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Abstract
Main risk factors of autism spectrum disorder (ASD) include both genetic and non-genetic factors, especially prenatal and 
perinatal events. Newborn screening dried blood spot (DBS) samples have great potential for the study of early biochemical 
markers of disease. To study DBS strengths and limitations in the context of ASD research, we analyzed the metabolomic 
profiles of newborns later diagnosed with ASD. We performed LC-MS/MS-based untargeted metabolomics on DBS from 37 
case-control pairs randomly selected from the iPSYCH sample. After preprocessing using MZmine 2.41, metabolites were 
putatively annotated using mzCloud, GNPS feature-based molecular networking, and MolNetEnhancer. A total of 4360 mass 
spectral features were detected, of which 150 (113 unique) could be putatively annotated at a high confidence level. Chemical 
structure information at a broad level could be retrieved for 1009 metabolites, covering 31 chemical classes. Although no 
clear distinction between cases and controls was revealed, our method covered many metabolites previously associated with 
ASD, suggesting that biochemical markers of ASD are present at birth and may be monitored during newborn screening. 
Additionally, we observed that gestational age, age at sampling, and month of birth influence the metabolomic profiles of 
newborn DBS, which informs us on the important confounders to address in future studies.
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Introduction

It is estimated that autism spectrum disorder (ASD) affects 
more than 1% of all children worldwide (CDC 2019). ASD 
encompasses several neurodevelopmental disorders including 
autism, Asperger syndrome, pervasive developmental disor-
ders, and childhood disintegrative disorder. The etiopathol-
ogy of ASD is still unclear, and today, ASD is diagnosed 
based on behavioral signs and assessment of communication 
skills (World Health Organization 1993). How the condition 
should be classified is debated (Adam 2013). In this setting, 
early intervention is a challenge and has been reported to start 

in Europe at 42 months of age on average (Bejarano-Martín 
et al. 2019). Whether behavioral impairments are reflected in 
the blood as biochemical abnormalities is still unsure, but the 
quest for biomarkers is legitimate, as they would represent 
a useful tool to help in the diagnosis and treatment of ASD 
and in understanding its underlying molecular mechanisms 
(Shen et al. 2019).

The main risk factors for ASD include genetic (Bai et al. 
2019) and non-genetic factors, especially exposure during 
fetal life (Newschaffer et al. 2007; Randall et al. 2018). 
Prenatal stress could influence fetal brain development and 
interact with genetic predispositions thereby enhancing the 
risk of future psychiatric disorders (Fine et al. 2014; Abbott 
et al. 2018). Among prenatal outcomes, maternal infection 
accompanied by fever during the second trimester of preg-
nancy has been found to increase the risk of ASD twofold 
approximately (Croen et al. 2019). Among perinatal out-
comes, preterm birth (< 37 weeks) and low birth weight 
(small for gestational age) have been associated with an 
increased risk of ASD (Kuzniewicz et al. 2014).

Gastrointestinal tract disorders are often reported in ASD 
children, along with certain foods or diets impacting the 
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severity of symptoms (Chaidez et al. 2014; Krajmalnik-Brown 
et al. 2015). There is a growing evidence of strong interactions 
between gut and brain through microbiota (Wang et al. 2018; 
Cerdó et al. 2019), and these observations support the notion 
that ASD is potentially connected to gut microbial populations 
and functions (Krajmalnik-Brown et al. 2015). It has also been 
shown that many small molecules differing between normally 
developing and ASD individuals likely result from microbial 
metabolism (De Angelis et al. 2015; Krajmalnik-Brown et al. 
2015; Sharon et al. 2019). In humans, intestinal microbiota 
transplantation has shown very promising results, both against 
gastrointestinal tract symptoms and ASD symptoms, granting 
the therapy a ‘fast-track’ status by the FDA (Adams et al. 
2019a). Among the plasma metabolites showing average 
to good classification capacity between the treated children 
and the controls, sarcosine, tyramine O-sulfate, and inosine 
5′-monophosphate were selected as most discriminant (Adams 
et al. 2019b). Many of these studies postulate that microbiota-
derived molecules are transported across the blood-brain 
barrier, acting as neuroactive metabolites (Cerdó et al. 2019). 
An impaired intestinal permeability or ‘leaky gut’ could also 
play a role in the effect of microbiota activity on psychiatric 
disorders (Magistris et al. 2010). If gut microbial metabolites 
of potential impact are indeed detectable in blood, this opens 
the door to blood-based investigations to further study and 
understand the metabolomic differences between ASD and 
non-ASD individuals in the context of gut-brain interactions.

