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abstract

PURPOSE Discordant responses between brain metastases and extracranial tumors can arise from branched
tumor evolution, underscoring the importance of profiling mutations to optimize therapy. However, the morbidity
of brain biopsies limits their use. We investigated whether cell-free DNA (cfDNA) in CSF could serve as an
effective surrogate marker for genomic profiling of intraparenchymal (IP) brain metastases.

METHODS CSF and blood were collected simultaneously from patients with progressive brain metastases
undergoing a craniotomy or lumbar puncture. Mutations in both biofluids were measured using an error-
suppressed deep sequencing method previously published by our group. Forty-three regions of 24 cancer-
associated genes were assayed.

RESULTS This study enrolled 14 patients with either IP brain metastases (n = 12) or cytology-positive lep-
tomeningeal disease (LMD, n = 2) and two controls with normal pressure hydrocephalus. Primary cancer types
were lung, melanoma, renal cell, and colorectal. cfDNA was measurable in all sixteen samples of CSF. Cancer-
associated mutations were found in the CSF of ten patients (eight with IP [67%] and two with LMD [100%]) and
plasma of five patients (five with IP [42%] and none with LMD). All patients with plasma cfDNA had extracranial
tumors. Among the five patients in the cohort who also had mutation data from time-matched brain metastasis
tissue, four patients (80%) had matching mutations detected in CSF and brain, whereas only one patient (20%)
had matching mutations detected in plasma and brain.

CONCLUSION The detection of mutational DNA in CSF is not restricted to LMD and was found in two thirds of
patients with IP brain metastases in our cohort. Analysis of CSF can be a viable alternative to biopsy for detection
of somatic mutations in brain metastases.

JCO Precis Oncol 5:163-172. © 2021 by American Society of Clinical Oncology

INTRODUCTION

Brain metastases are diagnosed in approximately 9%-
17% of patients with cancer and represent a signifi-
cant and devastating cause of morbidity and mortality
in patients with metastatic cancer.1 With the advent of
targeted therapy and immunotherapy, overall survival
in some patient populations can now extend beyond
two years and the incidence of brain metastasis in-
creases in patients with longer survival.2-5 Although
some of these newer drugs have CNS penetrating
ability, CNS response is still often less robust and/or
less durable than systemic response.6,7 It remains
unclear why CNS resistance occurs particularly in the
case of targeted therapies. Currently proposed
mechanisms are either (1) that drug levels are lower in
the CNS allowing tolerance to develop or (2) that
molecular drivers in the CNS lesions may be different
than those in the body.8,9 Recent studies indicate that
late-stage brain metastases from solid cancers may
follow a branched evolution model, where the primary

tumor and matched metastases evolve separately
despite sharing a common clonal origin. Progression of
brain metastases may thus be mediated by acquisition
of unique driver mutations.10 Accordingly, several
therapeutically actionable mutations have been de-
tected in human brain metastases and not in matched
extra-cranial tumors.11 These findings indicate that
optimal treatment decisions for patients with CNS
metastasis will require specific molecular profiling of
brain metastasis tissue.11,12 However, unlike primary
brain cancers, for which tumors are often resected as
part of treatment, tissue is less frequently obtained
from brain metastases because patients with dis-
seminated disease are less likely to undergo craniot-
omies or even biopsies.

Cell-free DNA (cfDNA) from various biofluids has been
shown to contain tumor-derived DNA and has
emerged as a less invasive alternative to tissue biopsy
for profiling of somatic mutations to guide therapy.
Previous studies have shown that tumor-specific
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mutations can frequently be detected in the CSF of patients
with primary brain tumors such as glioblastoma.13-15 Im-
portantly, when compared with plasma, the CSF of patients
with glioblastoma more accurately reflected the mutations
detected in the brain tumor, potentially because cfDNA
may not easily traverse the blood-brain barrier.13,15 Other
studies have shown that tumor-specific mutations can also
be reliably detected in the CSF of patients with metastatic
leptomeningeal disease (LMD).16,17 However, the evidence
is less robust for the detection of tumor-derived DNA in the
CSF of patients with intraparenchymal (IP) brain metas-
tases, which are the most common intracranial tumors.
Such studies have been challenging because CSF is not
routinely sampled for clinical management of these pa-
tients. We undertook this current study to determine
whether tumor-derived DNA can be detected in the CSF of
patients with IP brain metastases and to compare this with
the detectability of tumor-derived DNA in plasma.

