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A B S T R A C T   

In group or cluster-randomized trials (GRTs), matching is a technique that can be used to improve covariate 
balance. When baseline data are available, we suggest a strategy that can be used to achieve the desired balance 
between treatment and control groups across numerous potential confounding variables. This strategy minimizes 
the overall within-pair Mahalanobis distance; and involves iteratively: 1) making pairs that minimize the dis-
tance between pairs of clusters with respect to potentially confounding variables; 2) visually assessing the po-
tential effects of these pairs and resulting possible randomizations; and 3) reweighting variables of selecting 
weights to make pairs of clusters. In step 2, we plot the between-arm differences with a parallel-coordinates plot. 
Investigators can compare plots of different weighting schemes to determine the one that best suits their needs 
prior to the actual, final, randomization. We demonstrate application of the approach with the Mupirocin- 
Iodophor Swap Out trial. A webapp is provided.   

1. Introduction 

Individually randomized trials with blinding are the most rigorous 
way of determining whether a causal relation exists between an inter-
vention and an outcome (e.g. Ref. [1]). However, for scientific and 
practical design reasons some interventions must be delivered to groups 
of subjects. Trials where groups are randomized are called 
group-randomized or cluster-randomized trials (GRTs). Three reasons 
for conducting a GRT are: (i) because implementation occurs at the 
cluster level, (ii) to avoid treatment contamination between subjects 
who are in contact with one another, and (iii) to measure intervention 
effects among cluster members who do not themselves receive treatment 
[2,3]. GRTs are “the gold standard when allocation of identifiable 
groups is necessary” [4]. 

One challenge in GRTs is that there is typically a small number of 
clusters. Many GRTs have fewer than 30 independent clusters to 
randomize, and most have fewer than 200. Thus, even though each 
cluster may have thousands of individuals [2], there may well be 
concern about confounding. In contrast, in large individually random-
ized trials investigators expect randomization to balance potential 
confounders across each arm of the trial. The smaller number of ran-
domizable cluster in GRTs makes imbalance a threat to the causal 

interpretation of any observed treatment effect. 
Several approaches to this problem have been proposed, including 

minimization [5], constrained randomization [6,7], and matching or 
stratification (see, e.g. Ref. [8]). Briefly, minimization can be seen as a 
sequential assignment of each randomized cluster to each arm such that 
the imbalance after the addition of that cluster is minimized. It is better 
suited to studies in which clusters are accrued as they are randomized. In 
cases where many clusters are assembled before randomization begins, 
it is dependent on the initial cluster and can be nearly deterministic. 

Covariate constrained randomization effectively enumerates all 
possible treatment assignments and eliminates those that do not meet 
with desired features of balance. Usually schemes that have less than 
some maximum value of covariate difference are selected, and then one 
is chosen at random. For each group to have equal probability of 
assignment to each arm of the trial, half of the selected schemes should 
have it in one arm, the other half in the other. Although this is not 
impossible, it is unlikely. To some trialists, any deviation from an equal 
probability of assignment to each arm will be unacceptable; in any case 
it is unclear how to make principled decisions about how much inequity 
in arm assignment probability is allowable. 

Extensive simulations compared analyses of constrained randomi-
zation, simple randomization, and the truth for both binary and 
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continuous, normally distributed outcomes [9,10]. For continuous out-
comes, they demonstrate that adjustments for covariates at the analysis 
stage are important even after design based adjustments. An adjusted 
F-test must be used, and permutation tests must account for the balanced 
scheme, otherwise constrained randomization improves power while 
maintaining type I error rates. For binary outcomes, prior knowledge 
should drive careful selection of covariates used in constrained 
randomization to maximize power and maintain type I error rates. 

Other research shows that constrained randomization has smaller 
total sum of squares distance than simple randomization, minimization, 
matching, and stratification when all clusters are known in advance 
[11]. 

