Skip to main content
. 2021 Jun 15;11(6):1096. doi: 10.3390/diagnostics11061096

Table 3.

Leaderboard for AutoGluon listing the best performing individual classification models from the ensemble model. The attributes Score_test and Score_val are log-loss used to evaluate predictive performance, and the models were sorted according to performance. Note that the closer the value is to zero, the better the model. For details on the other attributes, Stack_level and Fit_order, refer to [29].

Ranking Model Score_Test Score_Val Stack_Level Fit_Order
1 CatboostClassifier −0.196 −0.299 1 22
2 LightGBMClassifierXT −0.200 −0.293 1 21
3 weighted_ensemble −0.211 −0.269 2 24
4 LightGBMClassifierCustom −0.214 −0.345 1 23
5 LightGBMClassifier −0.217 −0.318 1 20
6 RandomForestClassifierEntr −0.223 −0.304 1 17
7 ExtraTreesClassifierGini −0.228 −0.272 1 18
8 ExtraTreesClassifierEntr −0.231 −0.281 1 19
9 weighted_ensemble −0.236 −0.319 1 12
10 ExtraTreesClassifierEntr −0.246 −0.388 0 7
11 ExtraTreesClassifierGini −0.249 −0.380 0 6
12 CatboostClassifier −0.254 −0.354 0 10
13 LightGBMClassifierXT −0.254 −0.347 0 9
14 LightGBMClassifier −0.270 −0.369 0 8
15 LightGBMClassifierCustom −0.276 −0.396 0 11
16 RandomForestClassifierGini −0.278 −0.305 1 16
17 NeuralNetClassifier −0.303 −0.416 0 1
18 RandomForestClassifierEntr −0.311 −0.374 0 5
19 NeuralNetClassifier −0.313 −0.421 1 13
20 RandomForestClassifierGini −0.318 −0.381 0 4
21 KNeighborsClassifierDist −1.058 −1.625 1 15
22 KNeighborsClassifierDist −1.074 −1.757 0 3
23 KNeighborsClassifierUnif −1.227 −1.767 1 14
24 KNeighborsClassifierUnif −1.269 −1.901 0 2