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Abstract
Background   Breast cancer (BC) is the most common cancer in women. In contrast, male BC is about 100 times less com-
mon than in women, being considered a rare disease. Male BC may be a distinctive subtype of BC and available data seems 
to indicate that male BC has a higher dependence on genetic variants than female BC. Nevertheless, the same prognostic 
and predictive markers are used to determine optimal management strategies for both male and female BC. Several studies 
have assessed the role of genetic polymorphisms (SNPs) in DNA repair genes in female BC susceptibility. However, data on 
male BC is scarce. Thus, the current study aimed to assess the role of SNPs in XRCC1, MUTYH and TP53 genes in a male 
cohort of BC, and, in addition, compare the male data with matched results previously genotyped in female BC patients.
Methods   The male BC cohort was genotyped through Real-Time PCR using TaqMan Assays for several SNPs previously 
analysed in Portuguese female BC patients.
Results  The results obtained indicate significant differences in BC susceptibility between males and females for the XRCC1 
rs1799782, MUTYH rs3219489 and TP53 rs1042522 and rs8064946 variants.
Conclusions  In males, XRCC1 and TP53 variants, when in heterozygosity, seem to be related with lower susceptibility for 
BC, contrasting with higher susceptibility for a MUTYH variant in females. These findings may help to explain the difference 
in incidence of BC between the two sexes.

Keywords  Male Breast Cancer · Genetic variants in male and female breast cancer · DNA repair genes · TP53 · XRCC1 · 
MUTYH

Introduction

Female BC is the leading cancer among women worldwide. 
In the last two decades, public attention and the improve-
ment in breast imaging platforms have had a large impact in 
early diagnosis and screening of breast cancer resulting in 

a better prognosis [1, 2]. In addition, a wealth of molecular 
mechanisms has led to a better understanding of the disease, 
resulting in more efficient treatments.

In contrast, male BC is a rare and poorly understood dis-
ease that represents about 1% of all BC cases in the Western 
world. However, over the last decades, the incidence has 
been rising [3, 4]. According to the latest estimates of the 
American Cancer Society, in 2020 there will be approxi-
mately 2600 new male BC cases and 520 deaths in the USA 
[5].

Several genetic, hormonal and lifestyle/environmen-
tal risk factors for male and female BC have been estab-
lished by molecular and epidemiologic studies. Nonethe-
less, almost all the studies on BC and the clinical trials 
have been focused on women and the knowledge gained 
is extrapolated to manage male BC patients in the clinic 
setting [6].
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In men, genetic predisposition appears to be an impor-
tant threat to BC, with clinical implications, and a posi-
tive family history in a male family member is a strong 
indication for genetic counselling [7]. Male BC is more 
frequent in older patients and displays poorer prognosis in 
the elderly. BRCA2 mutations are frequent and the risk for 
the occurrence of non-breast primary neoplasms is higher 
than for female BC, suggesting differences in the under-
lying genetic aetiologies of male and female BC [8–15]. 
Nonetheless, approximately 50–92% of familial male BC 
arise in breast cancer families with unknown underlying 
genetic mechanisms contributing to tumour predisposition 
[7]. Moreover, published data suggests that male breast 
cancer has a higher dependence on genetic constitutive 
features than female breast cancer [16]. These features 
point to a better search of genetic determinants of suscep-
tibility in male BC.

Genetic variants in DNA repair pathways’ genes have 
been identified in male and female BC [7]. Base Excision 
Repair (BER) is one of the DNA repair pathways that mainly 
repairs a wide variety of non-bulky exogenous and endoge-
nous base damage and single strand breaks in damaged DNA 
[17]. Genetic variants in BER genes, including XRCC1 and 
MUTYH, have been associated with the risk of developing 
several types of cancer including BC. However, the asso-
ciation between XRCC1 and MUTYH polymorphic variants 
with BC remains controversial [17–20].

TP53 is a tumour suppressor gene that influences cell 
fate and is usually mutated in several types of cancer, BC 
included. Moreover, TP53 plays an important role in DNA 
damage signalling, cell cycle control, chromatin remodel-
ling and apoptosis by regulating, directly or indirectly, the 
transcription of genes in these pathways. TP53 is consid-
ered a high-penetrance gene, increasing female BC risk by 
more than four-fold [21, 22]. Female BC incidence is very 
high among TP53 mutation carriers, and the most prevalent 
mutations occur in triple negative tumours. Conversely, the 
frequency of TP53 mutations is lower in Luminal A-like 
subtype [23, 24]. As male BC patients are frequently Lumi-
nal A-like subtype, mutations in TP53 gene are also rare 
[25]. Nevertheless, data of male BC is scarce.

Thus, the objective of this study was to genotype XRCC1, 
MUTYH and TP53 SNPs in a cohort of males with BC and 
match the results with a previously studied cohort of female 
BC patients, in order to identify new variants that might be 
involved in the predisposition to male BC and above all to 
check if differences in gene variants might exist between 
males and females with BC.

