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Abstract: We utilized scanning probe microscopy (SPM) based on a metal-oxide-silicon field-effect
transistor (MOSFET) to image interdigitated electrodes covered with oxide films that were several
hundred nanometers in thickness. The signal varied depending on the thickness of the silicon dioxide
film covering the electrodes. We deposited a 400- or 500-nm-thick silicon dioxide film on each sample
electrode. Thick oxide films are difficult to analyze using conventional probes because of their low
capacitance. In addition, we evaluated linearity and performed frequency response measurements;
the measured frequency response reflected the electrical characteristics of the system, including the
MOSFET, conductive tip, and local sample area. Our technique facilitated analysis of the passivation
layers of integrated circuits, especially those of the back-end-of-line (BEOL) process, and can be used
for subsurface imaging of various dielectric layers.

Keywords: scanning probe microscopy (SPM); FET sensor; scanning capacitive microscopy (SCM);
electrostatic force microscopy (EFM); subsurface imaging

1. Introduction

As semiconductor devices developed, silicon dioxide films became of key impor-
tance; these films serve as insulators compatible with silicon devices [1]. Characterization
of SiO2 films has progressed remarkably. Spatially resolved analysis using scanning
probe microscopy (SPM) can be used to determine local electrical properties and micro-
scopic quality. The various SPM techniques include conductive atomic force microscopy
(CAFM) [2,3], scanning capacitance microscopy (SCM) [4,5], and electrostatic force mi-
croscopy (EFM) [6–10]. All of these methods have been used to analyze SiO2 films (usually
those of semiconductor devices); in particular, the thick SiO2 films of the back-end-of-line
(BEOL) process, which is the second step in integrated circuit (IC) fabrication, have at-
tracted much attention [11]. During the BEOL process, interconnections are metallized,
dielectric layers for electrical separation are fabricated, and pads and bumps are added;
most structures are buried under dielectric films. When evaluating the local properties of
such films, spatially resolved measurements derived using SPM are desirable.

In contrast to the ultra-thin oxide films used in the front-end-of-line (FEOL) process,
thick films exhibit high electrical impedance, and a highly sensitive SPM technique is
required. CAFM [2,3] and SCM [4,5] have been used for many years but can evaluate only
dielectrics from several to tens of nanometers thick. Nanoscale capacitance microscopy
(NCM) [12,13], which measures the absolute value of capacitance through compensation
of the parasitic capacitance, evaluated oxide films up to 100-nm-thick. The theoretical
feasibility of evaluating thick oxide films (over 1 µm) using EFM [6,7] and Kelvin probe
force microscopy (KPFM) [11,14] has been explored; these techniques measure changes
in capacitance over distance (dC/dz values). Recently, scanning microwave microscopy
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(SMM), involving microwave transmission through a sample, and analysis of the emerging
wave has been used to characterize SiO2 films hundreds of nanometers to several microm-
eters thick [15,16]. However, evaluation of thick oxide films remains challenging. It is
difficult to obtain absolute values, and SMM requires auxiliary equipment and complex
signal processing.

We used a customized “tip-on-gate of field-effect transistor” (ToGoFET) probe to per-
form the capacitive measurement [17]. The sample electrode was covered with diamond-
like carbon (DLC) with lower electrical impedance than SiO2 because of leakage. The
ToGoFET probe senses the electrical potential of the tip transmitted from the local sample
surface. The raw data are amplified by a metal-oxide-silicon field-effect transistor (MOS-
FET) near the input stage (beneath the tip) for simple signal processing and robustness
against parasitic signals. The MOSFET gate exhibits high input impedance, preventing
signal loss from the sample to the tip and electrical breakdown. Here, we prepared sam-
ples, including several hundred nanometers thick SiO2 films, with much higher electrical
impedances than the DLC layer studied previously. The measurement results demonstrate
the capability of our probe to evaluate the oxide films hundreds of nanometers thick. The
feasibility of quantitative measurement was also suggested by showing the change of the
ToGoFET signal depending on the oxide film thickness. In discussion, we analyzed the
limitations of quantitative evaluation of ToGoFET probe based on our experiments. The
development of the ToGoFET probe enables accurate analysis of integrated chip passivation
layers, especially those of the BEOL process, and the probe will find many applications in
subsurface imaging of dielectric layers.

2. The ToGoFET Probe
2.1. Basic Principle

The probe featured a conductive tip on the floating gate of a MOSFET (Figure 1).
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Figure 1. (a) Schematic of the ToGoFET probe in contact with the sample surface. (b) Equivalent
circuit model of the tip-sample system.