In stratified randomization similar clusters are grouped together 
prior to randomization, and randomization takes place within these 
smaller groups. There is debate about the optimal sizes of these groups. 
In particular, there is disagreement about the merits of matching, which 
involves grouping 2 clusters together, vs. stratification, where more than 
2 clusters are grouped [12]. 

If there are a small number of groups in a trial, stratification is most 
useful when there are only a few covariates to balance. Otherwise, strata 
of size 4 are said to have all the advantages of matching with none of the 
drawbacks [13]. 

Many authors address the value of matching in GRTs in both the 
design stage and in the analysis [2,3,8,12,14–20]. Murray argues that 
“the choice of matching or stratification [of] factors is critical to the 
success of the procedure” [8]. Others suggest that caution must be used 
when matching a small number of clusters due to the decrease in power 
[2,18–20]. Breaking the matches, i.e., ignoring the matching during data 
analysis, addresses this [15], but perhaps only when there is a small 
number of large clusters [17]. Breaking the matches may also increase 
the type I error rate for analyses that are not the intervention effect [17]. 
Further drawbacks include difficulties in estimating the intracluster 
correlation coefficient, an inability to test for homogenity of odds ratio, 
and predictions that are restricted to cluster-level baseline risk factors 
[17]. Another complication involves removal of a cluster due to protocol 
violations [21]. 

Imai et al. develop an estimator that gives accurate standard errors 
when matched pairs are used; ignoring the matching gives slightly 
conservative standard errors [16]. However, in one trial “matching 
actually led to a loss in statistical efficiency” [19,22]. Despite this 
ongoing debate, few authors discuss how to match the clusters [7]. 

This article describes an extension of methods discussed previously 
[14]. We suggest a method suitable for a priori matching using baseline 
data. In section 2, we outline our method. In section 3, we show how it 
was applied in a large cluster-randomized trial, the Mupirocin-Iodophor 
Swap Out trial [23]. In section 4 we discuss the implications of our 
approach. 

2. Methods 

We suggest an approach to the complex topic of balancing random-
ization in GRTs. We match the clusters on many variables, using a 
“weighting” scheme to suggest which variables are most important. 
Then we perform many practice or “false” randomizations to obtain a 
distribution of the possible average arm differences that might be ob-
tained when actual randomization occurs. Investigators assess these 
distributions to determine if potential randomizations would result in 
sufficiently balanced treatment assignments. If not, the weighting 
scheme is adjusted and the process begins again. The details follow. Our 
approach is the same of that proposed by Greevy and colleagues [24], of 
which we were unaware until writing this manuscript. In our approach, 
we facilitate weight selection through a novel visual approach for 
assessing the potential randomization quality for a given set of weights. 

The initial step involves prioritizing variables (1, 2, …, n) from 
clusters (1, 2, …, m) to be randomized. We have 

V1 = (υ11, υ12,…, υ1n)

V2 = (υ21, υ22,…, υ2n)

⋮ = ⋮
Vm = (υm1, υm2,…, υmn)

where vij is the jth variable from cluster i: each Vi contains pertinent 
variables from cluster i. From here, we compute the Mahalanobis dis-
tance between two clusters. This is the generalized n-dimensional dis-
tance across the variables; for two clusters a and b it is calculated as 

d(Va,Vb) =
∑n

k=1

(vak − vbk)
2

s2
k 

where s2
k = 1

m
∑m

l=1
(vlk − v⋅k)

2 and v⋅k = 1
n
∑m

i=1
vik. 

Then we find the way of pairing the clusters that minimizes the 
global Mahalanobis distance across all of the possible pairs of clusters. 
This is a short way of describing a lengthy process: we pair cluster 1 with 
cluster 2 and cluster 3 with cluster 4, and so forth. Then we calculate the 
Mahalanobis distance between each of these pairs, and sum it. Then we 
pair cluster 1 with cluster 3 and cluster 2 with cluster 4, and we continue 
until we have the summed Mahalanobis distance for all of the possible 
ways to pair the clusters. The set with the minimum sum is the best way 
to match the clusters. This process can be done in the R statistical pro-
gramming environment [25] using the nmatch function in the 
designmatch package [26]. 

