between academic research and com-
mercialization of lanthipeptides. To help bridge this gap, future studies should focus
on identifying potential applications of novel peptides and evaluating their modes of
action. Additionally, increased focus should be placed on in vivo assessment to help
identify and address shortcomings, such as low bioavailability. Another aspect that
requires further innovation is the production of lanthipeptides. Despite significant
steps being made in the heterologous expression of lanthipeptides, the complex na-
ture of their PTMs and low production yields remain a hurdle. Future research needs to
focus on the fine-tuning of expression systems to produce lanthipeptides at feasible
yields and see lanthipeptides enter the commercial market.
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