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Abstract

Nearly 15% of melanomas occur in patients with a family history and a subset of these patients
have a germline mutation in a melanoma predisposing gene. CDKNZA mutations are responsible
for the majority of hereditary melanoma, but many other susceptibility genes have been discovered
in recent years, including CDK4, TERT, ACD, TERFZIP, POT1, MITF, MCIR, and BAP1.
Additionally, melanoma risk is increased in mixed cancer syndromes caused by mutations in
PTEN, BRCAZ, BRCA1, RB1, and TP53. While early onset, multiple tumors, and family cancer
history remain the most valuable clinical clues for hereditary melanoma, characteristic epithelioid
cytology of melanocytic tumors may suggest an underlying BAPI mutation. Herein, we review the
clinical and histopathologic characteristics of melanocytic tumors associated with these germline
mutations and discuss the role of genetic counseling.
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1| INTRODUCTION

A subset of melanoma, approximately 7% to 15%, occurs in individuals with a family
history.! The factors influencing melanoma risk in a family include shared sun exposure
experiences, geographic location, skin phototype, and genetic variants.> Approximately 22%
of familial cases are caused by a mutation in a currently known single high-risk tumor
predisposition gene, CDKNZA, and over half of individuals with multiple primary
melanomas carry mutations in the gene.! Melanoma may either be the dominant cancer in
the family, such as in families with CDK/NZA mutation, or be a part of a mixed cancer
syndrome such as in families with Cowden syndrome caused by P7EN mutations. Generally,
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the mutations in tumor predisposition genes cause multiple tumors with earlier onset than in
the general population and occur in those with a positive family history.

While only a small subset of melanoma patients have a tumor syndrome predisposing to
cancer, understanding the causes of hereditary melanoma has led to the discovery of a role
for several key genes, many of which are also somatically mutated in melanoma, including
CDKNZA, TERT, MITFand PTEN.2 This review discusses the genetic background and
clinical and histopathologic features of hereditary syndromes characterized by predisposition
to melanoma, melanocytic nevi, and other melanocytic tumors. While most of these tumors
are histopathologically indistinguishable from their sporadic counterparts, a subset shows
characteristic features such as those caused by BAPI germline mutations. Awareness of
these syndromes will facilitate early diagnosis and improve patient care.

GERMLINE MUTATIONS
CDKN2A

CDKNZA is by far the most commonly mutated gene causing hereditary melanoma (Table
1).1 Germline mutations in CDKN2A increase the risk of melanoma by 65-fold.3 This tumor
syndrome was first described in the 1960s by Lynch and Krush? as familial atypical multiple
mole and melanoma syndrome (FAMMM) and by Clark and colleagues as B-K mole
syndrome® or dysplastic nevus syndrome. Both groups described families with multiple
clinically atypical nevi, melanomas and, in a subset of patients, pancreatic cancer. The
disease gene was later identified in the 1990s as COKNZ2A.87

CDKNZA is a tumor suppressor gene encoding two transcripts, p16 and p14(ARF), that
regulate two critical cell cycle pathways. p16 inhibits CDK4 and, therefore, phosphorylation
of RB. p14ARF inhibits HDM2 and, therefore, ubiquitination of p53. In addition to germline
mutations, CDKN2A is commonly somatically mutated in sporadic melanoma.? Somatic
biallelic inactivation of CDKNZ2A occurs exclusively within invasive melanomas®? and can
be assessed with immunohistochemical staining for p16 protein. Utility and
recommendations for p16 staining as a prognostic and diagnostic marker are variable.10

A family with CDKNZ2A mutation often includes multiple individuals with numerous
atypical melanocytic nevi, sometimes more than 50.11 Patients with nevi on the buttocks or
dorsal feet have the highest risk of being mutation carriers.11 Nevi are variable in
appearance, ranging from banal to atypical, with large size, irregular and indistinct borders,
and variable colors.! Histologically, they exhibit features of a dysplastic nevus, including
cytologic atypia, asymmetry, papillary dermal fibroplasia, lentiginous melanocytic
hyperplasia, variable lymphocyte infiltration, and “shouldering” phenomenon.12

Melanoma occurs approximately 15 years earlier in CDKNZA mutation carriers than in the
general population,13 with a median age of onset around 33 to 45 years compared to 53 to 61
years in the general population.1415 Melanoma may occur in adolescence or early adulthood
with some of the youngest reported cases at 13 years of age.16:17 Conversely, in a
population-based series of 20 childhood melanomas, only one CDKNZA mutation was
identified.18 A recent study performed in an Italian population demonstrated no difference
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between overall survival or melanoma-specific survival in patients with and without
CDKNZ2A germline mutations,® contradicting prior reports based on Swedish Cancer
Registry data.3 However, these studies were performed in different populations with possible
underlying differences, necessitating caution when interpreting the results.