Once the matching is completed, we have pairs (C11,C12), (C21,C22),

...,

⎛

⎝Cm
2 1,Cm

2 2

⎞

⎠, where Cij is the jth cluster in the ith pair. The first match 

in each pair will be randomized to either treatment or control, the sec-
ond to the other arm. If cluster C11 is randomized to treatment, we 
denote this as CT

11, and this implies CC
12, where the superscript indicates 

either treatment (T) or control (C). Next, we find the per variable dif-
ference between the two groups, averaged across the clusters in the trial: 

dj =

⃒
⃒
⃒
∑m

2
i=1CT

ij −
∑m

2
i=1CC

ij

⃒
⃒
⃒

m
2  

for j = 1, 2, ..., n. This generates the vector D = (d1,…, dn) of the average 
pairwise difference between the arms for each variable. When the trial is 
complete, these differences are likely to be reported as evidence of the 
balance achieved in the randomization. 

We repeat this process of randomization R times and find Dr, the 
vector of average differences between the two arms for the rth practice 
randomization. For study designs with more than 2 arms, Dr can be 
redefined as, for example, the standard deviation between the arms. To 
visualize we draw a parallel coordinates plot where the jth axis plots the 
difference between study arms for variable j. On the plot we include Dr 
for all practice randomizations r = 1, 2, …, R, as shown in the Figures 
below. 

Upon review of the plot, we may find that the balance between the 
arms is unacceptable for some variables. For example, the mean or 
maximum distance between the arms may be too large. To accommodate 
this possibility, we introduce “weights” S = (s1, s2, …, sn), which control 
the strength of matching on each variable. We have 

v*
ij =

∏m

i=1
vijsj  

which we combine to form 

V*
1 =

(
v*

11 , v
*
12 , …, v*

1n

)

V*
2 =

(
v*

21 , v
*
22 , …, v*

2n

)

⋮ = ⋮
V*

m =
(
v*

m1 , v
*
m2 , …, v*

mn

)
.

If sj > sj*, we are multiplying variable j by a larger value than variable 
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j*, and this has the effect of increasing the distance between clusters for 
variable j, relative to variable j*. Then, counter-intuitively, when we re- 
run the matching algorithm, we will get closer matches for variable j 
than variable j*, because the Mahalanobis distance minimization will 
minimize this larger distance on variable j. Similarly, as the weight sv for 
some variable v approaches 0, the distance between any two clusters 
with respect to variable v becomes very small, relative to the other 
variables. If sv = 0, v is effectively not included in the matching at all – all 
clusters are perfectly matched on that variable during the matching 
process, and any two clusters make an equally good match on that 
variable. After selecting the weights S and matching on V *, we again 
repeatedly find the vector of between-arm differences for each variable 
Dr and plot it. 

The cost of a high weight for variable j in this process is that closer 
matches for variable j may result in reduced closeness in another vari-
able. If so, compromises must be made. Investigators can perform iter-
ative selections of the weights S and arrive at a set of weights S that 
generates a distribution of randomizations that best reflect the most 
desired and tolerable differences in specific characteristics between 
arms. 

3. Results 

To demonstrate the usefulness of this technique we present a brief 
summary of our randomization process using baseline data from the 
Mupirocin-Iodophor Swap Out trial (www.clinicaltrials.gov, 
NCT03140423) [23]. This trial follows the REDUCE MRSA trial [27] in 
which universal use of mupirocin nasal swabs and daily bathing with 
chlorhexidine was shown to markedly reduce methicillin resistant 
Staphylococcus aureus (MRSA) clinical cultures and all-cause blood-
stream infection in adult intensive care units (ICU) of hospitals 
belonging to HCA Healthcare (HCA). One concern about the mupirocin 
regimen is that S. aureus resistance to mupirocin is relatively common in 
some communities and so the agent would be ineffective for many pa-
tients. Another is that routine use of mupirocin, an antibiotic, may 
provide selective pressure for resistant strains, thus rendering mupirocin 
less effective for all uses. It would thus be desirable to be able to use a 
substitute nasal component of the decolonizing regimen for which 
resistance is less likely to be present or to develop as a result of treat-
ment. The Swap Out trial is a cluster-randomized non-inferiority trial, 
comparing the antibiotic mupirocin (the current standard of care) to the 
antiseptic iodophor for nasal decolonization of ICU patients to assess 
impact on Staphylococcus aureus clinical cultures and all-cause blood-
stream infection during routine chlorhexidine bathing. 

