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Abstract

Nearly 15% of melanomas occur in patients with a family history and a subset of these patients 

have a germline mutation in a melanoma predisposing gene. CDKN2A mutations are responsible 

for the majority of hereditary melanoma, but many other susceptibility genes have been discovered 

in recent years, including CDK4, TERT, ACD, TERF2IP, POT1, MITF, MC1R, and BAP1. 
Additionally, melanoma risk is increased in mixed cancer syndromes caused by mutations in 

PTEN, BRCA2, BRCA1, RB1, and TP53. While early onset, multiple tumors, and family cancer 

history remain the most valuable clinical clues for hereditary melanoma, characteristic epithelioid 

cytology of melanocytic tumors may suggest an underlying BAP1 mutation. Herein, we review the 

clinical and histopathologic characteristics of melanocytic tumors associated with these germline 

mutations and discuss the role of genetic counseling.
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1 | INTRODUCTION

A subset of melanoma, approximately 7% to 15%, occurs in individuals with a family 

history.1 The factors influencing melanoma risk in a family include shared sun exposure 

experiences, geographic location, skin phototype, and genetic variants.1 Approximately 22% 

of familial cases are caused by a mutation in a currently known single high-risk tumor 

predisposition gene, CDKN2A, and over half of individuals with multiple primary 

melanomas carry mutations in the gene.1 Melanoma may either be the dominant cancer in 

the family, such as in families with CDKN2A mutation, or be a part of a mixed cancer 

syndrome such as in families with Cowden syndrome caused by PTEN mutations. Generally, 
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the mutations in tumor predisposition genes cause multiple tumors with earlier onset than in 

the general population and occur in those with a positive family history.

While only a small subset of melanoma patients have a tumor syndrome predisposing to 

cancer, understanding the causes of hereditary melanoma has led to the discovery of a role 

for several key genes, many of which are also somatically mutated in melanoma, including 

CDKN2A, TERT, MITF and PTEN.2 This review discusses the genetic background and 

clinical and histopathologic features of hereditary syndromes characterized by predisposition 

to melanoma, melanocytic nevi, and other melanocytic tumors. While most of these tumors 

are histopathologically indistinguishable from their sporadic counterparts, a subset shows 

characteristic features such as those caused by BAP1 germline mutations. Awareness of 

these syndromes will facilitate early diagnosis and improve patient care.

2 | GERMLINE MUTATIONS

2.1 | CDKN2A

CDKN2A is by far the most commonly mutated gene causing hereditary melanoma (Table 

1).1 Germline mutations in CDKN2A increase the risk of melanoma by 65-fold.3 This tumor 

syndrome was first described in the 1960s by Lynch and Krush4 as familial atypical multiple 

mole and melanoma syndrome (FAMMM) and by Clark and colleagues as B-K mole 

syndrome5 or dysplastic nevus syndrome. Both groups described families with multiple 

clinically atypical nevi, melanomas and, in a subset of patients, pancreatic cancer. The 

disease gene was later identified in the 1990s as CDKN2A.6,7

CDKN2A is a tumor suppressor gene encoding two transcripts, p16 and p14(ARF), that 

regulate two critical cell cycle pathways. p16 inhibits CDK4 and, therefore, phosphorylation 

of RB. p14ARF inhibits HDM2 and, therefore, ubiquitination of p53. In addition to germline 

mutations, CDKN2A is commonly somatically mutated in sporadic melanoma.1 Somatic 

biallelic inactivation of CDKN2A occurs exclusively within invasive melanomas8,9 and can 

be assessed with immunohistochemical staining for p16 protein. Utility and 

recommendations for p16 staining as a prognostic and diagnostic marker are variable.10

A family with CDKN2A mutation often includes multiple individuals with numerous 

atypical melanocytic nevi, sometimes more than 50.11 Patients with nevi on the buttocks or 

dorsal feet have the highest risk of being mutation carriers.11 Nevi are variable in 

appearance, ranging from banal to atypical, with large size, irregular and indistinct borders, 

and variable colors.1 Histologically, they exhibit features of a dysplastic nevus, including 

cytologic atypia, asymmetry, papillary dermal fibroplasia, lentiginous melanocytic 

hyperplasia, variable lymphocyte infiltration, and “shouldering” phenomenon.12

Melanoma occurs approximately 15 years earlier in CDKN2A mutation carriers than in the 

general population,13 with a median age of onset around 33 to 45 years compared to 53 to 61 

years in the general population.14,15 Melanoma may occur in adolescence or early adulthood 

with some of the youngest reported cases at 13 years of age.16,17 Conversely, in a 

population-based series of 20 childhood melanomas, only one CDKN2A mutation was 

identified.18 A recent study performed in an Italian population demonstrated no difference 
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between overall survival or melanoma-specific survival in patients with and without 

CDKN2A germline mutations,19 contradicting prior reports based on Swedish Cancer 

Registry data.3 However, these studies were performed in different populations with possible 

underlying differences, necessitating caution when interpreting the results.

