Skip to main content
. 2021 Jun 12;21(12):4054. doi: 10.3390/s21124054

Table 6.

The test accuracies of the VGG-16 and 19 trained by the optimization methods for the CIFAR-10 image dataset classification task. “W (Win)”, “T (Tie)”, and “L (Loss)” refer to the number of the compared methods for which HyAdamC-Basic (or HyAdamC-Scale) achieved better, equivalent, and worse test accuracies, respectively. The first and second best results are highlighted in red and orange, respectively.

VGG-16 VGG-19
Methods Batch 64 Batch 128 Batch 64 Batch 128
SGD 0.820 0.674 0.790 0.688
RMSProp 0.100 0.100 0.100 0.100
Adam 0.100 0.871 0.100 0.100
AdamW 0.100 0.100 0.100 0.100
Adagrad 0.746 0.738 0.740 0.742
AdaDelta 0.100 0.100 0.100 0.100
Rprop 0.123 0.223 0.149 0.166
Yogi 0.100 0.100 0.100 0.100
Fromage 0.883 0.897 0.859 0.882
TAdam 0.875 0.889 0.871 0.887
diffGrad 0.875 0.886 0.100 0.878
HyAdamC-Basic 0.894 0.902 0.885 0.900
HyAdamC-Scale 0.899 0.900 0.890 0.899
HyAdamC-Basic: W/T/L 11/0/0 11/0/0 11/0/0 11/0/0
HyAdamC-Scale: W/T/L 11/0/0 11/0/0 11/0/0 11/0/0