Baseline data collected from HCA’s centralized data warehouse were 
available for matching prior to randomization. We used data from 20 
months from 137 participating hospitals. Investigators prioritized 16 
baseline variables into several categories. For this trial, the investigators 
put the highest priority on baseline values of the primary outcome 
measures, Staphylococcus aureus ICU-attributable clinical cultures per 
1000 days, MRSA ICU-attributable cultures per 1000 days, and all 
pathogen ICU-attributable bloodstream infections per 1000 days, as well 
as average monthly attributable days, regional mupirocin resistance 
estimates, percent of ICU admissions with a prior history of MRSA, 
current usage of mupirocin (percent of mupirocin use in the first 5 days 
of ICU admission), and current usage of chlorhexidine (percent adher-
ence to daily chlorhexidine gluconate for bathing). Of secondary 
importance were median ICU length of stay, and mean Elixhauser total 
score [28]. Of tertiary importance were the percentage of ICU Medicaid 
patients, and whether or not a facility uses polymerase chain reactions to 
identify MRSA in blood. The next group included percent of admissions 
involving a skilled nursing facility, and the percent of surgical admis-
sions. The final group included whether the ICU had specialty units for 
oncology, bone marrow transplant, or transplant units, and if the ICU 
has bone marrow transplant or transplant units. 

Prior to randomization, investigators used an interactive web-based 

application, built using the Shiny package in R, which implements the 
strategy described in section 2. The application accepted an Excel 
spreadsheet as input. This enabled the investigators to quickly and easily 
change the weights applied to each potential matching variable. The 
application allowed the investigators to set the desirable maximum 
between-arm differences for each variable as well as the relative 
weights. We input tolerable maximum differences between study arms 
as well as desirable ranges of differences for each variable and compared 
many sets of variable weights until we found one that was suitable. 

To begin, we show a version of this process using just three of the 16 
variables; the actual randomization preparation is described below. 
Fig. 1 demonstrates how preparation for randomization would proceed 
using 1) attributable patient days per month, 2) Staphylococcus aureus 
rate, and 3) MRSA rate. To read a parallel coordinates plot, trace a single 
gray line from “Pt Days” to “S aur rate” to “MRSA rate”; this shows the 
between-arm differences obtained from a single randomization. The 
investigators agreed that the tolerable maximum absolute mean differ-
ence between treatment and control arms for these variables were: 80 
attributable patient days per month, 0.15 difference in Staphylococcus 
aureus infection rates, and 0.15 difference in MRSA rates. These define 
the top of our axis lines in each graph. The black line indicates the mean 
value of all points on each axis. We can also use this value to help decide 
whether the matching was acceptable. To be completely clear, this 
process begins in the knowledge that none of the particular practice arm 
assignments that resulted in these D values will be used in the actual 
trial: these are hypothetical randomizations that might be applied to the 
hospitals. In contrast, the pairs established with these weights are set by 
the minimizing process and are fixed. 