Compared with the general population, melanomas are thinner in mutation carriers,20 

possibly confounded by increased surveillance of individuals with inherited susceptibility to 

melanoma. Superficial spreading melanoma is most common in CDKN2A mutation carriers, 

including on the head and neck.21 In a case-control comparison of 81 sporadic melanomas, 

123 melanoma families with the CDKN2A mutation, and 120 melanoma families without, 

histopathological features specific to CDKN2A mutation positive melanomas included 

higher pigmentation, pagetoid scatter, and spindle cell morphology in the vertical growth 

phase.22 No differences were found in ulceration, epidermal nesting, the presence of an 

associated nevus or lentigo, fibroplasia, solar elastosis, regression, or associated 

lymphocytes, or cell shape, cytologic grade, and mitotic figures of the radial growth phase.22 

Others have found that sparser inflammation and lack of regression may be associated 

features.15 Similar to sporadic melanoma, somatic mutations in melanomas associated with 

germline CDKN2A mutation include BRAF and NRAS, although BRAF tends to be less 

common and NRAS mutations more common in CDKN2A germline mutation associated 

melanoma.23,24

Notably, a subset of patients, 28%, develops pancreatic cancer.1 Survival rates in patients 

with CDKN2A mutations who develop pancreatic cancer are lower compared to those 

without the mutation (22 vs 35 months).25 In addition, CDKN2A mutation carriers have an 

increased risk of upper digestive cancer and cancers involving the respiratory tract, 

especially in ever-smokers, suggesting that CDKN2A increases sensitivity to carcinogens in 

tobacco.26,27 Therefore, CDKN2A mutation carriers should be counseled about smoking 

cessation.

2.2 | CDKN2A mutations affecting p14ARF transcript

Through alternatively spliced variants involving exon 1 alpha and 1 beta, CDKN2A encodes 

two major proteins, p16 and p14(ARF), respectively. p14(ARF) regulates the cell cycle 

through p53 dependent apoptotic pathways.28,29

Interestingly, families with CDKN2A mutations that affect the p14 (ARF) transcript develop 

tumors of the central nervous system, including astrocytoma, and nerve sheath tumors, 

including neurofibromas and schwannomas, in addition to melanoma (Figure 1A–C; 

melanoma astrocytoma syndrome).30–36 Thus far, missense mutations or deletions at exon 1 

beta have been reported in at least three families.37,38 Therefore, exon 1 beta should be 

considered in genetic testing of hereditary melanoma, especially if neural tumors are 

present.

2.3 | CDK4

CDK4 germline mutations are rare, with fewer than 20 families reported in the literature.39 

CDK4 is an oncogene that, when mutated, inhibits binding of p16, leading to 

phosphorylation of RB and cell cycle progression. Similar to CDKN2A mutations, CDK4 
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germline mutations predispose to early onset multiple primary melanomas and increased 

numbers of atypical nevi.40,41 CDK4 mutation-associated melanomas often occur on the 

limbs, with average age of onset at 39 years (range of 18-86 years).

In a study of 17 families that included 103 individuals with melanoma, the most common 

histological subtype was superficial spreading melanoma.41 The average tumor thickness is 

0.32 mm.12 A longitudinal study by Clark and colleagues demonstrated that a precursor 

nevus, either intradermal or dysplastic nevus, is often present.12 Melanocytes, sometimes 

heavily pigmented, are arranged as single cells and nests with upward scatter of single cells 

and associated with epidermal hyperplasia.12 In some tumors, epithelioid cell morphology 

and lesser pigmentation are noted.12

In addition to melanomas, CDK4 mutation carriers may be at higher risk of developing non-

melanoma skin cancers, breast cancer, pancreatic cancer, ovarian cancer, cervical cancer, and 

stomach cancer, among others.1,41

2.4 | TERT

The role of telomeres is highly implicated in tumorigenesis; germline and somatic mutations 

in TERT, encoding for one of the main components of telomerase, are common in human 

tumors, including melanoma. Somatic TERT promoter mutations are considered one of the 

earliest secondary mutations following BRAF and NRAS driver mutations, and are found in 

