Table 4. Performance evaluation of various input encoding methods using the dataset of Lee and Han [21].
API classifier | Protein encoder | Aptamer encoder | Sensitivity | Specificity | Accuracy | Youden’s Index | MCC |
---|---|---|---|---|---|---|---|
Ranfom Forest | CTD | iCTF | 0.862 | 0.516 | 0.689 | 0.379 | 0.405 |
CTD | PseKNC(k = 2) | 0.842 | 0.537 | 0.69 | 0.379 | 0.399 | |
CTD | PseKNC(k = 3) | 0.855 | 0.52 | 0.687 | 0.375 | 0.399 | |
CTD | TAC | 0.715 | 0.6 | 0.658 | 0.315 | 0.319 | |
DPC | iCTF | 0.933 | 0.454 | 0.693 | 0.387 | 0.442 | |
DPC | PseKNC(k = 2) | 0.928 | 0.474 | 0.701 | 0.402 | 0.452 | |
DPC | PseKNC(k = 3) | 0.932 | 0.462 | 0.697 | 0.394 | 0.448 | |
DPC | TAC | 0.881 | 0.561 | 0.721 | 0.442 | 0.469 | |
iCTF | iCTF | 0.931 | 0.493 | 0.712 | 0.424 | 0.473 | |
iCTF | PseKNC(k = 2) | 0.949 | 0.499 | 0.724 | 0.448 | 0.502 | |
iCTF | PseKNC(k = 3) | 0.952 | 0.498 | 0.725 | 0.45 | 0.506 | |
iCTF | TAC | 0.887 | 0.567 | 0.727 | 0.454 | 0.481 | |
TPC | iCTF | 0.931 | 0.459 | 0.695 | 0.389 | 0.443 | |
TPC | PseKNC(k = 2) | 0.997 | 0.466 | 0.731 | 0.463 | 0.546 | |
TPC | PseKNC(k = 3) | 0.986 | 0.466 | 0.726 | 0.452 | 0.53 | |
TPC | TAC | 0.978 | 0.492 | 0.735 | 0.47 | 0.538 | |
[21] | 0.768 | 0.661 | 0.714 | 0.429 | 0.431 |
The bold font denote the best result in each performance metric. According to MCC, TPC+PseKNC(k = 2) was selected as our final choice of encoders. All the results in detail are available in S7 Table.