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abstract

PURPOSE It has recently been described that alternative oncogenic drivers may be found in KRAS wild-type
(KRASWT) pancreatic cancers. This study aimed to determine the incidence of targetable gene fusions present in
KRASWT pancreatic adenocarcinoma and response to targeted therapy.

METHODS One hundred consecutive patients with pancreatic adenocarcinoma who underwent targeted next-
generation sequencing using DNA sequencing with RNA sequencing (n = 47) or without RNA sequencing (n =
53) at a single institution were included in the study. The frequency and landscape of targetable fusions in
KRASWT pancreatic adenocarcinoma was characterized and compared with the frequency of fusions in KRAS-
mutated (KRASMUT) pancreatic adenocarcinoma. Results were validated in two independent cohorts using data
from AACR GENIE (n = 1,252) and TCGA (n = 150). The clinical history of fusion-positive patients who received
targeted treatment is described.

RESULTS Pancreatic cancers from 13 of 100 patients (13%) were found to be KRASWT. Targetable fusions were
identified in 4/13 (31%) KRASWT tumors compared with 0/87 (0%) KRAS MUT pancreatic adenocarcinomas (P =
.0002). One patient with a novel MET fusion had a complete response to targeted therapy with crizotinib that is
ongoing at 12+ months of treatment. In the validation cohorts, gene fusions were identified in 18/97 (19%) and
2/10 (20%) KRASWT tumors reported in the AACR GENIE and TCGA cohorts, respectively.

CONCLUSION Oncogene fusions are present in KRASWT pancreatic adenocarcinomas at an increased frequency
when compared with KRASMUT pancreatic adenocarcinomas. As these fusions may be susceptible to targeted
therapy, molecular analyses for the detection of fusions in KRASWT pancreatic adenocarcinomas may warrant
increased consideration.

JCO Precis Oncol 5:65-74. © 2021 by American Society of Clinical Oncology

INTRODUCTION

Pancreatic cancer is the fourth leading cause of
cancer-related death in the United States with 57,600
new cases and 47,050 deaths projected in 2020.1

Clinical studies have established the antitumor ac-
tivity of polychemotherapy approaches including
FOLFIRINOX (folinic acid, fluorouracil, irinotecan,
and oxaliplatin) and gemcitabine combined with nab-
paclitaxel for advanced or metastatic pancreatic
cancer.2,3 Despite the activity of polychemotherapy,
the majority of patients with advanced or metastatic
pancreatic cancer develop disease progression
within 6 months, and thus more effective therapies
are needed.2,3

In recent years, enthusiasm for targeted therapy in
pancreatic cancer has grown with the approval of the
PARP-inhibitor olaparib for the treatment of patients
with BRCA-mutated disease and the identification of
alternative oncogenic drivers in KRAS wild-type

(KRASWT) tumors.4-6 Further advances have in-
cluded the identification of NRG1 fusions in
KRASWT pancreatic adenocarcinoma and case re-
ports describing exceptional responders to targeted
therapy in pancreatic cancers harboring a variety of
oncogene fusions, all identified in KRASWT

tumors.7-10

Although KRASWT tumors represent a minority of
pancreatic cancer cases, they may possess potentially
targetable alterations, making their identification a
therapeutic opportunity.5,6 This study sought to
characterize the landscape of targetable oncogene
fusions detected in KRASWT pancreatic adenocarci-
noma through a retrospective analysis of 100 pan-
creatic adenocarcinoma cases sequenced at a single
institution. Results were validated through two other
pancreatic adenocarcinoma studies. Finally, we report
the clinical course of a series of fusion-positive cases
treated with matched targeted therapy.
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METHODS

Patient Selection and Data Collection

This study was conducted in accordance with an institu-
tional review board–approved protocol. The protocol was
approved by Moffitt Cancer Center (MCC) in accordance
with the Declaration of Helsinki and the 21st Century Cures
Act. A cohort comprising 100 consecutive patients (MCC
100) was identified from a Moffitt database that discretely
annotates all genomic results from targeted next-generation
sequencing (NGS) panels.11 Cases were required to have a
pathologically confirmed diagnosis of pancreatic adeno-
carcinoma and had targeted NGS performed using
FoundationOne, FoundationOne CDx, or Moffitt STAR as-
says betweenMarch 1, 2013, and August 30, 2019, as part
of clinical care. Targetable gene fusions were defined as
those with clinical evidence supporting the use of targeted
therapy as follows: ALK, BRAF, FGFR2, FGFR3, MET,
NRG1, NTRK1, NTRK2, NTRK3, RAF1, RET, and ROS1
(Data Supplement, online only).