Materials and methods

Patients and samples collection

This study involves a cohort of male BC and, for compari-
son, a cohort of female BC patients according to the original 
study for each group of genes [17, 18, 26].

In collaboration with the Pathology Department of Por-
tuguese Oncology Institute of Lisbon (Lisbon, Portugal), 
a cohort of 132 male BC patients, diagnosed and treated 
at the Institute between 1978 and 2018 were enrolled with 
patient consent. Patient data including age, family history, 
bilaterality, presence of non-breast primary neoplasms, dis-
tant metastasis at presentation and follow-up were obtained 
from clinical records. The mean and median age of male BC 
patients at diagnosis was 65.17 and 66 years, ranging from 
31 to 87 years. Familial history of BC was recorded only in 
19 patients. Six patients had bilateral carcinomas and the 
occurrence of non-breast primary neoplasms was identified 
in 27 patients. Eight patients had distant metastasis at pres-
entation. The follow-up period ranged from 6 to 396 months. 
Recurrence of disease was observed in 43 patients with a 
mean disease-free interval of 84.3 months; 38 patients died 
of the disease, 5 were alive with disease and 134 had no 
evidence of disease. The remaining 25 died of other causes.

Formalin-fixed paraffin-embedded (FFPE) blocks were 
prepared for tumour tissue and also of adjacent normal 
tissues for all male BC patients. Histological slides were 
reviewed and the diagnosis confirmed and classified in 
accordance with the WHO Classification of Breast tumours 
[27]. Table 1 summarizes the clinical and pathological 
parameters for each cohort of BC.

Subsequently, DNA was extracted for all male BC patients 
from FFPE blocks of normal adjacent tissue as confirmed 
by the pathologists. Germline DNA was extracted using 
the FFPE RNA/DNA Purification Plus Kit (Norgen Biotek, 
Thorold, ON, Canada) according to the manufacturer’s 

Table 1   Characteristics of the male and female breast cancer cohorts

*All female cases are sporadic

Feature Male Female

N 132 289
Median age, years (range) 66 (31–87) 61 (30–89)
Family history of breast carcinoma 14.4% None*
Histological diagnosis
 Invasive breast carcinomas of no special 

type
93.1% 87.4%

 Papillary, mucinous and lobular types 4.5% 4.9%
 In situ carcinoma

3.8% 7.7%
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recommendations. The DNA samples were eluted in 20 µL 
of sterile distilled water and stored at – 20 °C until further 
use. For DNA quantification the Qubit 4 Fluorometer (Inv-
itrogen, Carlsbad, CA, USA) was used.

Female BC patients were divided according to the origi-
nal study for each group of genes, since the number of 
female patients has been enlarged over time [17, 18, 28–30].

Germline DNA from female BC patients was obtained 
after collection of peripheral venous blood samples from 
each participant. DNA was extracted as described previously 
[17, 18] using a commercially available kit (QIAamp® DNA 
mini kit; Qiagen GmbH, Hilden, Germany), according to the 
manufacturer’s recommendations. All samples were stored 
at − 20 °C until further analysis.

The study was conducted in accordance with the Dec-
laration of Helsinki. The anonymity of all BC patients was 
guaranteed, all studies were conducted after acquiring the 
written informed consent of all the individuals involved. The 
BC studies were approved by the Ethics Committee (EC), 
for female BC by EC of Faculty of Medical Sciences and 
for male BC by EC of the Portuguese Oncology Institute of 
Lisbon (UIC/821). All samples were coded and anonymized.

SNPs genotyping

SNPs (Table 2) were selected considering a Minor Allele 
Frequency (MAF) above or equal to 5% for European Cau-
casian population (HapMap CEU). SNPs under study belong 
to several regions of the gene: regulatory region, coding 
region or non-coding region. The TP53 SNPs were selected 
concerning Tag SNPs with a correlation coefficient r2 = 0.8. 
By definition, a tag SNP is a genetic variant localized in a 
specific region of the genome showing high linkage disequi-
librium which represents a specific group of SNPs defining 
a haplotype. It is thus possible to identify several genetic 
interactions without looking for every SNP individually but 
as a group (Table 3). 

The genotyping analysis was performed by quantitative 
polymerase chain reaction (qPCR) using the TaqMan SNP 
Genotyping Assays (ThermoFisher Scientific), except for 

SNPs of the XRCC1 gene in female BC patients, which were 
genotyped by PCR–RFLP methodologies as described [17].

Statistical analysis

Data analysis was performed using the Statistical Package 
for the Social Sciences for Windows 22.0 version (SPSS, 
Inc.). All genotypes were coded in order to proceed with 
the statistical analysis. The analysis of Hardy–Weinberg 
frequencies for all alleles present in patients’ populations 
was carried out using exact probability tests available in the 
SNPStat software (http://bioin​fo.iconc​ologi​a.net/SNPst​ats) 
[31].

Since this is not a conclusive final study but an explora-
tory one on the role of selected polymorphisms in male 
BC compared with female BC, and the data to be obtained 
should be looked at as proof of concept, the Bonfer-
roni adjustment was deemed as not necessary as it is too 
conservative.