METHODS

Patient Recruitment

Patients with known solid organmetastatic cancers either (1)
with IP brain metastases undergoing a craniotomy or (2) with
suspected LMD undergoing lumbar puncture at a single
institution were approached for inclusion into our study
between July 2018 and April 2019. Informed consent was
obtained from all patients or legally authorized representa-
tives under the existing institutional review board–approved
clinical and tissue collection protocols. Two patients who had
lumbar drain trials for the evaluation of normal pressure
hydrocephalus (NPH) served as controls. These control
subjects did not have any history of cancer, and magnetic
resonance imaging of the brain obtained within 3 months of
collection showed no evidence of CNS mass lesions.

Sample Collection

Time-matched CSF and plasma were collected from each
patient. Tissues from brain metastases were also obtained
from patients who underwent craniotomy. Time-matched was
defined as samples from the same patient collected within 12
hours of each other to minimize temporal variability or
treatment-related changes. For patients undergoing a

craniotomy, CSF was collected via a ventricular catheter when
indicated for decompression or by meticulous subarachnoid
dissection and aspiration at a site distant to the tumor before
surgical resection of the brain metastasis. Lumbar punctures
were performed by licensed physicians as per standard of
care. Every effort was made to minimize blood contamination
of the CSF. CSF appearance at collection was described as
clear or contaminated with blood, and CSF samples with
visible blood contamination were excluded. Blood was col-
lected through a standard peripheral venipuncture or from an
arterial line. CSF was placed on ice, and blood was kept at
room temperature during immediate transport to the research
laboratory for processing. Up to 10 mL of blood and CSF were
collected at each time point in EDTA-containing tubes.
Plasma was isolated by centrifugation at 1,000 × g for 10
minutes within 4 hours of collection and was stored at −80°C.
CSF samples were also centrifuged at 1,000 × g for 10
minutes to remove any cellular debris and stored at −80°C
until further use.

Brain Metastasis Tissue Processing

Brain metastasis tissue was sent directly from the operating
room to the Yale Department of Pathology. A clinical
neuropathologist performed histological diagnosis of brain
metastasis tissue, which is standard practice for all brain
tumor surgeries. In non–small-cell lung cancer (NSCLC)
and melanoma cases, the tissue was also sent to the CLIA-
certified Yale Tumor Profiling Laboratory for genotyping
using either a 50-gene Ion AmpliSeq Cancer Hotspot Panel
v2 or a 161-gene Oncomine Comprehensive Assay v3
(Thermo Fisher Scientific).

cfDNA Isolation and Quantification of Mutations

cfDNA was extracted from 1 mL of plasma as described by
Goldberg et al.18 cfDNA from CSF was extracted using a
QIAamp Circulating Nucleic Acid kit (QIAGEN, Santa
Clarita, CA) and processed according to the manufacturer’s
protocol for 5-mL input volume. The DNA extracted from
plasma and CSF was eluted in 25 and 50 µL, respectively.
Tumor-derived somatic mutations within cfDNA were
identified and quantified using the error-suppressed deep
sequencing method previously published by our group.18,19

CONTEXT

Key Objective
Can cell-free DNA in CSF be used to detect mutations that are derived from intraparenchymal brain metastases?
Knowledge Generated
This study found that tumor-specific mutations were detectable in CSF of 67% (8 of 12) of patients with intraparenchymal

brain metastases and that mutations were highly concordant between CSF and brain metastases tissue.
Relevance
Our findings suggest that CSF can be used as a complement to or surrogate for brain tissue biopsy to detect actionable

mutations in patients with brain metastases.
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The assay simultaneously queries thousands of possible
point mutations and insertions or deletions within 43
mutation-prone regions of 24 cancer-associated genes
(Appendix Table 1). Targeted deep sequencing was per-
formed in 75 base-pair, paired-end mode on an Illumina
HiSeq2500 instrument. Computational analysis of resulting
raw sequence data, which includes suppression of back-
ground polymerase chain reaction-amplification errors and
sequencer errors to enhance the sensitivity and accuracy of
mutation calling, has been previously described.18-19

Clinical Information and Radiographic Assessment of

Cranial and Systemic Disease

Demographics, imaging, and clinical information were
retrospectively reviewed for each patient from the electronic
medical record as approved by the study protocols.