Assays Used

Moffitt STAR. The Illumina TruSight Tumor 170 gene
(TST170) platform is a NGS platform designed to detect
genetic alterations in 170 genes. The assay uses an
enrichment-based hybrid capture targeted panel that si-
multaneously analyzes DNA for single-nucleotide variants,
multi-nucleotide variants, and indels, and RNA for fusions
and splice variants (55 genes).12

FoundationOne. This assay has been described in depth
previously.13 The assay uses hybridization-based capture of
4,557 exons of 287 cancer-related genes and 47 introns of
19 genes frequently rearranged in solid tumors.

FoundationOne CDx. This assay has been described in
depth previously.14 The assay uses hybridization-based
capture of all coding exons from 309 cancer-related

genes, one promoter region, one noncoding (ncRNA),
and select intronic regions from 34 commonly rearranged
genes.14 A list of genes included in each of these assays is
available in the Data Supplement.

Validation Using Two Independent Cohorts

As a validation cohort, the AACR GENIE and TCGA Pan-
creatic Adenocarcinoma data sets were analyzed. For the
AACR Genie data set, only pancreatic adenocarcinoma
cases were included from sites within the AACR GENIE
consortium that contributed data on both structural rear-
rangements (ie, fusions) and mutation data (Memorial
Sloan Kettering Cancer Center [MSK] and Vanderbilt-
Ingram Cancer Center [VICC]).15 Sites reporting struc-
tural and mutation data included 1,252 of 2,048 unique
patients within the AACR GENIE data set. Molecular pro-
filing assays and associated bioinformatics pipeline used by
AACR GENIE consortium sites has been previously
described.15 Samples identified in the AACR GENIE da-
tabase without any mutations or copy number alterations
identified were excluded to avoid failed genotyping sam-
ples. A complete list of included cases is available in the
Data Supplement.

As a second validation cohort, the TCGA Pancreatic Ade-
nocarcinoma data set was obtained through cBioportal.16,17

The 150 cases from TCGA were included as these cases had
a pathologic confirmation of a diagnosis of pancreatic ad-
enocarcinoma along with sufficient tumor cellularity for
sequencing.18 Detailed methods for the sequencing and
bioinformatics pipeline has been described elsewhere.18 A
complete list of cases included is available in the Data
Supplement.

Statistical Analysis

Fisher’s exact test (two-tailed) was performed to test for
differences in the incidence of fusions in KRASWT versus
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KRAS-mutated (KRASMUT) patients in each of the three
cohorts (MCC100, AACR GENIE, and TCGA).

RESULTS

Patient Cohort and Molecular Characteristics

A cohort comprising 100 patients (MCC100) diagnosed
with pancreatic adenocarcinoma who underwent somatic
molecular sequencing with one of the three clinical NGS
assays (FoundationOne, FoundationOne CDx, or Moffitt
STAR) is included (Table 1). The median age for MCC100
at the time of NGS was 67 years (range, 40-88 years) with a
male predominance (65%). The majority of patients (88%)

had stage IV disease. Thirteen (13%) patients had KRASWT

pancreatic adenocarcinoma and 87 (87%) had KRASMUT

pancreatic adenocarcinoma, with KRAS (p.Gly12Asp) as
the most commonly observed KRAS alteration (n = 42).
Targetable oncogene fusions were identified in 31% (4 of
13) of KRASWT and 0% (0 of 87) of KRASMUT pancreatic
adenocarcinomas (P = .0002) (Fig 1).