When the tip contacts a surface, an electrical potential is induced at the tip; this reflects
the electrical properties of the local surface, i.e., the surface potential, local capacitance, and
trap charge. The gate voltage transmitted from the sample generates an electric field in the
channel under the gate; channel conductance is influenced by the induced charge carriers.
This principle is expressed by Equation (1):

Id =
1
2

kn
(
Vg − Vt

)2 (1)

where kn and Vt are a transconductance parameter and MOSFET threshold voltage, respec-
tively. The gate voltage is determined by the ratio of the input impedance of the gate oxide
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to the impedance of the local sample (Figure 1b). In terms of capacitance, the electrical
impedance of a sample increases with the thickness of the oxide layer. Accordingly, the
voltage transmitted to the gate decreases, reducing the brightness of the ToGoFET image.
As the MOSFET has high electrical impedance, a measurable voltage is transmitted from
the sample to the tip. Additionally, the MOSFET renders small signals linear. The probe is
robust against signals caused by parasitic (stray) capacitance formed by the electrode of
the sample and the electrode on the cantilever structure of the probe. Stray capacitance
compromises the ability of SPM to measure electrical properties [18,19]. The robustness of
our probe reflected the basic MOSFET principle. The drain current of the MOSFET was
saturated above a certain drain voltage, and the MOSFET was thus highly resistant to drain
voltage in the region of saturation. In other words, the variation in drain voltage due to the
stray capacitance could not have a significant effect on the output signal. As the gate was
isolated at the end of the cantilever, with the result that only the drain electrode transmitted
a signal through the cantilever, stray capacitance at the cantilever had little influence on
the output signal. The high impedance and gain of the MOSFET, and the elimination of
stray capacitance (because the gate was isolated), allowed the probe to measure small
local capacitances.

2.2. Fabrication of the ToGoFET Probe

We fabricated the probe in three steps: depletion-mode n-type MOS (NMOS) fabrica-
tion, cantilever release, and Pt-tip fabrication. Using a silicon-on-insulator (SOI) wafer, we
first fabricated a depletion-mode NMOS with a 30-nm-thick gate oxide. To eliminate the
need for a sample DC offset voltage, the depletion-mode NMOS had a low dose of ions in
the channel region. To release the cantilever structure, a device layer, buried oxide (BOX)
layer, and substrate layer were sequentially etched using the DRIE process. Gold was
sputtered on the back of the cantilever to reflect laser light. The Pt-tip was deposited via
focused ion beam-induced deposition [20]. We laminated the Pt layer as the deposition area
was reduced; this created a cone-shaped Pt-tip. The details of this process were published
previously [21]. The completed probe is shown in Figure 2.
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Figure 2. The ToGoFET probe: (a) An electron micrograph; (b) schematics of the cantilever and
built-in MOSFET; (c) cross-section of the MOSFET.

3. Capacitive Imaging of a Buried Electrode
3.1. Sample Preparation

Figure 3a,b shows the interdigitated electrode covered with SiO2 film. Aluminum was
deposited onto a silicon substrate via sputtering (final thickness = 1350 Å) and etched into
an interdigitated structure. The electrode lines were 10-µm wide, with 3-µm gaps between
interdigitated electrodes. The ends of the electrodes were connected to a pad. After dicing
the samples with photoresist passivation, 400- or 500-nm-thick SiO2 films were deposited
via plasma-enhanced chemical vapor deposition.
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Figure 3. (a) Optical micrograph image of the interdigitated electrodes sample covered with SiO2

and (b) its cross section; (c) Sshematic of the measurement setup of the probe; (d) the external signal
processing circuit, including I-V converter, buffer, and AC-to-DC converter.

3.2. Experimental

The measurement set-up is shown in the inset of Figure 3c. The SPM probe operated
in contact-mode and an SPA 400 (SPM unit) and SPI 3800 (probe station) were used (Seiko
Instruments, Chiba, Japan). The probe was glued at a customized PCB board with gold wire
bonding, and jumper wires connected the PCB to the read-out circuit. Topographic images
were obtained by the commercial equipment, but the drain current through the probe was
processed using the external circuit of Figure 3d, which included an I-V converter, a buffer
with offset rejection, and an AC-to-DC converter. Thus, AC drain current was converted to
DC output voltage, which entered the user-specified input port. During measurements,
sinusoidal voltages of various magnitudes were applied to the sample electrode at 100 kHz.

3.3. Local Capacitance Imaging of an SiO2-Covered Electrode

Figure 4 shows images of the buried electrode covered with 400-nm-thick oxide,
obtained using the ToGoFET probe. Figure 4a shows a topographic image; electrode lines
10 µm in width and with 3-µm gaps can be clearly seen. In the images in Figure 4b–i, the
contrast represents the gate voltage transmitted from the electrode.