Differences in genotype frequency between BC patients 
were evaluated by the Chi-Square (χ2) test. Logistic regres-
sion was used to estimate the differences in susceptibility of 
BC associated with each genotype: the susceptibility levels 
were calculated under the codominant model and expressed 
as crude odds ratios (OR) and corresponding 95% confi-
dence intervals (CI). Results were considered significant 
when the corresponding two-tailed p-values were < 0.05. 
The most common homozygous genotype and male gender 
were considered the reference classes for such calculations.

Finally, the joint effect of multiple SNPs on BC suscep-
tibility was estimated from application of logistic regres-
sion analysis on single SNP analysis and to all possible 2 × 2 
combinations of the SNPs included in this study. Samples 
with one or more missing genotypes were excluded from 
these calculations to avoid bias due to missing data. For 
paired SNP analysis, the combination of the most com-
mon homozygous genotypes of each individual SNP in the 
control group was taken as the reference category in OR 
calculations. Also, paired genotypes with low frequency in 

Table 2   Identification of genetic variants included in the study

Gene Nucleotide 
change

Protein change Variant type dsSNP ID

XRCC1 C/T p.Arg194Trp Missense rs1799782
G/A p.Arg399Gln Missense rs25487

MUTYH G/C p.Gln335His Missense rs3219489
TP53 G/C p.Pro72Arg Missense rs1042522

C/G – Intron rs8064946
C/T – Intron rs8079544
G/A – Intron rs1625895

Table 3   Tag SNPs involved 
in this study as well as the 
minor allele frequency MAF. 
( Adapted from https​://gvs.
gs.washi​ngton​.edu/GVS15​0/
index​.jsp)

Bold represent the SNPs studied 
and are grouped according the 
corresponding tagSNP

MAF Tag SNP

23% rs1042522
14% rs8064946

rs11652704
10% rs1625895

rs2909430
5% rs8079544

rs9895829

http://bioinfo.iconcologia.net/SNPstats
https://gvs.gs.washington.edu/GVS150/index.jsp
https://gvs.gs.washington.edu/GVS150/index.jsp
https://gvs.gs.washington.edu/GVS150/index.jsp
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the study population were pooled together. The OR were 
not adjusted to potential risk factors, since these might vary 
between genders as has been stated in bibliography.

Results

The genotypic frequencies were determined for all groups 
of breast cancer patients and for all SNPs under study. The 
results were firstly divided by biological pathway and the 
SNPs evaluated individually.

Also, for the largest part of SNPs, genotype distributions 
were in Hardy–Weinberg equilibrium (HWE, p ≥ 0.05), in 
both populations. Significant deviations from HWE were 
observed solely for MUTYH rs3219489 (p = 0.017) and for 
XRCC1 rs1799782 (p = 0.014) in the male population and 
for TP53 rs1042522 in the female population (p = 0.029).

The main aim of our study was not to identify the magni-
tude of the risk but the putative differences between the male 
and female BC populations. The question we would like to 
answer can be formulated as: do the genotypic frequencies 
differ between both genders that share BC?

To help answer this question, we performed a logistic 
regression between both patient populations. Consider-
ing that males develop BC later than women and the inci-
dence rate is much lower and BC is a rare condition in 
men, the analysis is limited, since various other constitu-
tive genotypes may play a role in the incidences. To help 
in the statistical analysis of the differences, we considered 
the male population as the reference group to perform the 
comparison of genotype frequency distributions between 
males and females. Since the aim was to compare genotype 

frequencies, no categorical classes were considered and thus 
the OR values are crude and not adjusted. Table 4 shows 
the results obtained after logistic regression analysis, with 
significant differences observed for XRCC1 rs1799782 poly-
morphism (p = 0.002) and for MUTYH rs3219489 polymor-
phism (p = 0.027).

The results indicate that the heterozygous genotype for 
the XRCC1 rs1799782 polymorphism in female patients is 
related to a higher susceptibility to breast cancer than in 
males [OR 3.627; 95% CI 1.577–8.341]. The homozygous 
variant of the MUTYH rs3219489 polymorphism is associ-
ated with a lower susceptibility in females than in males [OR 
0.442; 95% CI 0.215–0.911].

The genotypic frequencies determined for the polymor-
phisms identified in the TP53 gene are shown in Table 5. 
Our results revealed significant differences between both 
populations for TP53 SNPs rs1042522 and rs8064946. 
In both cases, the presence of the heterozygous genotype 
appears related to a higher susceptibility in the female popu-
lation [OR 1.817, 95% CI 1.034–3.192; p = 0.038] and [OR 
2.333, 95% CI 1.190–4.577; p = 0.014].

In order to investigate the joint effect of multiple SNPs 
on breast cancer susceptibility, two-way SNPs combinations 
were performed (Table 6) and SNP-SNP interactions among 
BER polymorphisms (Table 7) and TP53 polymorphisms 
(Table 8). The two-way SNPs interaction was performed 
for all SNPs under study combining the effect of BER and 
TP53 genes.  