Targetable Oncogene Fusions Identified in KRASWT

Pancreatic Adenocarcinoma

The fusion events in MCC100 involved four targetable
genes. The first was an FGFR2-PAWR rearrangement
(number of supporting reads not reported) in which exons

TABLE 1. Characteristics of the Moffitt Cancer Center (MCC100) Cohort
Characteristic Entire Cohort (N = 100) KRAS Mutant (n = 87) KRAS Wild-Type (n = 13)

Median age (years) at the time of tumor sequencing (range) 67 (40-88) 68 (40-88) 61 (46-81)

Sex

Male 65% (n = 65) 67% (n = 58) 54% (n = 7)

Female 35% (n = 35) 33% (n = 29) 46% (n = 6)

Stage at tumor sequencing

Stage I or II 6% (n = 6) 7% (n = 6) 0

Stage III 6% (n = 6) 6% (n = 5) 8% (n = 1)

Stage IV 88% (n = 88) 87% (n = 76) 92% (n = 12)

NGS assay used

FoundationOneTM 29% (n = 29) 30% (n = 26) 23% (n = 3)

FoundationOne CDxTM 24% (n = 24) 25% (n = 22) 15% (n = 2)

Moffitt STARTM 47% (n = 47) 45% (n = 39) 62% (n = 8)

Abbreviation: NGS, next-generation sequencing.

Patient KRAS Mutant KRAS Wild-Type
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FIG 1. Enrichment for oncogene fusions in KRASWT pancreatic adenocarcinoma. Targetable fusions were identified in 4 of 13 KRASWT patients with no
alternative driver oncogenes identified. Additionally, a FGFR2 rearrangement was identified that was predicted to be activating.

Identification of Targetable Gene Fusions

JCO Precision Oncology 67



1-17 of FGFR2 are fused with exons 4-7 of PAWR (Fig 2).
This fusion was consistent with other known activating
FGFR2 fusions, which frequently occur with a breakpoint
after exon 17 at the 3′ end of FGFR2 with a 3′ partner that
typically contributes a coiled-coil domain or other domain
capable of oligomerization.19-23

The second fusion was a PDZRN3-RAF1 rearrangement
(543 supporting reads) with the chimeric transcript in-
volving exons 1-2 of PDZRN3 fused with the 5′ end of exon
8 ofRAF1 (Fig 2). This fusion was consistent with previously
observed RAF1 fusions, which frequently have an exon 8
breakpoint leading to loss of an N-terminal autoinhibitory
region (amino acids, 1-147) of RAF1 and constitutive
activation.24-27

A third fusion was an ATP1B1-NRG1 rearrangement (652
supporting reads) with the chimeric transcript involving
exons 1-2 of ATP1B1 fused with the 5′ end of exon 2 of
NRG1 (Fig 2). Across studies, the 5′ partner of NRG1 has
been variable. All activating NRG1 fusions retain the EGF-
like domain (exons 6 and 7) of NRG1,6,8 enabling ligand
binding of the EGF-like domain of NRG1 to ERBB3, which
activates ERBB2/ERBB3 heterodimerization and down-
stream proliferative signaling.7,8,28 The identified fusion was
consistent with this known mechanism, with the EGF-like
domain predicted to be retained in the chimeric protein.

The fourth identified fusion was a novel RDX-MET fusion
(142 supporting reads) that has not been previously re-
ported. The fusion involves exons 1-13 of the RDX gene
fused with the 5′ end of MET exon 13 (Fig 2). The fusion
was found to be consistent with previously described ac-
tivating MET gene fusions, involving the intracellular do-
main of MET (with an intact kinase domain) fused at its
amino terminus with a dimerization motif such as a coiled-

coil domain.29-31 In the described case, the chimeric
transcript retains an intact MET kinase domain and RDX
contributes a coiled-coil domain capable of oligomerization.
A second MET fusion was also detected in the same pa-
tient. This fusion involved exons 1-11 of MET as the 5′

partner of the chimeric transcript fused to the 5′ end of
exon 4 of the ST7 gene. This second fusion does not retain
the MET kinase domain, and thus, may be a reciprocal
fusion with the first fusion, RDX-MET, serving as the on-
cogenic driver.

Among the KRASWT subset of MCC100, there was also a
rearrangement of FGFR2 at intron 17 that was not cate-
gorized as a fusion but was predicted to be activating as a
result of loss of the 3′ untranslated region (UTR) of
FGFR2.21,32,33

Validation in Independent Data Sets

Among the AACR GENIE cohort of 1,252 patients with
unique pancreatic adenocarcinoma, 92% (n = 1,155) were
KRASMUT. Targetable oncogene fusions were identified in
19% (n = 18) of KRASWT cancers (Fig 3) compared with ,
1% (n = 4) of KRASMUT cancers (P , .0001). One of the
four KRASMUT cancers with fusions identified harbored an
atypical KRAS alteration (KRAS [p. Ile118Leu]) that has not
been characterized as activating. Among KRASWT cancers,
the identified fusion was the lone mitogenic driver in 89%
(16/18) of fusion-positive samples, supporting consider-
ation of these fusions as oncogenic drivers of cellular
proliferation. One notable exception was a sample har-
boring both a BRAF fusion and a BRAF V600E mutation.