In Figure 4b–i, bright regions are biased electrodes, dark regions are grounded elec-
trodes, and medium-brightness regions are the gaps between electrodes. The local capac-
itance between the tip and sample electrodes varied; the ToGoFET signal thus changed
by location, revealing the buried electrodes. It is also possible to measure the voltage
transmitted through the dielectric layer; this yields the local capacitance. The ToGoFET
signal was linear to 8 Vpp, as shown clearly in Figure 5 (the line profiles of the ToGoFET
signals for the buried electrode). The signals sloped gently and were discontinuous in the
gaps between electrodes, reflecting the capacitance created by the conical tip, MOSFET
gate, and sample electrodes. The tip-sample capacitance that determines the signal was
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formed by the sample and entire tip, as opposed to only the tip apex; the value was thus a
local average. The discontinuities reflect the fact that the average capacitance of the local
area (between the tip and sample) changed discontinuously along the surface structure. A
previous study found that the shape of the side wall affected the ToGoFET signal [17].
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In addition, the ToGoFET signal changed depending on the dielectric layer thickness,
which in turn affected the local capacitance. Figure 6 shows images of the buried electrodes
covered with 500-nm-thick oxide. As the sensitivity was relatively low, measurements
were performed up to an input voltage of 10 Vpp.
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Compared to the images of electrodes covered with 400-nm-thick oxide, the voltage
transmitted from the sample electrode to the tip was lower, and the electrical images
were thus affected by inherent noise. Sensitivity depended on dielectric layer thickness,
suggesting that the probe can estimate thickness to within a few hundred nanometers.
Figure 7 shows more details of the capacitive measurements. No noticeable signal variation
along the scan line was evident until 2 Vpp was applied, i.e., the sensitivity was low. At
a voltage ≥ 3 Vpp, the probe resolved the electrodes to which the voltage was applied,
similar to the 400-nm-thick oxide tests described above. However, averaging became more
pronounced as the capacitance between the tip and sample decreased.
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The input voltage of each line profile is shown.

4. Discussion

Figure 8 shows the output signals by voltage input to the sample electrode. The data
are linear, with the exception of the two noise-dominated datasets shown in Figure 6b,c;
these points are shown in a light color. The probe output signal reflects the local capacitance.
When imaging buried electrodes, different signals were observed at the same location
depending on the oxide thickness. The slopes that exhibited the electrical sensitivities were
321 mV/V and 32 mV/V, respectively, thus they were significantly different from the oxide
thickness ratio (4:5). We performed frequency response analysis in an effort to explain the
theoretical model of the ToGoFET imaging and this discrepancy.
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SCM and KPFM both operate within a narrow frequency band when generating a
resonance sensor and mechanical vibrations, respectively. The ToGoFET probe can use any
frequency within the MOSFET bandwidth. Frequency response analysis was thus possible,
and we explored the impedance of the tip-sample system. We placed the tip in the center of
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the electrode to which voltage was applied. Figure 9 shows the frequency responses from
10 kHz to 100 kHz for the two samples. The trend lines (slopes of 20 dB/decade) are dotted.
As described in Figure 1b, the tip-sample system can be interpretated as a series connection
of impedances of the gate oxide and sample surface. Silicon dioxide film can be considered
as a capacitive component in the circuit model, and when it had a thickness of several
hundred nanometers in this study, the resistance component of the film could be neglected.
On the other hand, the gate oxide of the ToGoFET probe was much thinner than the sample
oxide film and was damaged by exposure to several MEMS processes. Thus, leakage could
flow through the gate oxide, which was modeled in parallel to a capacitor and a resistor.
Therefore, the measurement system can be described as Figure 10a. In Figure 10b, Cg,
Csample, and Rg are the gate capacitance, local capacitance between the tip and sample,
and gate resistance, respectively; they form a typical high-pass filter. Considering the
upward slop at 20 dB/decade, this model agrees with the measurement result in Figure 9
and proves that the output signal from the ToGoFET probe exhibits local capacitance
of the sample surface. However, our current probe lacks a gate pad for connection to
external equipment. It is difficult to quantitatively evaluate sample characteristics by
compensating only for the tip characteristics. Nevertheless, we observed large differences
in output signals as the thickness of the oxide film covering the electrode varied. Moreover,
the electrical characteristics of the tip sample can be analyzed by deriving the frequency
response characteristics.
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In future, we will define the electrical impedance of the probe and compensate the
images accordingly. It is possible to image and quantitatively evaluate thick oxide films
and their subsurfaces, which is challenging using conventional probes. Our probe does not
require auxiliary equipment. Signal processing is simple, so it is not difficult to evaluate
surface electrical properties, providing better accessibility of the analysis of the dielectric
layer using the SPM technique. The probe will find applications in research and industry.

5. Conclusions

We demonstrated that our ToGoFET probe can evaluate oxide films hundreds of
nanometers thick and provide images of buried electrodes. When the electrodes were cov-
ered with 400-nm-thick oxide, the images were clear when the applied voltage was ≥2 Vpp
and the signals were linear. The image of the subsurface (under the oxide) was clear, so
the probe can be used for subsurface analysis. When the electrodes were covered with
500-nm-thick oxide, a higher applied voltage was required to obtain an image. Clearer
images were obtained by increasing the voltage to 10 Vpp. The sensitivity was significantly
reduced compared to the 400-nm-thick oxide sample, indicating that a factor other than
local capacitance had an effect. Frequency response analysis revealed that gate leakage
explained the sensitivity difference. Despite the leakage, the images clearly differed as
the oxide thickness varied. As the operating frequency can be chosen at will, subsurface
imaging and frequency response analysis of the tip-sample system are possible using only a
simple circuit. In future work, our next-generation probe will be subjected to sophisticated
frequency response analysis and characterization.
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