Skip to main content
. 2021 Jun 25;16(6):e0253760. doi: 10.1371/journal.pone.0253760

Table 4. Performance evaluation of various input encoding methods using the dataset of Lee and Han [21].

API classifier Protein encoder Aptamer encoder Sensitivity Specificity Accuracy Youden’s Index MCC
Ranfom Forest CTD iCTF 0.862 0.516 0.689 0.379 0.405
CTD PseKNC(k = 2) 0.842 0.537 0.69 0.379 0.399
CTD PseKNC(k = 3) 0.855 0.52 0.687 0.375 0.399
CTD TAC 0.715 0.6 0.658 0.315 0.319
DPC iCTF 0.933 0.454 0.693 0.387 0.442
DPC PseKNC(k = 2) 0.928 0.474 0.701 0.402 0.452
DPC PseKNC(k = 3) 0.932 0.462 0.697 0.394 0.448
DPC TAC 0.881 0.561 0.721 0.442 0.469
iCTF iCTF 0.931 0.493 0.712 0.424 0.473
iCTF PseKNC(k = 2) 0.949 0.499 0.724 0.448 0.502
iCTF PseKNC(k = 3) 0.952 0.498 0.725 0.45 0.506
iCTF TAC 0.887 0.567 0.727 0.454 0.481
TPC iCTF 0.931 0.459 0.695 0.389 0.443
TPC PseKNC(k = 2) 0.997 0.466 0.731 0.463 0.546
TPC PseKNC(k = 3) 0.986 0.466 0.726 0.452 0.53
TPC TAC 0.978 0.492 0.735 0.47 0.538
[21] 0.768 0.661 0.714 0.429 0.431

The bold font denote the best result in each performance metric. According to MCC, TPC+PseKNC(k = 2) was selected as our final choice of encoders. All the results in detail are available in S7 Table.