Compared with the general population, melanomas are thinner in mutation carriers,20
possibly confounded by increased surveillance of individuals with inherited susceptibility to
melanoma. Superficial spreading melanoma is most common in CODK/NZ2A mutation carriers,
including on the head and neck.2! In a case-control comparison of 81 sporadic melanomas,
123 melanoma families with the CDKN2A mutation, and 120 melanoma families without,
histopathological features specific to COKNZ2A mutation positive melanomas included
higher pigmentation, pagetoid scatter, and spindle cell morphology in the vertical growth
phase.22 No differences were found in ulceration, epidermal nesting, the presence of an
associated nevus or lentigo, fibroplasia, solar elastosis, regression, or associated
lymphocytes, or cell shape, cytologic grade, and mitotic figures of the radial growth phase.2?
Others have found that sparser inflammation and lack of regression may be associated
features.1® Similar to sporadic melanoma, somatic mutations in melanomas associated with
germline CDKN2A mutation include BRAFand NRAS, although BRAFtends to be less
common and NRAS mutations more common in CDKN2A germline mutation associated
melanoma.23.24

Notably, a subset of patients, 28%, develops pancreatic cancer.l Survival rates in patients
with CDKNZA mutations who develop pancreatic cancer are lower compared to those
without the mutation (22 vs 35 months).2 In addition, CDKN2A mutation carriers have an
increased risk of upper digestive cancer and cancers involving the respiratory tract,
especially in ever-smokers, suggesting that COKNZA increases sensitivity to carcinogens in
tobacco.26:27 Therefore, CDKN2A mutation carriers should be counseled about smoking
cessation.

CDKN2A mutations affecting p14ARF transcript

Through alternatively spliced variants involving exon 1 alpha and 1 beta, CDKNZA encodes
two major proteins, p16 and p14(ARF), respectively. p14(ARF) regulates the cell cycle
through p53 dependent apoptotic pathways,28:29

Interestingly, families with COKNZA mutations that affect the p14 (ARF) transcript develop
tumors of the central nervous system, including astrocytoma, and nerve sheath tumors,
including neurofibromas and schwannomas, in addition to melanoma (Figure 1A-C;
melanoma astrocytoma syndrome).30-36 Thus far, missense mutations or deletions at exon 1
beta have been reported in at least three families.37:38 Therefore, exon 1 beta should be
considered in genetic testing of hereditary melanoma, especially if neural tumors are
present.

CDK4 germline mutations are rare, with fewer than 20 families reported in the literature.3°
CDK4 s an oncogene that, when mutated, inhibits binding of p16, leading to
phosphorylation of RB and cell cycle progression. Similar to COKNZA mutations, CDK4
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germline mutations predispose to early onset multiple primary melanomas and increased
numbers of atypical nevi.?041 CDK4 mutation-associated melanomas often occur on the
limbs, with average age of onset at 39 years (range of 18-86 years).

In a study of 17 families that included 103 individuals with melanoma, the most common
histological subtype was superficial spreading melanoma.*! The average tumor thickness is
0.32 mm.12 A longitudinal study by Clark and colleagues demonstrated that a precursor
nevus, either intradermal or dysplastic nevus, is often present.12 Melanocytes, sometimes
heavily pigmented, are arranged as single cells and nests with upward scatter of single cells
and associated with epidermal hyperplasia.12 In some tumors, epithelioid cell morphology
and lesser pigmentation are noted.12

In addition to melanomas, CDK4 mutation carriers may be at higher risk of developing non-
melanoma skin cancers, breast cancer, pancreatic cancer, ovarian cancer, cervical cancer, and
stomach cancer, among others.141

The role of telomeres is highly implicated in tumorigenesis; germline and somatic mutations
in TERT, encoding for one of the main components of telomerase, are common in human
tumors, including melanoma. Somatic 7ERT promoter mutations are considered one of the
earliest secondary mutations following BRAFand NRAS driver mutations, and are found in