In the TCGA cohort, KRASmutations were identified in 93%
(140/150) of pancreatic adenocarcinoma samples. Tar-
getable oncogene fusions were identified in 20% (n = 2) of
KRASWT cancers (Fig 3) compared with , 1% (n = 1) of
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FIG 2. Targetable fusions identified in
the MCC100 cohort. Schematic rep-
resentation of the predicted products
of the four fusions identified among 13
KRASWT patients. Fusions were pre-
dicted to be activating based upon the
known mechanism of activation, ob-
served breakpoints, and relevant
functional domains retained or lost in
the chimeric fusion transcript.
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KRASMUT cancers (P = .0116). Among KRASWT cancers,
the identified fusion was the lone mitogenic driver in both of
the fusion-positive samples.

Targeted Treatment for Oncogene Fusions in KRASWT

Pancreatic Adenocarcinoma

Four cases of KRASWT pancreatic adenocarcinomas with
targetable gene fusions (n = 3) or structural rearrangements
(n = 1) in MCC100 received targeted treatment on the basis of
the recommendations of themolecular tumor board atMCC.11

Patient Case #34: PDZRN3-RAF1

An 81-year-old male with pancreatic adenocarcinoma pre-
sented with a pancreatic head mass and multiple liver me-
tastases. He was treated with gemcitabine plus nab-paclitaxel
for 11 months. At progression, targeted NGS (Moffitt STAR)
was performed, which identified a PDZRN3-RAF1 fusion.
Treatment with fluorouracil and leucovorin was initiated as
second-line therapy, but after 5 months cancer antigen
(CA) 19-9 continued to rise and chemotherapy was
stopped. On the basis of prior case reports describing
responses to MEK inhibition (MEKi) in RAF1 fusion-
positive patients,26,34,35 targeted therapy with trametinib
(MEKi) was initiated at a dose of 2 mg daily. Treatment
with trametinib was discontinued after 3 weeks as a result
of the development of a left gluteal hematoma after a fall.
Comparison of pre- and post-trametinib computed to-
mography (CT) scans revealed a decrease in the size of
the primary mass in the pancreatic head (decreasing from
2.9 × 5.2 cm to 2.4 × 3.9 cm). However, an increase in the
size of upper abdominal nodes and liver lesions were
observed, including a right hepatic lobe lesion that

increased from 3.6 cm to 4.2 cm. The patient’s condition
continued to decline, and 2 weeks later he was transi-
tioned to hospice care.

Patient Case #82: ATP1B1-NRG1

A 56-year-old female, who was initially diagnosed at 50 years
of age, presented with recurrent metastatic pancreatic ad-
enocarcinoma. She previously underwent four resections and
five lines of chemotherapy, including most recently HIPEC
with mitomycin-C. Following debulking and HIPEC, CA 19-9
continued to rise with imaging suspicious for recurrence.
Targeted NGS (Moffitt STAR) was performed, with an
ATP1B1-NRG1 fusion identified. On the basis of the de-
scribed clinical benefit of afatinib in prior case series ofNRG1
fusion-positive cases,7,8 the patient was started on treatment
with afatinib 40 mg daily. She received treatment for ap-
proximately 2 weeks before the medication was temporarily
held as a result of the development of an acneiform rash that
resolved with clindamycin gel and a break from treatment.
Her subsequent CT scans showed stable disease and the
decision was made to restart afatinib at a reduced dose of
30 mg daily, which she tolerated well. Unfortunately, at her
follow-up scans 4 months after initiating treatment with
afatinib, she had progressed with new liver lesions.

