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Abstract

Major depressive disorder (MDD) is a common and serious mental disorder characterized by a 

persistent negative feeling and tremendous sadness. In recent decades, several studies used 

functional network connectivity (FNC), estimated from resting state functional magnetic 

resonance imaging (fMRI), to investigate the biological signature of MDD. However, the majority 

of them have ignored the temporal change of brain interaction by focusing on static FNC (sFNC). 

Dynamic functional network connectivity (dFNC) that explores temporal patterns of functional 

connectivity (FC) might provide additional information to its static counterpart. In the current 

study, by applying k-means clustering on dFNC of MDD and healthy subjects (HCs), we estimated 

5 different states. Next, we use the hidden Markov model as a potential biomarker to differentiate 

the dFNC pattern of MDD patients from HCs. Comparing MDD and HC subjects’ hidden Markov 

model (HMM) features, we have highlighted the role of transition probabilities between states as 

potential biomarkers and identified that transition probability from a lightly-connected state to 

highly connected one reduces as symptom severity increases in MDD subjects.
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Major depressive disorder; Dynamic functional network connectivity; Machine learning; Resting-
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I. INTRODUCTION

Major depressive disorder (MDD) is a complex mood disorder characterized with feelings of 

sadness, diminished interests, and loss [1], [2]. It affects more than 16 million American 

adults in the United States and 350 million adults in the world every year [3].Although a 

variety of treatments has been developed in last two decades, in about 20% to 30% of 

patients, symptoms do not entirely cease after treatment [4]. To optimize treatments, we 

need to improve our understanding of the underlying neurophysiological mechanism of 

MDD.

In recent years, several studies by analyzing functional network connectivity (FNC), have 

identified abnormal commination within and between functional brain regions and networks 

in MDD patients. However, many of these analyses have ignored the temporal changes of 

FNC during the rs-fMRI [5]–[7]. Indeed, the functional connectivity is highly dynamic even 

in the absence of external inputs. Recently, using a graph theory method, we have analyzed 

the dynamic FNC (dFNC) of whole-brain connectivity of MDD [8].

In this study, to investigate temporal dynamics in FNC (dFNC) of the whole-brain 

connectivity in MDD subject, we leveraged the sliding window approach followed by k-

means clustering to identify a set of connectivity states [9]. To further investigate and model 

the temporal changes in dFNC, we estimated transition probability of HMM from dFNC. 

Next, using some statistical analysis and the estimated HMM features, we explored the 

difference between MDD patients and HC subjects. Further, we found a link between 

symptom severity and the dFNC HMM features MDD subjects.

II. MATERIALS AND METHODS

A. Participants

In this study, the rs-fMRI data from 500 Chinese Han participants (250 MDD patients and 

250 healthy controls) were recruited from 4 hospitals in China, including the West China 

Hospital of Sichuan (Site 1),the Henan Mental Hospital of Xinxiang (Site 2), the First 

Affiliated Hospital of Zhejiang (Site 3), and the Anding Hospital of Beijing (Site 4) has been 

used. Table I provide the detailed demographic information for the subjects. In addition, to 

rate the current symptom severity of MDD subjects, 17-item Hamilton depressive rating 

scale (HDRS) has been used [10]. Ethical consent was approved by the relevant ethics 

committees, and informed consent was obtained from each subject prior to scanning 

according to each site’s institutional review board. The demographic information of the 

subjects is shown in Table I. In addition, the scanning parameters were used in these four 

scanning site are described in [8].

B. Data Processing

We used statistical parametric mapping (SPM12, http://www.fil.ion.ucl.ac.uk/spm/) to 

preprocess the fMRI data. First, we performed slice-timing correction on the fMRI data. 