IP tumor volumes were estimated using the formula20:

Volume in cm3 = (length × width × depth)/2.

Total tumor volume was the sum of all untreated paren-
chymal lesion volumes.

The presence and progression of systemic disease burden
were determined by evaluating two most recent sequential
computed tomography scans of the chest, abdomen, and
pelvis obtained before sample collection. Patients sus-
pected to have LMD on imaging were confirmed by CSF
cytology.

Tumor volumes of patients with and without CSF mutational
DNA detected were compared using theMann-Whitney test.

RESULTS

Patient and Tumor Characteristics

A total of 16 patients were enrolled in this study (Table 1)—
12 patients with IP brain metastases, two patients with CSF
cytology-positive LMD, and two noncancer control patients
with NPH. Ten of 14 patients with cancer were male, and
two NPH patients were female. The median age of the
patients with cancer was 63 years (range 49-86 years), and
the age of the two NPH patients was 58 and 90 years,
respectively.

Of the 12 patients with IP disease, six patients had NSCLC,
two patients had small-cell lung cancer, two patients had
melanoma, one patient had renal cell carcinoma, and one
patient had colorectal carcinoma. Both patients with LMD
had NSCLC as a primary diagnosis. Total volumes of IP
brain metastasis per patient ranged from 1.35 to 43.45 cm3

(median 10.83 cm3) (Table 1).

cfDNA Results

Time-matched CSF and plasma samples from all sixteen
patients were subjected to cfDNA isolation and mutation
quantification using the error-suppressed deep sequencing
assay.18-19 cfDNA was measurable in all samples. The con-
centration of CSF cfDNA ranged from 0.05 to 352.91 ng/mL.
Of the 12 patients with IP brain metastases, mutant DNA was

found in CSF of eight patients (67%), whereas mutant DNA
was found in plasma of only five patients (42%). Of the two
patients with LMD,mutant DNAwas found in the CSF, but not
in the plasma of both patients. As expected, no mutations
were identified in the CSF or blood fromNPHpatients (Fig. 1).

Among the ten patients with one or more mutations de-
tected in CSF, four patients (40%) had the same muta-
tion(s) identified in the plasma, whereas five patients (50%)
had no mutations detectable in the plasma. Interestingly,
one patient (10%; patient LUNG5) had a TP53 mutation
that was identified in both plasma and CSF but had an
additional EGFR exon 19 deletion mutation that was
identified in CSF only. This patient did not have an EGFR
mutation in previous tumor profiling of his lung mass.

We also collected time-matched brain metastasis tissue
from five patients who had undergone craniotomies. These
tumor specimens were profiled using a clinical-grade assay
(either 50- or 161-gene panel) in the CLIA-certified Yale
Tumor Profiling Laboratory. Extracranial biopsy mutations
were also included when available from archival tissue
(analysis was done either at Yale or elsewhere if the patient
was referred from an outside institution) (Fig. 2). We
evaluated mutations covered by both our 24-gene and
clinical sequencing panels. Among the five patients who
had mutation data from brain metastasis tissue, matching
mutations were found in the CSF of 4 of 5 patients and in
the plasma of 1 of 5 patients. In patient LUNG6, an EGFR
exon 19 deletion mutation was detected in the brain me-
tastasis tissue and CSF but was missed in the profiling of
her previous lung tumor biopsy (the specific deletion was
not queried by the TaqMan-based PCR assay used at that
time). She was started on an EGFR tyrosine kinase inhibitor
shortly after tumor resection.