The graph on the left is a parallel coordinates plot displaying the 
results of 300 randomizations when all the weights are equal, equivalent 
to using the raw values of each variable. The number of possible ran-
domizations for a given matching is 2m

2 so more than 300 may need to be 
assessed for an accurate representation. The values in the plot show that 
several randomizations exceeded the desired maximum between-arm 
difference in the second and third axis: there is a reasonable chance 
that if randomization occurred with this weighting, the Staphylococcus 
aureus and MRSA rates would be imbalanced between the treatment and 
control arms. To rectify this, we should increase the weights sr for those 
variables. In the center graph a weight of 8 has been applied to the 
Staphylococcus aureus rate. In this graph, the matching of hospitals is 
strongly adjusted so that hospitals with similar Staphylococcus aureus 
rates are paired. This results in smaller mean difference between the 
treatment and control arms for that variable. The values on the middle 
axis are all well below the desired maximum value: if randomization 
occurred using these strengths we are likely to get suitable balance in 
this variable. Unfortunately, there is a penalty. Hospitals with similar 
Staphylococcus aureus rates do not have similar attributable patient days 
per month and MRSA rates, which results in a few of these values 
exceeding the maximum tolerable difference between arms. In partic-
ular, the chance of a trial randomization with a difference in MRSA rates 
greater than 0.15 is too high with these weights. The right plot shows the 
randomizations when the matching weights for each variable were 1, 4, 
and 2, respectively. This plot shows all 300 randomizations comfortably 
below the predetermined maximum mean arm differences. 

In the actual study, we used this approach with all 16 variables listed 
above. After trying many weights we chose a set of weights that 
balanced the covariates between the two arms, as seen in Fig. 2. Weights 
are recorded in the figure legend. For all the variables, none of these 
randomizations resulted in intolerable between-arm differences, and for 
most, the mean difference was much closer to 0 than the maximum 
tolerable. When it was time to assign the hospitals to their interventions, 
we used these weights to match hospitals in the study into pairs, then 
formally randomized one member of each match to treatment and the 
other to control. Note that some weights were 0; these variables were not 
used in the matching, but the figure still helps to visualize the between- 
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arm differences obtained in the planning randomizations. 

4. Discussion 

In this article, we discuss using an iterative process to 1) make pairs 
that minimize the Mahalanobis distance between pairs of clusters with 
respect to potentially confounding variables; 2) visually assessing the 
potential effects these pairs and the resulting randomization; and 3) 
reweighting variables by selecting weights to make pairs of clusters. This 
process is similar to that proposed by Greevy and colleagues [24]. The 

main differences are i) that we use a visualization method, the parallel 
coordinates plot, to help investigators assess the effects of different 
weighting schemes and that ii) we emphasize and clarify that weighting 
must be an iterative and collaborative process. We also show a study 
where the method was applied, as opposed to a hypothetical example. In 
addition to the ongoing Swap Out trial shown in the Results section [23], 
we also used the method in a recently completed and published trial [27, 
29]. 

For general use, we recommend deciding on tolerable maximum 
differences between study arms a priori and testing many combinations 

Fig. 1. Possible randomizations for 3 different sets of weights for three attributes: average monthly attributable days (Pt days), Staphylococcus aureus ICU-attributable 
cultures per 1000 days (S aur rate), MRSA ICU-attributable cultures per 1000 days (MRSA rate). Each light gray line represents a single randomization and the black 
line is the mean difference between arms. The left image has no weighting and two axes exceed maximum values. The center image is matched well on the middle 
axis, but the first and third have some randomization draws that would exceed the desired maximum values for the mean difference between the groups. The right 
image reaches a happy medium. 

Fig. 2. Weighting scheme used in the 
Mupirocin-Iodophor Swap Out Trial. 
The variables are: patient days (Pt days, 
weight = 1), Staphylococcus aureus ICU- 
attributable cultures per 1000 days (S 
aur rate, weight = 4), MRSA ICU- 
attributable cultures per 1000 days 
(MRSA rate, weight = 2), all pathogen 
ICU-attributable bloodstream infections 
per 1000 days (All Blood, weight = 4), 
regional mupirocin resistance estimates 
(Mup R, weight = 2), percent of ICU 
admissions with a prior history of MRSA 
(Hx MRSA, weight = 1), baseline usage 
of mupirocin (percent of mupirocin use 
in the first 5 days of ICU admission (Mup 
Adherence, weight = 1), current usage 
of chlorhexidine (percent adherence to 
daily chlorhexidine gluconate for bath-
ing (CHG Adherence, weight = 1), me-
dian ICU length of stay (Median LOS, 
weight = 3), mean Elixhauser total score 
(Comorbidity Score, weight = 1), 
percent ICU patients insured by 
Medicaid (Medicaid, weight = 0), 
whether or not a facility uses polymer-
ase chain reactions to identify MRSA in 
blood (PCR Blood, weight = 0), percent 
admissions involving a skilled nursing 
facility (DC SNF), percent surgical ad-
missions (Surgery, weight = 1), whether 
the ICU had specialty units for oncology, 
bone marrow transplant, or transplant 