Then, we applied rigid body motion correction using the toolbox in SPM to correct subject 

head motion. Next, we performed spatial normalization to an echo planar imaging (EPI) 
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template in the standard Montreal Neurological Institute (MNI) space and resample to 

3×3×3 mm. Finally, we used a Gaussian kernel with a full width at half maximum (FWHM) 

= 6 mm to smooth the fMRI images. In this study, the Neuromark automatic ICA pipeline 

has been used to extract reliable intrinsic connectivity networks (ICNs) [11]. The Neuromark 

templates were derived by identifying a subset of matched components as ICNs if they 

exhibit peak activations in gray matter; have low spatial overlap with known vascular, 

ventricular, motion, and susceptibility artifacts; and have dominant low-frequency 

fluctuations on their time-courses. Finally, we categorized all 53 ICNs into seven domains 

based on their prior anatomical and functional information. These domains include 

subcortical network (SCN), auditory network (ADN), sensorimotor network (SMN), visual 

network (VSN), cognitive control network (CCN), default-mode network (DMN), and 

cerebellar network (CBN). (Step1 in Fig.1). The details of all 53 ICNs used in this study was 

previously shown in [11].

C. Dynamic Functional Network Connectivity (dFNC)

For each subject i = 1 … N, dFNC of the whole-brain connectivity was estimated via a 

sliding window approach as shown Fig1. We used a tapered window, which was obtained by 

convolving a rectangle (window size = 20 TRs = 40 s) with a Gaussian (σ = 3), to localize 

the dataset at each time point. Then, the covariance matrix for each time point from 

windowed data was calculated to measure the dFNC between ICNs (Fig. 1 Step1). Next, we 

concatenated dFNC estimates of each window for each subject to form a C × C × T) array 

(where C=53 denotes the number of ICNs, and T=205 denotes the number of windows), 

which represented the changes in brain connectivity between ICNs as a function of time 

(Fig.1 Step 1) [13] (Step2 in Fig.1).

D. Clustering and Latent Transition Probability Feature Estimation

In the next step, we concatenated the dFNC of all subjects as shown in Step 2 of Fig.1 and 

then applied a k-means algorithm to these dFNC windows to partition the data into a set of 

separated clusters, called state here [10]. The optimal number of centroid states was 

estimated using the elbow criterion based on the ratio of within to between cluster distance. 

We found that the optimal number of clusters is 5 by sweeping the k value from 3 to 8. In 

addition, correlation was used as a distance metric in this k-means clustering algorithm with 

1000 iterations. Next, to estimate the HMM feature, we calculated between-state transition 

and used this as a latent feature of dFNC. In this model, the transition probability generally 

is represented by aij which can be explained as the probability of the system to transition 

from state j at time t to state i at time step t+1. (Step3 in Fig.1).

aij = p s t + 1 = i s t = j (1)

where p and s donated probability and state, respectively.

E. Statistical Analysis

To compare MDD and HC using HMM features, we have performed two-way ANOVA test. 

To find a link between HMM features and HDRS of MDD group, we used partial correlation 

by accounting the age and gender. We performed all statistical analysis on all 25 HMM 
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features. For false discovery rate (FDR) correction, all p values have been adjusted by 

Benjamini-Hochberg correction method.

III. RESULTS AND DISCUSSION

A. Dynamic Connectivity States

We identified five distinct dFNC states using k-means clustering algorithm are shows in Fig. 

3a. We obviously observe different connectivity pattern in these five states. All states show a 

positive connectivity within and between SMN and VSN. In these networks, state 3 shows 

the weakest connectivity while state 4 shows the highest connectivity. Also, state 4 is 

distinguishable from other states by showing a negative connectivity between SMN and 

VSN with other networks. In addition, this state has the highest connectivity between SCN 

with rest of the brain except ADN, SMN, and VSN. State 3 fairly shows less connectivity in 

CCN, DMN, and CBN. In addition, state 2 shows more connectivity in DMN than that of 

state 1, state 3, and state 5. Also, excepting state 4, the connectivity between SMN and VSN 

is higher than other states. Relatively, state 5 shows stronger connectivity in VSN than state 

1, state 2, and state 3. Comparing the connectivity of all states, relatively, state 3 shows the 

weakest connectivity of all states. In oppose to main body of previous research, which 

ignored the dynamic of FNC, we found that the dynamic evolution of short timescale 

connectivity differs significantly between HCs and MDDs. whole-brain functional 

connectivity of MDD subjects is indeed highly dynamic, representing flexibility in 

functional coordination in this mode [14].