To perform the different combinations the most frequent 
interactions and the less frequent were pooled together and 
classified as “RARE combinations”. As depicted in Table 6, 
the two-way SNP interaction performed for polymorphisms 

Table 4   Genotype distribution 
and breast cancer susceptibility 
for the BER polymorphisms 
between males and females: 
XRCC1 rs1799782, XRCC1 
rs25487, MUTYH rs3219489

Bold represents the statistical significant p value < 0.05
MAF minor allele frequency, OR odds ratio, CI confidence interval
a p-value χ2 test
b p < 0.05
c ORs and 95% CI for specific genotypes were calculated using logistic regression models

BER
Polymorphism

MAF Genotype frequency p valuea OR (95% CI)c

Male Female Males, n (%) Females, n (%)

XRCC1 rs1799782
C/C T: 0.04 T: 0.09 122 (93.1) 197 (82.4) 0.003b 1 (Reference)
C/T 7 (5.3) 41 (17.2) 3.627 (1.577–8.341)b

T/T 2 (1.5) 1 (0.4) 0.310 (0.028–3.451)
XRCC1 rs25487
G/G A: 0.36 A: 0.32 54 (41.2) 111 (46.4) 0.503 1 (Reference)
G/A 59 (45.0) 103 (43.1) 0.849 (0.538–1.340)
A/A 18 (13.7) 25 (10.5) 0.676 (0.340–1.344)
MUTYH rs3219489
G/G G: 0.3 G: 0.25 66 (53.7) 158 (56.0) 0.045b 1 (Reference)
G/C 40 (32.5) 106 (37.6) 1.107 (0.696–1.760)
C/C 17 (13.8) 18 (6.4) 0.442 (0.215–0.911)b
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in BER genes indicated that female patients carrying 
both SNPs in the XRCC1 gene combined as heterozygous 
for rs1799782 (C/T) and homozygous for rs25487 (G/G) 
presented a higher susceptibility [OR 3.278; 95% CI 
1.187–9.055; p = 0.022] to develop the disease.

Furthermore, the combination of XRCC1 rs25487 and 
MUTYH rs3219489 revealed a significant correlation for 
the combination between the heterozygous and homozy-
gous variant (G/A–C/C), showing a lower susceptibility for 
carriers of this combination in our cohort of male patients 
whereas women carrying the same combination [OR 0.321; 
95% CI 0.106–0.970; p = 0.044] have a higher susceptibility.

The two-way SNP interactions between BER and TP53 
polymorphisms (Table 6) for this interaction emphasize the 
results of the single analyses. Overall, the significant correla-
tions identified showed, without exception, a higher suscep-
tibility of female gender for developing breast cancer than 
male gender. The correlation between XRCC1 rs1799782 and 
TP53 rs8064946 polymorphisms showed for all combined 
genotypes a higher susceptibility: C/C–C/G [OR 2.452; 95% 
CI 1.125–5.345; p = 0.024]; C/T–C/C [OR 6.154, 95% CI 
1.550–24.438; p = 0.010] and C/T–C/G [OR 8.077, 95% CI 
1.605–40.641; p = 0.011]. As mentioned above, those SNPs 
when analysed individually also showed the same effect as 
when the heterozygous genotype was present (Table 5 and 
Table 6). For other combinations the higher susceptibility 
effect was found when XRCC1 rs1799782 polymorphism 

was combined with: TP53 rs8079544 (C/T–C/C) [OR 
4.458, 95% CI 1.604–12.395; p = 0.004]; TP53 rs1655895 
(C/T–G/G) [OR 7.333, 95% CI 1.946–27.642]; p = 0.003]; 
TP53 rs1042522 (C/T–G/G and C/T–G/C) [OR 3.895, 
95% CI 1.062–14.286; p = 0.040] and [OR 8.903, 95% CI 
(1.786–44.381); p = 0.008], respectively.

Furthermore, the two-way SNP interaction also pre-
sented a higher susceptibility genotype with the combination 
between MUTYH rs3219489–TP53 rs8064946 (G/C–C/G) 
[OR 4.083, 95% CI 1.217–13.702; p = 0.023] (Table 6).

After the two-way interaction and with the purpose of 
investigating the joint effect of multiple SNPs, the poly-
morphisms were grouped together, and the susceptibility 
level was evaluated as shown in Tables 7 and 8. The com-
bined genotypes’ approach was performed in two groups: 
one including all BER polymorphisms and the second one 
with selected SNPs from the TP53 gene, avoiding very 
small groups of samples which might contribute to increase 
a bias in the results. Combining all possible genotypes for 
SNPs in BER genes one combination revealed a signifi-
cantly higher susceptibility (Table 7). Our results showed 
that female patients carrying the combination between 
XRCC1 rs1799782–XRCC1 rs25487–MUTYH rs3219489 
(C/T–G/G–G/G, respectively) have a higher susceptibil-
ity than male patients carrying the same combined geno-
types [OR 13.737; 95% CI 1.732–108.955; p = 0.013]. 
The same effect was described in combined genotypes for 