30% to 70% of sporadic melanomas, especially nodular or superficial spreading melanomas.
8,42,43

TERT encodes a reverse transcriptase that, together with 7TERC, creates a template for
telomere addition, and forms the main components of telomerase. While short telomeres
ultimately lead to cell senescence, longer telomeres are associated with cancer, including
cutaneous melanoma.*4

Germline mutations in the 7ERT promoter are rare but predispose to early-onset melanoma
and other tumor types.*® In a study of 675 families known for high penetrance mutations
(CDKNZA, CDK4, BAP1, POT1, ACD, and TERFZIP), only one family with a TERT
promoter mutation was found.#6 Horn et al reported 7ERT ¢.-57T(G) cosegregating with
melanoma in a family characterized by early-onset melanoma diagnosed between ages 18
and 46 (mean of 34).4> Most of these individuals died within 3 years of diagnosis,
suggesting the possibility of a more aggressive clinical course. Two family members were
diagnosed with multiple cancers, including one with ovarian cancer and melanoma, and
another with renal cell, bladder, breast, and bronchial cancer. In another family with 7TERT
¢.-57T(G) promoter mutation, seven cases of melanoma diagnosed between ages 15 and 50
were reported.#® Melanocytic nevi, basal cell carcinomas, and a bladder tumor were also
reported.46

While somatic 7ERT promoter mutations are associated with poor prognostic factors,
including increased tumor thickness, ulceration, a high mitotic rate, and lymph node
metastasis, and co-occur with BRAFand CDKNZ2A alterations, reports on histopathologic
features of melanomas associated with germline 7ERT mutations are lacking.#—49
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2.5| Shelterin complex genes: POT1, ACD, and TERF2IP

The shelterin family of genes, ACD, TERFZIP, TERF1, TERFZ, TINFZ and POT],
regulates telomere processing and stability. Germline mutations in ACD, TERF2IP, and
POTI1 cause hereditary melanoma.?9 Like 7ERT, these genes are implicated in telomere
maintenance and their mutations can increase telomere length and fragility.>! They bind to
telomeric repeats thereby regulating their function.®?

Aoude et al found that of 510 melanoma families, 6 families had ACD mutations and 4 had
TERF2IP mutations.®0 In a study of 694 patients including high-risk melanoma, 8 variants
of POT1 were found exclusively in the high-risk population.52 In a large cohort of patients
with first or second-degree relatives with melanoma, four families were identified with
POTI mutations (frequency of 1.7%).23 Families with POT mutations typically have
between one and eight melanomas per family, which occur in individuals between the ages
of 25 and 80.53

Of the 510 melanoma families that Aoude et al studied, most cases of ACDand TERF12P
mutations were superficial spreading melanomas and lentigo maligna melanomas,°
although data are sparse. POT1 variants are typically superficial spreading melanomas.>2

ACDand TERF/ZP mutations also predispose individuals to breast, ovarian, cervical,
uterine, thyroid, colon, lung, renal, urinary, prostate, and esophageal cancers as well as
lymphomas and leukemias.! Additionally, brain tumors are common in families with PO71
germline mutations.>* In a study of 55 families with POT. mutations, all families had
members with gliomas.>* Colorectal cancer, chronic lymphocytic leukemia, breast cancer,
and small cell lung cancer are also seen.>3,55,56

2.6| MITF

In 2005, a germline variant M/7F p.E318K was shown to predispose to melanoma®’>8 and
later, to melanoma and renal cell carcinoma.®® This variant is present in approximately 1%
of individuals of European descent and is associated with 3- to 5-fold risk of melanoma.5°
However, individuals with the variant, who also have a personal or family history of
pancreatic or renal cell cancer have a 31-fold or 8-fold increased risk of developing
melanoma, respectively.!

As part of the Myc family of genes, MI/TFencodes a melanocytic-lineage-specific
transcription factor that regulates the differentiation, proliferation, and survival of
melanocytes.5 A7/7Fp.E318K is a gain-of-function variant that causes impaired
sumoylation of the protein, and therefore, aberrant regulation of downstream, target
pathways.58 In addition, M/7F stimulates hypoxia inducible factor 1A (HIF1A), part of the
key pathway in renal cell carcinoma development.