units (OncBMTTrp, weight = 2), if the ICU has bone marrow transplant or transplant units (BMTTrp, weight = 0). Note that Median LOS has the same value for all the 
re-randomizations. That is, for this variable, every assignment of treatment and control within the pairs results in the same mean difference in median length of stay 
between the control and treatment arms. This is likely due to the very small variability of this variable. The vast majority of the hospitals had the same median length 
of stay.   
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of variable weights (S) until one is found which ensures that the eventual 
randomization is likely to satisfy. We call this the Goldilocks Approach, 
after the well-known fable, The Three Bears, in which Goldilocks tries 
three bowls of porridge – one is too hot, another too cold, and the third is 
just right [30]. More than three attempts to find a suitable combination 
of variable weights may be needed. 

Another advantage of the Goldilocks Approach is that many cova-
riates can be accounted for in this method, and many more explored. We 
also note that each cluster has equal probability of being assigned to 
treatment or control, something that constrained randomization 
forgoes. 

It may bear reinforcement at this point that the many randomizations 
performed in the Goldilocks Approach do not constitute a search for the 
study randomization and treatment assignment with acceptable covar-
iate balance. That description better suits the constrained randomization 
approach described previously. In contrast, the treatment assignments 
used in Goldilocks Approach are purely hypothetical. We should think of 
them as addressing the question: “If we were to match with these 
weights, what sort of covariate balance would we be likely to obtain in 
our actual randomization?” After we have found the set of weights that 
are just right, we formally randomize to assign the members of each 
matched set to a study arm. We expect a covariate balance that is similar 
to the ones seen in the parallel coordinates plot, but it is unlikely to be 
identical to any of the ones seen. 

While it is often possible to obtain satisfactory balance on many 
covariates at the same time using the Goldilocks approach, there are 
limits, of course. For example, we can effectively require perfect 
matches on categorical variables by using large weights for them. If 
some categories have few members, the matches on the remaining 
variables are unlikely to be very close. For example if we place a large 
weight on suburban vs. urban hospital location, and have only 8 urban 
hospitals, we will be unlikely to find good matches on the other char-
acteristics among those 8 hospitals. 

The web-based application described above can be found at bit.ly/ 
GoldilocksApp, and an instructional video explaining the use is here bit. 
ly/GoldilocksVid. We invite the community to use these resources, 
which are still under development. 

While the Goldilocks approach to trial randomization cannot ensure 
balance between the treatment and control arms, it allows us as in-
vestigators to explore different weighting schemes. Choosing weights 
and assessing their likely impact means that the effects of matching and 
balance for relevant potential confounders can be observed and 
compared. Investigators who conduct GRTs and plan to match can use 
this method prior to randomizing to help ensure balance between 
treatment and control arms. 

As our reviewers noted, we must also recommend caution when 
matching in both the design phase and analysis phase of research. 
Matching has consequences. It can result in reduced power and diffi-
culties in calculating the intracluster correlation coefficient along with 
the multitude of faults mentioned in the introduction. Take care. 

While the Goldilocks approach to trial randomization cannot ensure 
balance between the treatment and control arms, it allows us as in-
vestigators to explore different weighting schemes. Choosing weights 
and assessing their likely impact means that the effects of matching and 
balance for relevant potential confounders can be observed and 
compared. Investigators who conduct GRTs and plan to match can use 
this method prior to randomizing to help ensure balance between 
treatment and control arms. 
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