Table 5   Genotype distribution 
and breast cancer susceptibility 
between males and females 
for the TP53 polymorphisms: 
rs1042522; rs8064946; 
rs8079544 and rs1625895. 
Male BC patients (n = 132) and 
female BC patients (n = 94)

Bold represents the statistical significant p value < 0.05
OR odds ratio, CI confidence interval
a p-value χ2 test
b p < 0.05
c ORs and 95% CI for specific genotypes were calculated using logistic regression models

TP53 Polymorphism MAF Genotype frequency p valuea OR crude (95% CI)

Male Female Males, n (%) Females, n (%)

rs1042522
 G/G C: 0.21 C:0.23 74 (62.2) 47 (50.0) 0.061 1 (Reference)

G/C 39 (32.8) 45 (47.9) 1.817 (1.034–3.192)b

 C/C 6 (5.0) 2 (2.1) 0.525 (0.102–2.710)
 rs8064946
 C/C G: 0.11 G: 0.19 93 (81.6) 62 (66.0) 0.036b 1 (Reference)

C/G 18 (15.8) 28 (29.8) 2.333 (1.190–4.577)b

 G/G 3 (2.6) 4 (4.3) 2.000 (0.433–9.246)
rs8079544
 C/C T: 0.04 T: 0.06 116 (92.1) 83 (88.3) 0.357 1 (Reference)
 C/T 9 (7.1) 11 (11.7) 1.708 (0.677–4.307)
 T/T 1 (0.8) 0 (0.0) N.D

rs1625895
 G/G A: 0.13 A: 0.14 91 (75.2) 68 (73.1) 0.934 1 (Reference)
 G/A 29 (24.0) 24 (25.8) 1.108 (0.593–2.070)
 A/A 1 (0.8) 1 (1.1) 1.338 (0.082–21.778)
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Table 6   Two-way SNP 
interaction among BER genes 
and TP53 gene: distribution of 
combined genotypes between 
male and female populations

BER
Polymorphism

Males, n (%) Females, n (%) p valuea OR (95% CI)

Two-way SNP: BER-BER
XRCC1 rs1799782–XRCC1 rs25487
C/C–G/G 48 (93.1) 82 (34.3) 0.071 1 (Reference)
C/C–G/A 57 (5.3) 90 (37.7) 0.924 (0.568–1.504)
C/C–A/A 17 (1.5) 25 (10.5) 0.861 (0.423–1.754)
C/T–G/G 5 (3.8) 28 (11.7) 3.278 (1.187–9.055)b

RARE combinations 4 (3.1) 14 (5.9) 2.049 (0.638–6.581)
XRCC1 rs1799782– MUTYH rs3219489
C/C–C/C 64 (52.9) 105 (44.9) 0.142 1 (Reference)
C/C–C/G 39 (32.2) 80 (34.2) 1.722 (0.817–3.631)
C/C–G/G 13 (10.7) 9 (3.8) 0.459 (0.142–1.490)
C/G –C/C 1 (0.8) 24 (10.3) 1.151 (0.609–2.175)
RARE combinations 4 (3.3) 16 (6.8) 0.810 (0.452–1.448)
XRCC1 rs25487–MUTYH rs3219489
G/G–G/G 30 (24.4) 56 (23.8) 0.096 1 (Reference)
G/G–G/C 14 (11.4) 45 (19.1) 1.722 (0.817–3.631)
G/G–C/C 7 (5.7) 6 (2.6) 0.459 (0.142–1.490)
G/A–G/G 27 (22.0) 58 (24.7) 1.151 (0.609–2.175)
G/A–G/C 18 (14.6) 39 (16.6) 1.161 (0.569–2.368)
G/A–C/C 10 (8.1) 6 (2.6) 0.321 (0.106–0.970)b

A/A–G/G 9 (7.3) 15 (6.4) 0.893 (0.350–2.281)
A/A–G/C 8 (6.5) 10 (4.3) 0.670 (0.239–1.876)
Two-way SNP: BER-TP53
XRCC1 rs1799782– TP53 rs8064946
C/C–C/C 90 (78.9) 39 (52.0) 0.001b 1 (Reference)
C/C–C/G 16 (14.0) 17 (22.7) 2.452 (1.125–5.345)b

C/T–C/C 3 (2.6) 8 (10.7) 6.154 (1.550–24.438)b

C/T–C/G 2 (1.8) 7 (9.3) 8.077 (1.605–40.641)b

RARE combinations 3 (2.6) 4 (5.3) 3.077 (0.657–14.401)
XRCC1 rs1799782– TP53 8079544
C/C–C/C 107 (86.3) 52 (69.3) 0.014b 1 (Reference)
C/T–C/C 6 (4.8) 13 (17.3) 4.458 (1.604–12.395)b