Several studies have reported an altered metabolome 
associated with ASD during childhood, either in blood 
(Kang et al. 2018; Sharon et al. 2019; Barone et al. 2018; 
Anwar et al. 2018; Smith et al. 2019, 2020; West et al. 
2014; Rangel-Huerta et al. 2019; Bitar et al. 2018; Delaye 
et al. 2018; Kuwabara et al. 2013), urine (Yap et al. 2010; 
Kałużna-Czaplińska 2011; Ming et al. 2012; Emond et al. 
2013; Mavel et al. 2013; Noto et al. 2014; Gevi et al. 2016; 
Lussu et al. 2017; Anwar et al. 2018; Liu et al. 2019; Chen 
et al. 2019), or other matrices (Wang et al. 2019; Sharon 
et al. 2019). However, although some biochemical markers 
or set of markers seem promising (Shen et al. 2019), none 
has yet been proven robust enough for clinical practice. Fur-
thermore, it remains unclear at what point in life biochemi-
cal abnormalities of ASD are detectable.

To study the early role of genetic, prenatal, and perinatal 
variables on disease development, samples need to be col-
lected shortly after birth. However, it is not practically and 
ethically straightforward to draw blood from newborns pro-
spectively. In many countries, the newborn screening pro-
grams are conducted on dried blood spots (DBS) collected 
a few days after birth. In Denmark, such DBS are stored in 
the Danish National Biobank and are available for research 
purposes for the last 40 years, thereby covering approxi-
mately half of the country’s population (Nørgaard-Pedersen 
and Hougaard 2007). This allows researchers to alleviate the 

biases inherent to recruitment in prospective clinical studies 
and instead retrospectively retrieve the samples that are con-
nected to the relevant metadata stored in centralized health 
registries.

Taking advantage of this unique resource, we here aimed 
at studying the strengths and limitations of DBS samples in 
studying early biochemical abnormalities related to ASD 
development using an untargeted metabolomics protocol. 
We compared the metabolomic profiles of newborns that 
have been diagnosed with ASD by age 7 (cases) to new-
borns that have not (controls) and investigated potential 
main confounders. Although no clear case-control distinc-
tion was revealed, 18 compounds repeatedly reported in the 
ASD literature could be detected and three mass spectral 
features were differentially abundant in cases and controls 
before FDR correction. Additionally, we observed that ges-
tational age, age at sampling, and month of birth influence 
the chemical profiles of neonates.

Methods

Materials

Methanol (MeOH), acetonitrile (ACN), isopropanol (IPA), 
water (H2O), and formic acid (FA) were of Optima™ 
LCMS-grade and were purchased from Thermo Fisher Sci-
entific (Waltham, MA, USA). Stable-isotope-labeled internal 
standards (IS) from the NeoBase Non-derivatized MSMS kit 
(PerkinElmer, Waltham, MA, USA) were used. The exact list 
of compounds is provided in Online Resource 1.

Subjects and Samples

Samples were drawn from children from the Integrative 
Psychiatric Research (iPSYCH) case-cohort sample 
(Pedersen et al. 2018). Aiming at studying genetic and 
environmental determinants of severe mental disorders, the 
iPSYCH sample has been selected from the entire Danish 
population born in 1981–2005. It comprises > 57,000 
cases identified with ASD, schizophrenia, affective 
disorders, and/or attention-deficit/hyperactivity disorders 
and 30,000 controls (randomly sampled individuals). In 
our study, eligible cases were defined as born in 2005 
and with a diagnosis of autism spectrum disorder (ICD10 
F84.0, F84.1, F84.5, F84.8, and/or F84.9) (World Health 
Organization 1993) by the date of registry data extraction 
(2012). Out of these eligible cases, 37 children were 
randomly selected for the study. Children matching the 
cases’ gender and date of birth and without a diagnosis 
of psychiatric disorder were selected as eligible controls, 
of which one was randomly selected for each pair (37 
controls). Other metadata, such as gestational age, birth 
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weight, age at sampling, month of birth, mother’s age 
at birth, and date of diagnosis, were also collected from 
iPSYCH and the newborn screening database (when 
available).