Interestingly, M/TF variants are associated with darker hair, fair skin, and non-blue eye color
among other phenotypic characteristics®0 as well as an increased nevus count, atypical nevi,
depigmented nevi, and amelanotic melanomas.52 Histopathologically, nodular melanoma
and thicker tumors may be more common in some populations,53 although these findings are
not supported by Australian/UK data sets.>8.62
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Variants of MCIR are relatively common, found in up to 11% of individuals,54:85 although
with lower penetrance. A recent study demonstrated that 66% of a large cohort of melanoma
patients were carriers of MCI1R variants and 28% of the melanomas were attributable to the
MCIR gene.®8 Individuals with two MCIR variants have a higher melanoma risk compared
to those with single variants.5” One can expect a 1.5- to 4-fold increased risk of melanoma,
and a 3- to 4-fold risk of thick melanomas in MCIR variants.54.68 Overall, these variants
appear to considerably contribute to melanoma burden.59

MCIR, or melanocortin-receptor 1, is a G protein coupled receptor that regulates both hair
and skin pigmentation. When activated by ultraviolet (UV) radiation, the receptor is bound
by alpha melanocyte-stimulating hormone, resulting in melanin upregulation within
melanocytes and stimulation of DNA repair mechanisms.’® MC1R variants generally
correlate with phenotypes such as red hair, freckling, UV sensitivity, and melanoma risk,”0
although MC1R variants with darker phenotypes exist and also confer an increased risk of
melanoma.®*

In a study of 2160 patients, no significant associations were discovered between MCIR
variants and histopathologic variables, including tumor thickness, Clark level, presence of
mitotic figures, ulceration, pigmentation, vertical growth phase, regression, tumor infiltrating
lymphocytes, or solar elastosis, although further stratification based on sun-sensitive vs sun-
resistant phenotypes revealed associations with tumor thickness, presence of mitotic figures,
ulceration, and tumor infiltrating lymphocytes.”! There was an association between more
than one high-risk variant and predisposition to melanoma on the arms, although overall
trunk was the most common anatomic site.’!

BAP1 is a tumor suppressor gene on 3p21 that encodes a deubiquitinating enzyme and a
binding partner to BRCAL, implicated in chromatin modulation, transcriptional regulation,
and DNA damage repair.”273 Characteristic for a tumor suppressor gene, tumors show loss
of heterozygosity of BAP1.74

Germline mutations in BAPI predispose carriers to the BAPI tumor predisposition
syndrome (BAPI-TPDS), characterized by BAPI-inactivated nevi (BINs), uveal melanoma,
cutaneous melanoma, mesothelioma, renal cell carcinoma, and other tumors.>%.75-79 BINs
are highly penetrant, present in up to 90% of mutation carriers, and typically present as
multiple, skin colored or reddish-brown, dome-shaped melanocytic tumors (also or
previously called BAPI-inactivlated melanocytic tumors, Wiesner nevi, BAPomas, nevoid
melanoma-like melanocytic proliferations, BAPI mutant Spitz nevi, and melanocytic BAPI-
mutated atypical intradermal tumors).”3:80 BINs develop early in life (median 31 years,
range 10-56 years) and increase in number with age.81:82

The most common malignancy associated with this syndrome is uveal melanoma, occurring
in up to 29% of patients, followed by mesothelioma (22%), cutaneous melanoma (18%), and
renal cell carcinoma (9%).73:81 Additionally, basal cell carcinoma, meningioma,
cholangiocarcinoma, breast cancer, lung adenocarcinoma, pancreatic cancer, and thyroid
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cancer have been reported.81 A quarter of patients with melanoma typically have multiple
primary cutaneous melanomas.”®

Morphologically, BINs feature a dome-shaped, exclusively or predominantly intradermal
melanocytic tumor, with epithelioid melanocytes that have round to oval vesicular nuclei and
abundant amphophilic cytoplasm with a nodular or sheet-like growth pattern (Figure 2A-C).
77,78.83 An associated common nevus component is commonly present, characteristic of a
combined nevus containing two or more melanocytic nevus components.84 A review of 102
BINSs revealed that 69% of cases exhibit spitzoid epithelioid cytomorphology while 31% of
cases had smaller epithelioid cells without abundant eosinophilic cytoplasm.”® Additionally,
rhabdoid features may be present.’® In this series, 12% of BINs were associated with a
germline BAPI mutation.”® No significant differences in clinical or histopathologic features
were found between tumors with a confirmed germline mutation vs tumors without, except
for the presence of extensive junctional component more commonly seen with BAP1
germline mutation.”® Some lesions may exhibit atypical features, including nuclear
pleomorphism, and are thus termed BAPI-inactivated melanocytomas.’” Lastly,
transformation of BIN to melanoma has been documented.82