Patient Case #73: RDX-MET

An 80-year-old male with pancreatic adenocarcinoma was
diagnosed at 77 years of age. He underwent a partial
pancreatectomy and completed 6 months of adjuvant
gemcitabine plus capecitabine. Four months later, a
peritoneal metastasis was found and treated with gemci-
tabine plus nab-paclitaxel. CT scans 2months later showed
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FIG 3. Targetable oncogene fusions identified in KRASWT pancreatic adenocarcinoma in theMoffitt Cancer Center (MCC100) and independent cohorts
(AACR GENIE and TCGA). Targetable fusions were reported across all three cohorts at an incidence of at least 19% among KRASWT pancreatic
adenocarcinoma patients.
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progressive disease and rising CA 19-9. At this time, NGS
(Moffitt STAR) identified a novel RDX-MET fusion. Sub-
sequent CT scans showed further progression with CA 19-9
continuing to rise to a zenith of 17,406U/mL, and treatment
was initiated with the c-MET inhibitor, crizotinib, on the
basis of the identified MET fusion. After 2 weeks of the
targeted therapy, CA 19-9 had decreased to 7,752 U/mL.
CT scans after 2 months of treatment with crizotinib
demonstrated resolution of peritoneal disease in parallel to
continued decline in CA 19-9 down to 123 U/mL. At ap-
proximately 7 months of treatment, a complete response
was demonstrated on positron emission tomography and
CT with normalization of CA 19-9 down to 32.7 U/mL. The
response is ongoing now at . 12 months of treatment with
crizotinib (Fig 4).

Patient Case #53: FGFR2 Rearrangement (Intron 17)

A 48-year-old female with metastatic pancreatic adeno-
carcinoma was diagnosed after work-up for severe ab-
dominal pain and new-onset jaundice identified a mass in
the pancreatic head. She was initially treated with FOL-
FIRINOX (5FU, leucovorin, irinotecan, and oxaliplatin), but
treatment was switched to maintenance FOLFIRI (5FU,
leucovorin, and irinotecan) as a result of toxicity after
6 months. Subsequent CT scans showed disease pro-
gression with enlargement of liver lesions and pancreatic
lesion. On the basis of her NGS results (FoundationOne

CDx), which identified an FGFR2 rearrangement, treatment
with erdafitinib was initiated. Follow-up CT scans at
2 months demonstrated a partial response and she has
continued on treatment (Fig 5).

DISCUSSION

It has been previously reported that alternative oncogenic
drivers may be present in pancreatic cancers lacking a
KRAS oncogene mutation; data from the three cohorts
described here (MCC100, AACR GENIE, and TCGA) cor-
roborate this finding. Among MCC100, targetable onco-
gene fusions were identified in 31% of KRASWT pancreatic
adenocarcinomas and this enrichment for targetable fu-
sions among KRASWT cases was validated through the
independent AACR GENIE and TCGA cohorts. The lowest
incidence of targetable fusions identified was 19% among
any of the three analyzed cohorts. Across the three cohorts,
fusions were identified in ALK, BRAF, FGFR2, MET, NRG1,
NTRK1, NTRK3, RAF1, and ROS1 in the setting of KRASWT

pancreatic adenocarcinoma. Other studies have also de-
scribed fusions in EGFR, ERBB4, FGFR3, and RET.36

Recent studies incorporating RNA sequencing (RNA-
seq) provide additional confirmation of our finding of tar-
getable gene fusions in approximately one of five KRASWT

pancreatic cancers.37 This enrichment for targetable fu-
sions in KRASWT cases suggests that the identification of
KRASWT status should trigger a dedicated search for
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targetable fusions or rearrangements in patients who would
be candidates for such targeted therapies.

In this study, clinical correlation of response to targeted
therapy is described. Notable among these is a novel RDX-
MET fusion in which treatment with crizotinib resulted in an
ongoing complete response. MET oncogene fusions re-
sponsive to targeted therapy have been identified in NSCLC
and primary brain tumors.29,30,38,39 Durable responses to
targeted treatment with crizotinib have been described
previously in the setting ofMET fusion-positive NSCLC, with
responses ranging from 8 months to ongoing at over a year
of targeted treatment.29,30,38 To the best of our knowledge,
this is the first report of a MET fusion-positive pancreatic
adenocarcinoma that has been treated with MET-targeted
therapy. Additionally, a second MET fusion-positive pan-
creatic cancer was identified recently in another cohort,
suggesting that this may be a rare, but recurrent, feature of
KRASWT pancreatic cancers.37 The incidence of MET fu-
sions in pancreatic adenocarcinoma remains unknown,
but improved fusion detection with RNA-seq may reveal
additional cases with targetable MET fusions.40-42

To provide meaningful treatment advances, prospective
studies are needed to identify the optimal method of tar-
geted treatment for each of oncogene fusions in KRASWT

pancreatic adenocarcinoma. With the growing knowledge
of the gene fusions present, it may becomemore feasible to
open umbrella trials with targeted therapy specific for each
of the oncogene fusions known to be present in KRASWT

pancreatic adenocarcinoma. This would allow for more

patients to receive treatment and amore robust assessment
of response to targeted treatment.