Sample size was chosen for several reasons: (1) the 
unknown variation of metabolites in DBS made power cal-
culations impossible, (2) batch effect is a common technical 
challenge in metabolomics, and analyzing all samples on one 
single 96-well plate was expected to reduce technical vari-
ability, and (3) DBS are highly precious samples.

DBS are whole blood from newborns, aged between 3 
and 10 days (before 2009), blotted onto Ahlstrom #226 filter 
paper and left to dry for at least 3 h at room temperature 
before being sent by mail at ambient temperature to the 
Department of Congenital Disorders at the Statens Serum 
Institut in Copenhagen. Subsequent to being used in the 
newborn screening program, the samples are biobanked in 
the Danish National Biobank (www.natio​nalbi​obank​.dk) at 
− 20 °C until they are retrieved for further research analysis.

Sample Extraction

A punch of 3.2-mm diameter was collected from each DBS 
using a Panthera-PuncherTM 9 blood spot punching sys-
tem (PerkinElmer) directly into a MicroPlate, non-coated 
96-well clear polystyrene plate (PerkinElmer). The IS were 
labeled amino acids (AA IS) and acylcarnitines (AC IS) 
diluted in 80% methanol (i.e., dilution factor of 1:330, 
concentrations in Online Resource 1) as extraction buffer. 
A total of 100 μL of extraction buffer was added to each 
well. The plate was heat-sealed and shaken for 45 min at 
750 rpm at 25 °C in a PHMP-4 incubator. Then, it was 
centrifuged for 30 min at 4000 rpm at 4 °C.

All the transferring steps were performed on a Micro-
lab STAR line automated liquid handling workstation 
using Venus software (Hamilton, Bonaduz, Switzer-
land). The supernatant (75 μL) was transferred to a hard-
shell 96-well polypropylene PCR plate (Bio-Rad) and 
dried down with nitrogen 60 L/min at 25 °C for 1 h on an 
EVX-192 (Apricot Designs Evaporex). The residue was 
reconstituted in 75 μL 2.5% methanol, shaken for 15 min 
at 750 rpm at 25 °C in a PHMP-4 incubator, and centri-
fuged 10 min at 4000 rpm at 4 °C. A total of 65 µL was 
transferred to a hard-shell 96-well polypropylene PCR 
plate (Bio-Rad), heat-sealed, and centrifuged again for 
5 min at 3000  rpm at 4  °C. The method from sample 
preparation to MS acquisition is also available as a table 
according to the guidelines for standardization of LCMS 
method reporting (Vogeser et al. 2019) with adaptation to 
metabolomics (Online Resource 1).

Quality Assurance

LC-MS/MS instrument performance was controlled by ana-
lyzing four pooled extracts, eight solvent blanks, and three 
paper blanks at regular intervals. Pooled extracts were made 
of 5 µL of reconstituted extract from each of the samples 
(cases and controls only, total of 370 µL divided in fourwells 
spread across the plate) and were used to assess the con-
sistency of extraction and data acquisition. Solvent blanks 
were used to check for carry over and instrument noise, while 
paper blanks (a punch of paper extracted like a sample) were 
used to monitor matrix signals from the paper. Internal stand-
ards were used to control the quality of the extraction, elu-
tion, and signal acquisition. Paired cases and controls were 
injected after one another but in a random order (first case, 
then control, or vice versa). Pairs were randomized over the 
plate.

Liquid Chromatography

The samples were injected using an autosampler with stack 
cooler (Open Autosampler UltiMate OAS-3300TXRS, Thermo 
Fisher Scientific) and eluted through a Waters Acquity UPLC 
BEH C18 column (130 Å, 2.1 mm × 50 mm, 1.7-µm particles) 
preceded by a Waters Acquity UPLC BEH C18 VanGuard 
pre-column, 130 Å, 2.1 mm × 5 mm, 1.7-µm particles) using 
a Transcend II, LX-2 with UltiMate pumps (Thermo Fisher 
Scientific). The pressure limits were set at 0.0–1034.0 bar.