30% to 70% of sporadic melanomas, especially nodular or superficial spreading melanomas.
8,42,43

TERT encodes a reverse transcriptase that, together with TERC, creates a template for 

telomere addition, and forms the main components of telomerase. While short telomeres 

ultimately lead to cell senescence, longer telomeres are associated with cancer, including 

cutaneous melanoma.44

Germline mutations in the TERT promoter are rare but predispose to early-onset melanoma 

and other tumor types.45 In a study of 675 families known for high penetrance mutations 

(CDKN2A, CDK4, BAP1, POT1, ACD, and TERF2IP), only one family with a TERT 
promoter mutation was found.46 Horn et al reported TERT c.-57T(G) cosegregating with 

melanoma in a family characterized by early-onset melanoma diagnosed between ages 18 

and 46 (mean of 34).45 Most of these individuals died within 3 years of diagnosis, 

suggesting the possibility of a more aggressive clinical course. Two family members were 

diagnosed with multiple cancers, including one with ovarian cancer and melanoma, and 

another with renal cell, bladder, breast, and bronchial cancer. In another family with TERT 
c.-57T(G) promoter mutation, seven cases of melanoma diagnosed between ages 15 and 50 

were reported.46 Melanocytic nevi, basal cell carcinomas, and a bladder tumor were also 

reported.46

While somatic TERT promoter mutations are associated with poor prognostic factors, 

including increased tumor thickness, ulceration, a high mitotic rate, and lymph node 

metastasis, and co-occur with BRAF and CDKN2A alterations, reports on histopathologic 

features of melanomas associated with germline TERT mutations are lacking.47–49
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2.5 | Shelterin complex genes: POT1, ACD, and TERF2IP

The shelterin family of genes, ACD, TERF2IP, TERF1, TERF2, TINF2, and POT1, 

regulates telomere processing and stability. Germline mutations in ACD, TERF2IP, and 

POT1 cause hereditary melanoma.50 Like TERT, these genes are implicated in telomere 

maintenance and their mutations can increase telomere length and fragility.51 They bind to 

telomeric repeats thereby regulating their function.51

Aoude et al found that of 510 melanoma families, 6 families had ACD mutations and 4 had 

TERF2IP mutations.50 In a study of 694 patients including high-risk melanoma, 8 variants 

of POT1 were found exclusively in the high-risk population.52 In a large cohort of patients 

with first or second-degree relatives with melanoma, four families were identified with 

POT1 mutations (frequency of 1.7%).53 Families with POT1 mutations typically have 

between one and eight melanomas per family, which occur in individuals between the ages 

of 25 and 80.53

Of the 510 melanoma families that Aoude et al studied, most cases of ACD and TERF12P 
mutations were superficial spreading melanomas and lentigo maligna melanomas,50 

although data are sparse. POT1 variants are typically superficial spreading melanomas.52

ACD and TERFI2P mutations also predispose individuals to breast, ovarian, cervical, 

uterine, thyroid, colon, lung, renal, urinary, prostate, and esophageal cancers as well as 

lymphomas and leukemias.1 Additionally, brain tumors are common in families with POT1 
germline mutations.54 In a study of 55 families with POT1 mutations, all families had 

members with gliomas.54 Colorectal cancer, chronic lymphocytic leukemia, breast cancer, 

and small cell lung cancer are also seen.53,55,56

2.6 | MITF

In 2005, a germline variant MITF p.E318K was shown to predispose to melanoma57,58 and 

later, to melanoma and renal cell carcinoma.59 This variant is present in approximately 1% 

of individuals of European descent and is associated with 3- to 5-fold risk of melanoma.60 

However, individuals with the variant, who also have a personal or family history of 

pancreatic or renal cell cancer have a 31-fold or 8-fold increased risk of developing 

melanoma, respectively.1

As part of the Myc family of genes, MITF encodes a melanocytic-lineage-specific 

transcription factor that regulates the differentiation, proliferation, and survival of 

melanocytes.61 MITF p.E318K is a gain-of-function variant that causes impaired 

sumoylation of the protein, and therefore, aberrant regulation of downstream, target 

pathways.58 In addition, MITF stimulates hypoxia inducible factor 1A (HIF1A), part of the 

key pathway in renal cell carcinoma development.