In the MCC cohort, two fusions were identified with RNA-
seq (NRG1 andMET) that would not have been detected by
many DNA sequencing (DNA-seq) assays as a result of
technical limitations. DNA-seq is capable of identifying
fusions that occur at recurrent breakpoints with high
sensitivity,41 but is limited in interrogating fusions in genes
with large introns (eg, NRG1) or those occur outside a
common intronic breakpoint (eg, RDX-MET).40,41,43 These
inherent limitations of DNA-seq can be overcome with
RNA-seq, as only the coding exons are targeted with the
introns already spliced out.40-42

This study has limitations. Multiple assays were used, in-
cluding some that used only DNA for fusion detection.
Consequently, we are able to confidently report that tar-
getable fusions are present in ≥ 19% of KRASWT cases, but
additional studies using RNA-seq for all KRASWT cases
would be warranted to confirm the respective incidence of
each of the targetable fusions identified. A second limitation
is that FGFR2 fusions are well described in other pan-
creaticobiliary malignancies such as intrahepatic chol-
angiocarcinoma, suggesting that patients with altered FGFR2
in our cohort may instead be cholangiocarcinoma.32,44

However, FGFR2 fusions have been reported in other large
pancreatic cancer studies,36,37 and an additional pathology
and radiology review validated the diagnosis.36,37

The clinical utility of NGS for pancreatic cancer has ad-
vanced over the last 5 years, and the National

Pretreatment 2 Months

FIG 5. Partial response observed at 2
months in an FGFR2-rearranged case
treated with FGFR-targeted treatment with
erdafitinib.
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Comprehensive Cancer Network guidelines now recom-
mend tumor or somatic gene profiling for patients with
locally advanced or metastatic disease who are candidates
for anticancer therapy.45 Platinum-based chemotherapy or
PARP inhibitors can provide meaningful clinical benefit for
patients with germline or somatic alterations in homologous
recombination repair genes such as BRCA1, BRCA2, and
PALB2.46,47 Microsatellite instability is relatively rare in
pancreatic cancer (, 1%), but these rare cases can ex-
perience durable responses with immune checkpoint
blockade.48 ERBB2 (HER2) amplification has been iden-
tified in approximately 3% of pancreatic cancers and has
been identified in both KRASWT and KRASMUT tumors
(approximately 3% and approximately 2%, respectively).36

HER2-targeted approaches have not been successful thus
far in pancreatic cancer,49 but assessment of KRAS status
may be important for future clinical trials (as has been seen
in colon cancer).50 The development of novel HER2-
targeted agents may also assist with the realization of
clinical benefit in this population.51,52 In the setting of
KRASWT tumors, there is an enrichment for BRAF muta-
tions (V600E: approximately 3% and in-frame insertions or
deletions: approximately 3%) with responses to targeted

treatment described6,36,37,53 and a diverse group of onco-
genic fusions including ALK, BRAF, FGFR2, FGFR3, MET,
NRG1, NTRK1, NTRK3, RAF1, RET, and ROS1 (approx-
imately 20%). Expanded access to somatic testing in ap-
propriate patients will help optimize the treatment of each of
these molecular subsets in pancreatic cancer and will
accelerate the development of new treatments for patients
with advanced or metastatic disease.

This report and others have shown that some patients with
pancreatic adenocarcinoma treated on the basis of iden-
tified fusions can derive substantial clinical benefit.7-10,54-56

This is an important finding in a disease where clinical
outcomes in the advanced stages remain poor. Addition-
ally, the incidence of MET fusions in pancreatic adeno-
carcinoma remains unknown as a result of limitations of
many assays and future studies may consider incorporating
RNA-based testing for KRASWT cancers with inclusion of
coverage of the MET oncogene. Future clinical investiga-
tions may reveal the optimal method for targeting each of
the fusions reported among KRASWT pancreatic adeno-
carcinoma to offer more effective therapeutic options for
patients in need.
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