C/C–C/T 9 (7.3) 7 (9.3) 1.600 (0.565–4.536)
RARE combinations 2 (1.6) 3 (4.0) 3.087 (0.500–19.042)
XRCC1 rs1799782– TP53 rs1655895
C/C–G/G 88 (74.6) 44 (62.9) 0.009b 1 (Reference)
C/C–G/A 25 (21.2) 13 (18.6) 1.040 (0.486–2.227)
C/T–G/G 3 (2.5) 11 (15.7) 7.333 (1.946–27.642)b

RARE combinations 2 (1.7) 2 (2.9) 2.000 (0.273–14.676)
XRCC1 rs1799782– TP53 rs1042522
C/C–G/G 69 (58.0) 31 (41.3) 0.019b 1 (Reference)
C/C–G/C 36 (30.3) 26 (34.7) 1.608 (0.832–3.107)
C/T–G/G 4 (3.4) 7 (9.3) 3.895 (1.062–14.286)b

C/C–C/C 6 (5.0) 2 (2.7) 0.742 (0.142–3.884)
C/T–G/C 2 (1.7) 8 (10.7) 8.903 (1.786–44.381)b

RARE combinations 2 (1.7) 1 (1.3) 1.113 (0.097–12.737)
XRCC1 rs25487–TP53 rs8064946
G/G–C/C 32 (28.3) 20 (26.7) 0.081 1 (Reference)
G/A–C/C 46 (40.7) 23 (30.7) 0.800 (0.378–1.694)
G/G–C/G 10 (8.8) 13 (17.3) 2.080 (0.768–5.631)
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Table 6   (continued) BER
Polymorphism

Males, n (%) Females, n (%) p valuea OR (95% CI)

A/A–C/C 14 (12.4) 4 (5.3) 0.457 (0.132–1.586)
G/A–C/G 6 (5.3) 9 (12.0) 2.400 (0.742–7.767)
RARE combinations 5 (4.4) 6 (8.0) 1.920 (0.517–7.128)
XRCC1 rs25487–TP53 rs8079544
G/G–C/C 46 (37.1) 28 (37.3) 0.820 1 (Reference)
G/A–C/C 56 (45.2) 31 (41.3)

0.909 (0.478–1.730)
A/A–C/C 12 (9.7) 7 (9.3) 0.958 (0.337–2.722)
RARE combinations 10 (8.1) 9 (12.0) 1.479 (0.535–4.083)
XRCC1 rs25487–TP53 rs1655895
G/G–G/G 35 (29.4) 26 (35.1) 0.401 1 (Reference)
G/A–G/G 41 (34.5) 27 (36.5) 0.886 (0.439–1.790)
A/A–G/G 14 (11.8) 3 (4.1) 0.288 (0.075–1.109)
G/G–G/A 13 (10.9) 6 (8.1) 0.621 (0.208–1.852)
G/A–G/A 12 (10.1) 7 (9.5) 0.785 (0.272–2.270)
RARE combinations 4 (3.4) 5 (6.8) 1.683 (0.411–6.887)
XRCC1 rs25487–TP53 rs1042522
G/G–G/G 30 (25.2) 17 (22.7) 0.475 1 (Reference)
G/A–G/G 35 (29.4) 19 (25.3) 0.958 (0.424–2.167)
G/G–G/A 15 (12.6) 15 (20.0) 1.765 (0.696–4.476)
G/A–G/A 17 (14.3) 15 (20.0) 1.557 (0.624–3.885)
A/A–G/G 9 (7.6) 2 (2.7) 0.392 (0.076–2.029)
A/A–G/A 7 (5.9) 5 (6.7) 1.261 (0.346–4.592)
RARE combinations 6 (5.0) 2 (2.7) 0.588 (0.107–3.244)
MUTYH rs3219489–TP53 rs8064946
G/G–C/C 49 (43.4) 36 (39.1) 0.043b 1 (Reference)
G/C–C/C 32 (28.3) 22 (23.9) 0.936 (0.468–1.871)
G/G–C/G 11 (9.7) 13 (14.1) 1.609 (0.647–4.000)
C/C–C/C 12 (10.6) 3 (3.3) 0.340 (0.089–1.295)
G/C–C/G 4 (3.5) 12 (13.0) 4.083 (1.217–13.702)b