Interestingly, MITF variants are associated with darker hair, fair skin, and non-blue eye color 

among other phenotypic characteristics60 as well as an increased nevus count, atypical nevi, 

depigmented nevi, and amelanotic melanomas.62 Histopathologically, nodular melanoma 

and thicker tumors may be more common in some populations,63 although these findings are 

not supported by Australian/UK data sets.58,62
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2.7 | MC1R

Variants of MC1R are relatively common, found in up to 11% of individuals,64,65 although 

with lower penetrance. A recent study demonstrated that 66% of a large cohort of melanoma 

patients were carriers of MC1R variants and 28% of the melanomas were attributable to the 

MC1R gene.66 Individuals with two MC1R variants have a higher melanoma risk compared 

to those with single variants.67 One can expect a 1.5- to 4-fold increased risk of melanoma, 

and a 3- to 4-fold risk of thick melanomas in MC1R variants.64,68 Overall, these variants 

appear to considerably contribute to melanoma burden.69

MC1R, or melanocortin-receptor 1, is a G protein coupled receptor that regulates both hair 

and skin pigmentation. When activated by ultraviolet (UV) radiation, the receptor is bound 

by alpha melanocyte-stimulating hormone, resulting in melanin upregulation within 

melanocytes and stimulation of DNA repair mechanisms.70 MC1R variants generally 

correlate with phenotypes such as red hair, freckling, UV sensitivity, and melanoma risk,70 

although MC1R variants with darker phenotypes exist and also confer an increased risk of 

melanoma.64

In a study of 2160 patients, no significant associations were discovered between MC1R 
variants and histopathologic variables, including tumor thickness, Clark level, presence of 

mitotic figures, ulceration, pigmentation, vertical growth phase, regression, tumor infiltrating 

lymphocytes, or solar elastosis, although further stratification based on sun-sensitive vs sun-

resistant phenotypes revealed associations with tumor thickness, presence of mitotic figures, 

ulceration, and tumor infiltrating lymphocytes.71 There was an association between more 

than one high-risk variant and predisposition to melanoma on the arms, although overall 

trunk was the most common anatomic site.71

2.8 | BAP1

BAP1 is a tumor suppressor gene on 3p21 that encodes a deubiquitinating enzyme and a 

binding partner to BRCA1, implicated in chromatin modulation, transcriptional regulation, 

and DNA damage repair.72,73 Characteristic for a tumor suppressor gene, tumors show loss 

of heterozygosity of BAP1.74

Germline mutations in BAP1 predispose carriers to the BAP1 tumor predisposition 

syndrome (BAP1-TPDS), characterized by BAP1-inactivated nevi (BINs), uveal melanoma, 

cutaneous melanoma, mesothelioma, renal cell carcinoma, and other tumors.59,75–79 BINs 

are highly penetrant, present in up to 90% of mutation carriers, and typically present as 

multiple, skin colored or reddish-brown, dome-shaped melanocytic tumors (also or 

previously called BAP1-inactivlated melanocytic tumors, Wiesner nevi, BAPomas, nevoid 

melanoma-like melanocytic proliferations, BAP1 mutant Spitz nevi, and melanocytic BAP1-

mutated atypical intradermal tumors).73,80 BINs develop early in life (median 31 years, 

range 10-56 years) and increase in number with age.81,82

The most common malignancy associated with this syndrome is uveal melanoma, occurring 

in up to 29% of patients, followed by mesothelioma (22%), cutaneous melanoma (18%), and 

renal cell carcinoma (9%).73,81 Additionally, basal cell carcinoma, meningioma, 

cholangiocarcinoma, breast cancer, lung adenocarcinoma, pancreatic cancer, and thyroid 
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cancer have been reported.81 A quarter of patients with melanoma typically have multiple 

primary cutaneous melanomas.79

Morphologically, BINs feature a dome-shaped, exclusively or predominantly intradermal 

melanocytic tumor, with epithelioid melanocytes that have round to oval vesicular nuclei and 

abundant amphophilic cytoplasm with a nodular or sheet-like growth pattern (Figure 2A–C).
77,78,83 An associated common nevus component is commonly present, characteristic of a 

combined nevus containing two or more melanocytic nevus components.84 A review of 102 