The allele fraction of mutations in CSF and plasma covered
a broad range, spanning from 0.15% (CRC1) to 92.67%
(LUNG2) in the CSF and from 0.27% (MEL1) to 50.77%
(LUNG10) in the plasma. Although one might have ex-
pected a higher allele fraction of mutations in the CSF of
patients with LMD (LUNG7 and LUNG8) compared with
patients with IP brain metastases, this did not appear to be
the case (Fig. 1). Furthermore, there was no significant
association between total IP tumor volume and ability to
detect mutant cfDNA in CSF (P = .93) (Fig. 3).

cfDNA Detectability in CSF and Plasma Relative to

Intracranial and Extracranial Disease

The presence of detectable mutant DNA in the plasma and
CSF was compared with the presence of systemic disease
and the distribution of CNS disease (Table 2). Of the 14
patients with cancer, seven had progressive systemic
disease, four patients had stable systemic disease, and
three patients had no evidence of extracranial disease.
Among patients with progressive systemic disease, four of
seven patients (57%) had detectable mutant DNA in
plasma. By contrast, only one of four patients (25%) with

CSF Tumor DNA in Intraparenchymal Brain Metastases
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stable systemic disease, and none of the patients without
evidence of systemic disease, had detectable mutant DNA
in plasma. It is noteworthy that the three patients with no

evidence of systemic disease had large brain metastases
with tumor volumes of 9.67 and 11 cm3 (LUNG2 and
MEL2, respectively) or cytology-proven LMD (LUNG7).

TABLE 1. Summary of Patient and Tumor Clinical Characteristics
Sample ID Age (y) Sex Tumor Primary Brain Met Distribution Total Tumor Volume (cm3) Source of CSF Collection

LUNG1 65 M NSCLC IP 11.55 Craniotomy

LUNG2 51 M NSCLC IP 9.67 Craniotomy

LUNG3 57 M NSCLC IP 9.37 Craniotomy

LUNG4 49 F NSCLC IP 43.45 Craniotomy

LUNG5 61 M NSCLC IP 12.32 Craniotomy

LUNG6 86 F NSCLC IP 1.35 Craniotomy

LUNG7 75 M NSCLC LMD — LP

LUNG8 77 F NSCLC LMD — LP

LUNG9 65 M SCLC IP 21.17 Craniotomy

LUNG10 57 M SCLC IP 10.65 Craniotomy

MEL1 56 F Melanoma IP 13.68 Craniotomy

MEL2 81 M Melanoma IP 11.01 Craniotomy

RENAL1 65 M Renal IP 4.41 Craniotomy

CRC1 56 M Colorectal IP 6.25 Craniotomy

NPH1 58 F N/A N/A — LD

NPH2 90 F N/A N/A — LD

Abbreviations: F, female; IP, intraparenchymal; LD, lumbar drain; LMD, leptomeningeal disease; LP, lumbar puncture; M, male; N/A, not applicable; NSCLC,
non–small-cell lung cancer; SCLC, small-cell lung cancer.
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DISCUSSION

Despite significant improvements in efficacy of some anti-
cancer agents in the CNS, the development of resistant brain
metastases continues to be a major cause of morbidity and
mortality for many types of cancers. As survival of patients with
cancer increases in duration, the likelihood of developing
brain metastases that progress discordant to the systemic
disease in the body also increases.21 Thus, profiling of brain-
specific somatic mutations can be important in guiding the
optimal therapy for resistant CNS lesions. Because brain bi-
opsies are inherently high risk, there has been substantial
interest in using cfDNA fragments in CSF as an alternative
source of tumor-derived genetic material. Although previous
studies have demonstrated the feasibility of detecting somatic
mutations in CSF of patients with primary brain gliomas or with
LMD, data for IP brain metastasis have been limited.22 Here,
we show that CSF can be used as a surrogate for brain biopsy
to determine somatic mutation status of CNS lesions in pa-
tients with purely IP brain metastases.