RARE combinations 5 (4.4) 6 (6.5) 1.633 (0.462–5.772)
MUTYH rs3219489–TP53 rs8079544
G/G–C/C 57 (48.3) 43 (46.7) 0.359 1 (Reference)
G/C–C/C 35 (29.7) 33 (35.9) 1.250 (0.673–2.321)
C/C–C/C 16 (13.6) 6 (6.5) 0.491 (0.180–1.376)
G/G–C/T 6 (5.1) 8 (8.7) 1.767 (0.571–5.472)
RARE combinations 4 (3.4) 2 (2.2) 0.663 (0.116–3.787)
MUTYH rs3219489–TP53 rs1625895
C/C–G/G 49 (41.5) 38 (41.8) 0.691 1 (Reference)
C/G–G/G 27 (22.9) 24 (26.4) 1.146 (0.573- 2.295)
G/G–A/A 13 (11.0) 5 (5.5) 0.496 (0.163–1.512)
C/C–G/A 13 (11.0) 12 (13.2) 1.190 (0.488–2.903)
C/G–G/A 11 (9.3) 10 (11.0) 1.172 (0.451–3.048)
RARE combinations 5 (4.2) 2 (2.2) 0.516 (0.095–2.806)
MUTYH rs3219489–TP53 rs1042522
G/G–G/G 39 (33.6) 26 (28.3) 0.155 1 (Reference)
G/C–G/G 22 (19.0) 17 (18.5) 1.159 (0.519–2.591)
G/G–G/C 19 (16.4) 24 (26.1) 1.895 (0.869–4.134)
G/C–G/C 14 (12.1) 17 (18.5) 1.821 (0.768–4.322)
C/C–G/G 12 (10.3) 4 (4.3) 0.500 (0.145–1.720)
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TP53 rs1042522–rs8064946–rs8079544–rs1625895 SNPs 
(G/C–C/C–C/T–G/A, respectively) [OR 5.088, 95% CI 
1.314–19.694; p = 0.018].

Discussion

This study compared genotype frequencies and combination 
of XRCC1, MUTYH and TP53 alleles in Portuguese male BC 
versus female BC cancer patients. The sample encompassed 

Table 6   (continued) BER
Polymorphism

Males, n (%) Females, n (%) p valuea OR (95% CI)

RARE combinations 10 (8.6 4 (4.3) 0.600 (0.170–2.118)

Bold represents the statistical significant p value < 0.05
MAF minor allele frequency, OR odds ratio, CI confidence interval
a p-value χ2 test
b p < 0.05

Table 7   SNP-SNP interaction 
among BER genes: distribution 
of combined genotypes in 
enrolled populations

Bold represents the statistical significant p value < 0.05
MAF minor allele frequency, OR odds ratio, CI confidence interval
a p-value χ2 test
b p < 0.05
c ORs and 95% CI for specific genotypes were calculated using logistic regression models

BER
Polymorphism

Males, n (%) Females, n (%) p valuea OR crude (95% CI)

XRCC1 rs1799782–XRCC1 
rs25487–MUTYH rs3219489

C/C–G/G–G/G 29 (25.9) 38 (16.5) 0.008b 1 (Reference)
C/C–G/G–G/C 13 (11.6) 37 (16.0) 2.172 (0.980–4.812)
C/C–G/A–G/C 18 (16.1) 33 (14.3) 1.399 (0.661–2.964)
C/C–G/A–G/G 27 (23.2) 52 (22.5) 1.470 (0.752–2.874)
C/C–G/A–C/C 9 (7,4) 5 (2.1) 0.424 (0.128–1.401)
C/C–A/A–G/C 8 (6.6) 10 (4.3) 0.954 (0.335–2.720)
C/C –A/A–G/G 8 (6.6) 15 (6.4) 1.431 (0.534–3.831)
C/T–G/G–G/G 1 (0.8) 18 (7.7) 13.737 (1.732–108.955)b

RARE combinations 9 (7.4) 26 (11.1) 2.205 (0.897–5.417)

Table 8   SNP-SNP 
interaction among TP53 gene 
polymorphisms: distribution of 
combined genotypes in enrolled 
populations

Bold represents the statistical significant p value < 0.05
MAF minor allele frequency, OR odds ratio, CI confidence interval
a p-value χ2 test

TP53
Polymorphism

Males, n (%) Females, n (%) p valuea OR crude (95% CI)

rs1042522–rs8064946–
rs8079544–rs1625895

G/G–C/C–C/C–G/G 58 (52.7) 38 (41.3) 0.145 1 (Reference)
G/C–C/C–C/C–G/G 8 (7.3) 7 (7.6) 1.336 (0.447–3.987)
G/G–C/C–C/T–G/A 17 (15.5) 14 (15.2) 1.257 (0.555–2.846)
G/C–C/C–C/T–G/A 3 (2.7) 10 (10.9) 5.088 (1.314–19.694)
G/C–C/C–C/C–G/A 6 (5.5) 8 (8.7) 2.035 (0.654–6.330)
G/G–C/G–C/C–G/A 5 (4.5) 8 (8.7) 2.442 (0.743–8.026)
RARE combinations 13 (11.8) 7 (7.6) 0.822 (0.301–2.247)
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a previously studied female BC cohort and a new cohort of 
132 male BC cases in a population diagnosed and followed 
during 40 years in the Portuguese Institute of Oncology of 
Lisbon. A previous report of this male cohort indicated that 
male BC has specific biological characteristics [8]. However, 
due to the rarity of male BC, therapeutic strategies essen-
tially follow those of female BC, not tailoring the therapy 
with the specificity of male BC. To achieve a personalized 
approach of male BC, a better knowledge of their genetic 
characteristics is required.