Awareness of BIN and its histopathologic features will enable identification of patients and
families with a high probability of germline BAPZ mutations. When pathologists encounter
melanocytic tumors with epithelioid features characteristic of BIN, immunohistochemical
testing for BAP1 should be considered as a screening tool for BAPZ inactivation. Because
normal BAP1 protein is nuclear, cells with biallelic inactivation will show lack of nuclear
staining (Figure 3A—C).81 In such cases, genetic counseling and/or testing for BAP1
germline mutation in the patient and family may be appropriate, depending on the clinical
setting, i.e., multiple immunohistochemically confirmed BINSs at a young age, and personal
and family history of cancer.83.85.86

29| Mixed cancer syndromes with melanoma

Mixed cancer syndromes (or melanoma-subordinate syndromes) have an increased risk of
melanoma, but lower than that of other cancers seen in the syndrome. These syndromes are
caused by mutations in PTEN, TP53, BRCAI, BRCAZ, and RB1, as well as xeroderma
pigmentosum genes (Figure 4A—C) and are discussed in Table 2.

3| SCREENING, GENETIC TESTING, AND GENETIC COUNSELING

Screening for hereditary melanoma begins with obtaining a detailed personal and family
history of cancer. As a general guide, multiple tumors of early onset are seen in hereditary
cancer syndromes and the “rule of threes” can be applied: patients with a personal or family
history of three or more primary melanomas and/or pancreatic cancer should be referred for
genetic counseling and testing. In geographic areas with lower prevalence of melanoma, the
threshold for testing is two or more primary melanomas or melanoma in situ.8” A genetic
counselor or other genetics specialist can best guide the patient through this process,
including education and obtaining informed consent; appropriate test selection; and post-test

counseling that includes recommendations for management of extra-cutaneous cancer risks.
88
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Historically, individual testing of susceptibility genes was performed, but in the recent
decade, next-generation sequencing technologies have enabled affordable and timely testing
of multiple genes (panel testing).8” Panel testing is tailored based on the personal and family
history, as thoroughly reviewed by Leachman et al.8”

Generally, in mutation carriers, full-body skin exams every 6 to 12 months should be
performed, and digital dermoscopy, total body photography, and further screening for
visceral cancers considered as appropriate.89

4| SUMMARY

In conclusion, a subset of familial melanoma is caused by germline mutations in high-risk
melanoma susceptibility genes, many of which are also somatically mutated in melanoma.
In general, early onset, multiple tumors, and family history are clues to an underlying tumor
syndrome. Pathologists can enable identification of patients at risk by recognizing BAPI-
inactivated nevi. Identification of patients with a germline mutation predisposing to cancer
enables genetic counseling, genetic testing of family members, and appropriate surveillance,
reducing morbidity and mortality in these patients.
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FIGURE 1.
Melanoma associated with a germline deletion of exon 1B of CDKNZA gene. The patient

had a history of multiple primary cutaneous melanomas and visceral metastases. A,
Hemotoxylin and eosin (H&E), x40. B, H&E, x100. C, H&E, x400
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(A)

FIGURE 2.
BAP1-inactivated nevus with epithelioid melanocytes. This adolescent patient had multiple

BAP1-inctivated nevi. A, Hemotoxylin and eosin (H&E), x40. B, H&E, x100. C, H&E,
x400
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FIGURE 3.
Loss of nuclear BAP1 expression in a BAP1-inactivated melanocytoma. This tumor displays

nuclear pleomorphism. A, Hemotoxylin and eosin (H&E), x100. B, H&E, x400. C, BAP1
immunohistochemistry, x400. Large epithelioid tumor cells have lost BAP1 expression
(arrow). Lymphocytes show normal nuclear expression of BAP1 (arrowhead)
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FIGURE 4.
Melanoma in situ in a patient with xeroderma pigmentosum. This 22-year old patient had a

history of multiple melanomas (invasive and in situ) and numerous basal cell carcinomas. A,
Hemotoxylin and eosin (H&E), x40. B, H&E, x100. C, H&E, x400

J Cutan Pathol. Author manuscript; available in PMC 2021 July 01.
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