Table 1.
Step | Operation | Output dimension |
---|---|---|
Input Layer | One-hot encoding | 300x5 |
Convolutional Layer 1 | Conv1D(32,7) | 300 x 32 |
Activation(ReLU) | 300x32 | |
Dropout(0.2) | 300x32 | |
Max-pooling1 | 150 x 32 | |
Convolutional Layer 2 | Conv1D(8,4) | 147 x 8 |
Activation(ReLU) | 147 x 8 | |
Dropout(0.2) | 147 x 8 | |
Max-pooling1 | 73 x 8 | |
Convolutional Layer 3 | Conv1D(8,3) | 71 x 8 |
Activation(ReLU) | 71 x 8 | |
Dropout(0.2) | 71 x 8 | |
Max-pooling1 | 35 x 8 | |
Flatten step | Flatten | 280 x 1 |
Dense Layer1 | Dense(32) | 32 x 1 |
Activation(ReLU) | 32 x 1 | |
Dropout(0.2) | 32 x 1 | |
Dense Layer2 | Dense(2) | 32 x1 |
Activation(Softmax) | 2x1 | |
Output Layer | Classification | Probabilities |