In our cohort, CSF mutations were identified in two thirds of
patients with purely IP brain metastases and in both pa-
tients with LMD who served as positive controls. As ex-
pected, no mutations were found in the CSF of both
negative control NPH patients. The rate of mutation

detection was higher in the CSF compared with time-
matched plasma (67% v 42%). Importantly, two patients
(LUNG5 and LUNG6) had new and targetable EGFR
mutations detectable in the CSF, but not in the plasma or
previous tissue biopsies. In patient LUNG6, the EGFR exon
19 deletion in CSF was concordant with the mutation found
in brain metastasis tissue but was either missed or not
present in the analysis of the original primary tumor biopsy
because the specific mutation was not covered by the PCR-
based assay that was used. This finding resulted in a
change in treatment to targeted therapy. In both patients
with LMD, driver mutations were identified in CSF that were
not present in plasma. There did not appear to be a cor-
relation between volume of IP tumors and ability to detect
mutations in either CSF or plasma.

Our study had several limitations. First, blood contamina-
tion of CSF at the time of its collection could artificially
increase the detection of mutational DNA. Although all CSF
samples looked clear, cell counts were not obtained, and
therefore, the degree of contamination was not known.
Second, the small sample size of only 14 patients with brain
metastases stemming from a variety of cancer types did not
allow for the comparisons of mutation detectability and
allelic fractions across different primary tumor subtypes or
any meaningful statistical analysis of our results. In addi-
tion, our panel included mutation hotspot regions in 24
genes but did not include coverage of many commonly
mutated tumor-suppressor genes in which the mutations
could be more broadly distributed. Thus, we may have
missed detecting mutations in CSF in some cases, not only
because the tumor-derived DNA was not sufficiently
abundant but also because some mutations may not have
been covered by our panel. However, our assay was
designed to balance sequencing cost and breadth of
coverage, and it thus focuses on detection of more clinically
relevant, actionable oncogene alterations that can guide
therapeutic decisions.

Study of a larger number of patients with a more com-
prehensive panel of mutations is clearly needed to statis-
tically validate our findings and confirm the relevance of this
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line of investigation. Finally, although we were able to
collect time-matched CSF and plasma, brain metastasis
tissue, comparisons of primary tumor mutation data were
not available for all samples. With different assays (with only
partially overlapping gene panels) being used to analyze
brain metastasis tissue and primary tissue, this inherently
limits the comparisons that could be made. A more
comprehensive analysis using broader mutation coverage
of matched CSF, tissue, and plasma may reveal additional
differences in their mutational profiles.

Although not all patients with IP brain metastases may have
tumor-derived mutations detectable in their CSF, given the
significantly lower risks and costs of performing lumbar
punctures compared with brain biopsies, CSF could be
considered a first-line alternative for identifying driver
mutations in IP brain metastases. This approach would be

most pertinent in patients with discordant CNS and sys-
temic responses to therapy. For instance, NSCLC patients
withmutations in EGFR and ALK aremore prone to relapses
in the CNS than patients with other driver mutations.23

Detection of resistance mutations in the CSF would be
particularly beneficial as new therapies are increasingly
being designed to penetrate the brain and historical studies
have shown that drug-resistant mutations in the CNS may
differ from those detected in extracranial tissues.24,25

In conclusion, the findings of this study indicate that mutant
DNA from IP brain metastases is more likely to be de-
tectable in cfDNA in CSF than in plasma. If validated, these
findings could change the paradigm for the management of
brain metastases, not only for those resistant to first-line
therapies, but perhaps also for personalized molecular
diagnosis at the time of first-line therapy.
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APPENDIX

TABLE A1. Twenty-Four Gene Panel and Mutation-Prone Regions Profiled for CSF and Plasma Sequencing
Gene Chromosome Genomic region (start) Genomic region (end) Amino Acids Covered