The most frequent use of Next-Generation Sequencing 
(NGS) has identified an increasing number of genes sus-
pected to be involved in cancer predisposition, especially 
for cancers with a familial component such as BC [32]. The 
current use of multigene panel testing for breast cancer pre-
disposition has been a remarkable tool, although the genes 
included were based on female studies, limiting its use in 
male breast cancer [4] and creating a partiality in the genetic 
predisposition analysis. More than 100 common genetic var-
iants (SNPs) associated with female BC have been identified 
via genome-wide association studies (GWAS) in the general 
population. However, few male BC susceptibility SNPs have 
been identified to date.

Considering the significant difference in incidence of 
male vs. female BC, one cannot dismiss different SNPs fre-
quencies in male and female BC patients. Previous studies 
have highlighted the role of several genes in male BC such 
as BRCA2, PALB2, CHEK2 and MUTYH [4, 19, 33–36]. 
The majority of variants identified are included in high to 
moderate penetrance genes, pointing to a high incidence 
of familial history. GWAS studies with male BC identified 
SNPs that conferred greater risks of breast cancer in men 
than in women, suggesting a greater contribution of genetic 
variants to male BC than female BC predisposition [15, 16]. 
Some of the genes so far identified are DNA repair-related 
genes, which emphasize the relevance of the current study 
analysing genetic variants in other genes of repair pathways.

When we compared in this study the frequencies of SNPs 
in some BER genes and in the TP53 gene in a cohort of male 
BC with previously genotyped female BC cases [17, 18, 26], 
the results indicate significant differences between female 
and male populations for the XRCC1 rs1799782, MUTYH 
rs3219489 and TP53 SNPs rs1042522 and rs8064946, sug-
gesting that these genotypes are related with lower suscepti-
bility in males for XRCC1 and TP53 when in heterozygosity, 
contrasting with high susceptibility for MUTYH.

To our knowledge, this is the first comprehensive study 
that refers the possible role of XRCC1 and TP53 polymor-
phisms in male BC susceptibility but not of MUTYH [4, 19]. 
The allelic frequency described by Rizzolo and colleagues in 
an Italian population (77%) is slightly different from ours in 
the Portuguese population (70%). In fact, the most evident 
difference is the frequency of the homozygous variant allele, 

higher in Portuguese male BC patients, while the Italian 
frequency is similar to our Portuguese female BC. Nonethe-
less, the study from Rizzolo et al. included several variants 
present in the MUTYH gene suggesting that the pathogenic 
variants identified might have a potential role in male BC 
in particular the rs34612342 variant linked to familial pre-
disposition [19].

The combined genotypes analysis performed also 
intended to illustrate the biologic interaction between SNPs. 
Indeed, our results proved that the combination might pro-
duce an additive effect on susceptibility to BC in men. This 
result was more evident when XRCC1 rs1799782–TP53 
rs8064946 SNPs were combined as shown in Table 6, as this 
combination might result in simultaneous DNA repair and 
apoptosis misfunction pointing to a potential new molecular 
phenotype in breast cancer susceptibility.

The main effects of SNPs in TP53 may not necessarily 
directly influence cell cycle and apoptosis but may act on 
cell proliferation through interaction with other proteins in 
the p53 pathway, namely MDM2, ATM, MDM4, p21 among 
others [37].

The present study involved a 40-year series involving 
132 patients, which allowed the double advantage of using 
FPPE to review each slide and also extract germline DNA 
for genotyping from the healthy non-tumoural margins of 
the tumor. Despite the concept of field cancerization, several 
studies provide evidence to justify the use of normal tis-
sue adjacent to breast cancer tissue from paraffin-embedded 
tumour blocks for genotyping [38].

Indeed, regarding the use of FFPE tissue, previous pub-
lications have assessed genotype concordance between ger-
mline DNA of normal cells and DNA isolated from tissues 
stored in a variety of conditions and excellent genotyping 
concordance has been documented comparing germline 
DNA and DNA isolated from formalin-fixed, paraffin-
embedded (FFPE) non-tumoral tissue, showing that both 
sources have the same germline DNA [39, 40]. Because 
FFPE tissues may be stored almost indefinitely at room tem-
perature, and both DNA and RNA may be recovered from 
them for a significant time after fixation, these samples pro-
vide a key resource for researchers. Pathological collections 
preserved in paraffin are one of the richest and irreplaceable 
resources for the study not only of rare situations, as was the 
case here, but of comparative incidence.

The present study infers the existence of differences in 
genetic susceptibility to BC between both sexes on the basis 
of the possible role of XRCC1, MUTYH and TP53 poly-
morphisms. Even taking into account differences in clinical 
and pathological characteristics in female and male BC, the 
central role played by these proteins in the control of cell 
proliferation, apoptosis and DNA repair may help under-
stand the etiological basis of BC in both genders.
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Conclusions

In males, when in heterozygosity, XRCC1 and TP53 vari-
ants seem to be related with lower susceptibility for BC, 
contrasting with high susceptibility for MUTYH. Overall, the 
differences found in XRCC1, MUTYH and TP53 polymor-
phisms may contribute to explain the significant difference 
in incidence of BC between the two sexes. Thus, female and 
male breast cancer may be the two different faces of a coin, 
but they can behave as a two-faced Janus looking at different 
genetic horizons.
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