B. HMM-based difference between HC and MDD

After calculating the HMM features of each subject, we did a two-way ANOVA test to 

compare HC and MDD using HMM features. Fig. 3a shows the logarithmic p value after 

FDR correction. As we see in this figure, a55, dwelling at state 5, shows a significant 

difference between HC and MDD subjects. As Fig. 3 b shows, the probability of remaining 

in state 5 is significantly higher in HC subjects.

C. Link between HMM features and symptom severity

To find a link between HMM feature and HDRS-17, we calculated the Pearson’s linear 

correlation between transition probability, aij, and HDRS while controlling for age, gender, 

and scanning site. The logarithmic FDR corrected p values of correlation between HDRS 

and state transition number are shown in Fig. 4a. As this figure shows, we found that the 

probability of transitioning from state 3 to state 2 exhibits a negative correlation with HDRS 

(r=−0.21, FDR corrected p=0.04, n=208). This result suggests that the process of achieving 

more modularized connectivity from a position of disconnectivity differs for MDDs an HCs 

(in a way that is more pronounced as symptomology intensifies), a short timescale finding 

that may help explain the lower static connectivity that has been observed MDD subjects 

[15]. In addition, we find that HC subjects spend significantly more time in state 5, which 

presents relatively stronger connectivity within SMN, VSN, and CCN than state 3. Recent 

studies have also shown a link between weakly-connected FNC and self-focused thinking a 

key characteristic of depression m [16], [17]. Therefore, our analysis of dFNC both supports 

the role of weak network connectivity in MDD pathogenesis while also resolving the shorter 
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timescale anomalies in MDD connectivity dynamics that result in lower time-averaged 

connectivity. The finding reported here that HCs spend more time in a state with greater 

SMN connectivity combined with our finding that the probability of transitioning from a 

weakly connected state to a state with stronger SMN connectivity falls with symptom 

severity suggests an important role for SMN in the MDD. This would be consistent with a 

recent study highlighting the role of SMN FNC in bipolar disorder (BD) [18].

IV. Conclusion

Previous studies show play an important role of FNC in MDD. However, the majority of the 

only studied static FNC. In the current study, upon the previous studies, we analyzed dFNC 

of 250 MDD patients and 250 HC subjects from rs-fMRI. We found that MDD patients with 

higher symptom severity have less transition from a state with weaker connectivity to a state 

with higher connectivity. In addition, comparing between MDD and HC subjects, we found 

that HC subjects significantly spend more time in a state with higher connectivity in VSN 

and CCN. This study provides a new evidence of aberrant time-varying activity of the 

whole-brain FNC in MDD and the link between this aberrant pattern and the symptom 

severity in this disease group.
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Fig. 1. Schematic of the analysis pipeline.
A sliding window over time course signal of independent components was used to calculate 

dFNC of each subject. For each subject, we estimated 205 windows. (Step 1). Then, after 

concatenating all dFNCs, the dynamic states matrix and subject state transition vectors have 

been computed by applying a k-means clustering method across all window of all subjects. 

The optimized number of clusters, which been obtained by searching from 3 to 8, is 5 (Step 

2). The dFNC hidden Markov model (HMM) features, which represent the transition 

probability between the states, have been calculated as a potential biomarker to differentiate 

MDD from HC subjects (Step 3).
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Fig. 2: k-means clustering, and the feature selection results.
The five dFNC states identified by the k-means clustering method.
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Fig. 3: The difference between MDD and HC subjects using HMM features.
a) Logarithmic p value of two-way ANOVA test after FDR correction (FDR correction 

p<0.05). b) Transition probability from state 5 to state 5 in HC subjects (F (1,249)=11.71, 

FDR corrected p=0.04).
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Fig. 4: Correlation between HMM and HDRS:
a) Logarithmic FDR corrected p value of partial correlation after controlling age, gender, 

and scanning site (FDR correction p<0.05). b) Transition probability from state 3 to state 2 

falls with symptom severity in MDD subjects (r=−0.21, FDR corrected p=0.04, n=208).
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TABLE I

DEMOGRAPHIC AND CLINICAL INFORMATION OF SUBJECTS.

MDD HC P-value

Number 262 277 NA

Age 32.79±11.14 31.22±10.37 0.06*

Gender(M/F) 96/154 87/163 0.99*

HDRS-17 21.38±5.76 NA NA

*
Two-sample Kolmogorov-Smirnov test
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