AKT1 14 104780210 104780217 G16, E17, Y18

APC 5 112839939 112839947 K1449, R1450, E1451

BRAF 7 140753328 140753343 A598, T599, V600, K601, S602, R603

CDKN2A 9 21971169 21971195 G55, S56, A57, R58, V59, A60, E61, L62, L63, L64

CDKN2A 9 21970993 21971037 D108, A109, W110, G111, R112, L113, P114, V115, D116, L117, A118,
E119, E120, L121, G122

CTNNB1 3 41224605 41224647 L31, D32, S33, G34, I35, H36, S37, G38, A39, T40, T41, T42, A43, P44,
S45

EGFR 7 55174764 55174801 A743, I744, K745, E746, L747, R748, E749, A750, T751, S752, P753,
K754, A755

EGFR 7 55191819 55191836 G857, L858, A859, K860, L861, L862, G863

EGFR 7 55181370 55181382 Q787, L788, I789, T790, Q791

EZH2 7 148811633 148811655 K639, N640, E641, F642, I643, S644, E645, Y646, C647

FGFR3 4 1806587 1806610 G691, G692, S693, P694, Y695, P696, G697, I698, P699

FGFR3 4 1801828 1801845 E247, R248, S249, P250

FGFR3 4 1804358 1804377 E368, A369, G370, S371, V372, Y373, A374, G375

FLT3 13 28018499 28018508 R834, D835, I836, M837

FOXL2 3 138946309 138946329 P132, A133, C134, E135, D136, M137, F138

GNAS 20 58909358 58909370 L841, R842, C843, R844, V845

HRAS 11 534282 534307 L6, V7, V8, V9, G10, A11, G12, G13, V14

HRAS 11 533862 533875 Q61, E62, E63, Y64, S65

IDH1 2 208248385 208248394 I130, G131, R132, H133

JAK2 9 5073766 5073775 V615, C616, V617, C618

KIT 4 54733150 54733165 A814, R815, D816, I817, K818, N819

KIT 4 54727417 54727452 K550, P551, M552, Y553, E554, V555, Q556, W557, K558, V559, V560,
E561, E562

KRAS 12 25245344 25245360 V9, G10, A11, G12, G13, V14

KRAS 12 25227327 25227343 Q61, E62, E63, Y64, S65, A66

MET 7 116700202 116700217 F373, F374, N375, K376, I377, V378

MET 7 116783357 116783377 M1247, Y1248, D1249, K1250, E1251, Y1252, Y1253, S1254

MYD88 3 38141147 38141156 R272, L273, I274, P275

NRAS 1 114716120 114716148 K5, L6, V7, V8, V9, G10, A11, G12, G13, V14

NRAS 1 114713887 114713909 Q61, E62, E63, Y64, S65, A66, M67, R68

PIK3CA 3 179218290 179218310 L540, S541, E542, I543, T544, E545, Q546, E547

PIK3CA 3 179234288 179234305 N1044, D1045, A1046, H1047, H1048, G1049, G1050

PPP2R1A 19 52212716 52212734 TP179, M180, V181, R182, R183, A184

PPP2R1A 19 52213067 52213082 K255, S256, W257, R258, V259, R260

PTEN 10 87933144 87933167 G129, R130, T131, G132, V133, M134, I135, C136

PTEN 10 87957910 87957928 P231, T232, R233, R234, E235, D236, K237

STK11 19 1207017 1207045 I35, Y36, Q37, P38, R39, R40, K41, R42, A43, K44

STK11 19 1223101 1223128 G346, A347, D348, E349, D350, E351, D352, L353, F354, D355

TP53 17 7675124 7675162 T150, P151, P152, P153, G154, T155, R156, V157, R158, A159, M160,
A161, I162, Y163

(Continued on following page)
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TABLE A1. Twenty-Four Gene Panel and Mutation-Prone Regions Profiled for CSF and Plasma Sequencing (Continued)
Gene Chromosome Genomic region (start) Genomic region (end) Amino Acids Covered

TP53 17 7675064 7675095 V173, R174, R175, C176, P177, H178, H179, E180, R181, C182, S183

TP53 17 7674934 7674965 A189, P190, P191, Q192, H193, L194, I195, R196, V197, E198, G199

TP53 17 7674871 7674896 F212, R213, H214, S215, V216, V217, V218, P219, Y220

TP53 17 7674215 7674263 Y234, N235, Y236, M237, C238, N239, S240, S241, C242, M243,
G244, G245, M246, N247, R248, R249, P250

TP53 17 7673763 7673806 V272, R273, V274, C275, A276, C277, P278, G279, R280, D281, R282,
R283, T284, E285, E286

Genomic positions are based on human genome assembly GRCh38/hg38.
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