BINs revealed that 69% of cases exhibit spitzoid epithelioid cytomorphology while 31% of 

cases had smaller epithelioid cells without abundant eosinophilic cytoplasm.78 Additionally, 

rhabdoid features may be present.78 In this series, 12% of BINs were associated with a 

germline BAP1 mutation.78 No significant differences in clinical or histopathologic features 

were found between tumors with a confirmed germline mutation vs tumors without, except 

for the presence of extensive junctional component more commonly seen with BAP1 
germline mutation.78 Some lesions may exhibit atypical features, including nuclear 

pleomorphism, and are thus termed BAP1-inactivated melanocytomas.77 Lastly, 

transformation of BIN to melanoma has been documented.82

Awareness of BIN and its histopathologic features will enable identification of patients and 

families with a high probability of germline BAP1 mutations. When pathologists encounter 

melanocytic tumors with epithelioid features characteristic of BIN, immunohistochemical 

testing for BAP1 should be considered as a screening tool for BAP1 inactivation. Because 

normal BAP1 protein is nuclear, cells with biallelic inactivation will show lack of nuclear 

staining (Figure 3A–C).81 In such cases, genetic counseling and/or testing for BAP1 
germline mutation in the patient and family may be appropriate, depending on the clinical 

setting, i.e., multiple immunohistochemically confirmed BINs at a young age, and personal 

and family history of cancer.83,85,86

2.9 | Mixed cancer syndromes with melanoma

Mixed cancer syndromes (or melanoma-subordinate syndromes) have an increased risk of 

melanoma, but lower than that of other cancers seen in the syndrome. These syndromes are 

caused by mutations in PTEN, TP53, BRCA1, BRCA2, and RB1, as well as xeroderma 

pigmentosum genes (Figure 4A–C) and are discussed in Table 2.

3 | SCREENING, GENETIC TESTING, AND GENETIC COUNSELING

Screening for hereditary melanoma begins with obtaining a detailed personal and family 

history of cancer. As a general guide, multiple tumors of early onset are seen in hereditary 

cancer syndromes and the “rule of threes” can be applied: patients with a personal or family 

history of three or more primary melanomas and/or pancreatic cancer should be referred for 

genetic counseling and testing. In geographic areas with lower prevalence of melanoma, the 

threshold for testing is two or more primary melanomas or melanoma in situ.87 A genetic 

counselor or other genetics specialist can best guide the patient through this process, 

including education and obtaining informed consent; appropriate test selection; and post-test 

counseling that includes recommendations for management of extra-cutaneous cancer risks.
88
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Historically, individual testing of susceptibility genes was performed, but in the recent 

decade, next-generation sequencing technologies have enabled affordable and timely testing 

of multiple genes (panel testing).87 Panel testing is tailored based on the personal and family 

history, as thoroughly reviewed by Leachman et al.87

Generally, in mutation carriers, full-body skin exams every 6 to 12 months should be 

performed, and digital dermoscopy, total body photography, and further screening for 

visceral cancers considered as appropriate.89

4 | SUMMARY

In conclusion, a subset of familial melanoma is caused by germline mutations in high-risk 

melanoma susceptibility genes, many of which are also somatically mutated in melanoma. 

In general, early onset, multiple tumors, and family history are clues to an underlying tumor 

syndrome. Pathologists can enable identification of patients at risk by recognizing BAP1-

inactivated nevi. Identification of patients with a germline mutation predisposing to cancer 

enables genetic counseling, genetic testing of family members, and appropriate surveillance, 

reducing morbidity and mortality in these patients.
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FIGURE 1. 
Melanoma associated with a germline deletion of exon 1B of CDKN2A gene. The patient 

had a history of multiple primary cutaneous melanomas and visceral metastases. A, 

Hemotoxylin and eosin (H&E), ×40. B, H&E, ×100. C, H&E, ×400
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FIGURE 2. 
BAP1-inactivated nevus with epithelioid melanocytes. This adolescent patient had multiple 

BAP1-inctivated nevi. A, Hemotoxylin and eosin (H&E), ×40. B, H&E, ×100. C, H&E, 

×400
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FIGURE 3. 
Loss of nuclear BAP1 expression in a BAP1-inactivated melanocytoma. This tumor displays 

nuclear pleomorphism. A, Hemotoxylin and eosin (H&E), ×100. B, H&E, ×400. C, BAP1 

immunohistochemistry, ×400. Large epithelioid tumor cells have lost BAP1 expression 

(arrow). Lymphocytes show normal nuclear expression of BAP1 (arrowhead)
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FIGURE 4. 
Melanoma in situ in a patient with xeroderma pigmentosum. This 22-year old patient had a 

history of multiple melanomas (invasive and in situ) and numerous basal cell carcinomas. A, 

Hemotoxylin and eosin (H&E), ×40. B, H&E, ×100. C, H&E, ×400
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