The mobile phase consisted of solvent A (97.31% H2O, 
1.25% ACN, 1.25% MeOH, and 0.2% FA) and B (2.49% 
H2O, 48.66% ACN, 48.66% MeOH, and 0.2% FA). The 
Wash1 solvent was mobile phase A and the Wash2 solvent 
mix was 25:25:25:25 v/v MeOH/IPA/H20/ACN + 0.2% FA. 
The gradient (0.25 mL/min) started with 100% A/0% B. After 
0.5 min, we applied a gradient ramp to 0% A/100% B over 
8.5 min followed by a 0.5-min flow ramp up to 0.9 mL/min 
and 5 min of 100% B. At 15 min, the column was equilibrated 
for 5.5 min with 100% A. At 17.5 min, the flow was changed 
back to 0.25 mL/min over 0.5 min. The total run time was 
20.5 min, including 10-min sample run time and 10.5-min 
column wash and equilibration. The column temperature was 
maintained at 60.0 °C using a hot pocket column heater and 
the samples in the autosampler were kept at 4 °C throughout 
the analysis. The data was acquired in profile mode from 
0.20 to 9.80 min.

Mass Spectrometry

All samples were injected once and analyzed in data-
dependent acquisition mode. The Q Exactive Orbitrap mass 
spectrometer (Thermo Fisher Scientific) was operated with 
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a heated electrospray ionization source (HESI) in positive 
mode. The instruments were controlled using TraceFinder 
4.1 Clinical Research and Aria MX (Thermo Fisher Scien-
tific). Mass range in MS full scan mode was set to 70 to 
1050 m/z with a resolution of 35,000. Automatic gain control 
was set to 1.106, and maximum injection time at 100 ms. For 
data-dependent MS2, the resolution was set to 17,500. Auto-
matic gain control was set to 1.105 and maximum injection 
time at 50 ms. Loop count was 5, isolation window 1.5 m/z, 
and the stepped NCE 17.5, 35, and 52.5 eV. The spectrum 
data type was set to Profile. In data-dependent settings, the 
Apex trigger was set to 2 to 7 s with 15 s dynamic exclusion 
and charge exclusion on 3–8 and > 8. Diisooctyl phthalate 
(391.28429 m/z) was selected as lock mass. Other settings 
included the sheath gas pressure (N2, 32 psi), the auxiliary 
gas flow and temperature (N2, 8 arb. units, 350 °C), the S-lens 
radio frequency level (50.0%), the ion source temperature 
(350 °C), and the spray voltage (3.8 kV between 0–9.8 min 
and 1.0 kV between 9.8 and 10 min).

LC‑MS/MS Data Preprocessing

After conversion to .mzML (centroid) using MSConvertGUI 
v3.0 (ProteoWizard Software Foundation, Palo Alto, CA, 
USA) (Chambers et al. 2012), raw files were pre-processed 
using MZmine v2.41 (Katajamaa et al. 2006; Pluskal et al. 
2010). All setting details are provided in the batch.xml file 
(Online Resource 2). Briefly, data were cropped based on 
retention time (RT) 0.27–9.80 min. Masses were detected 
with a noise threshold of 10,000 for MS1 and of 0 for MS2. 
The chromatogram was built using the ADAP module (Myers 
et al. 2017), with minimum seven scans per peak, a group 
intensity threshold of 10,000, a minimum highest intensity 
of 150,000, and a m/z tolerance of 0.001 m/z or 5 ppm. 
Deconvolution was performed using the Wavelets (ADAP) 
module, with m/z center calculation using median, and ranges 
for MS2 scan pairing of 0.01 Da and 0.4 min. The isotopes 
were grouped with a m/z tolerance of 0.001 m/z or 5 ppm 
and RT tolerance of 0.1 min. Peaks were aligned with a m/z 
tolerance of 0.001 m/z or 5 ppm and RT tolerance of 0.1 min, 
with 75% weight given to m/z and 25% to RT. Finally, peaks 
were filtered with a minimum of 15 peaks in a row, and the 
same RT and peak duration ranges as previously applied. The 
feature quantification table (.csv) and aggregated MS2 mass 
list (.mgf) were exported (no merging of MS/MS and filter 
rows: ALL) for further analysis.

Feature‑Based Molecular Networking Using GNPS 
and Compound Annotation

A molecular network was created with the feature-based 
molecular networking workflow (https​://ccms-ucsd.githu​b.io/
GNPSD​ocume​ntati​on/featu​rebas​edmol​ecula​rnetw​orkin​g/) 

(Nothias et  al. 2020) on the GNPS website (http://gnps.
ucsd.edu) (Wang et al. 2016) by uploading the aggregated 
MS2 mass list. The data was filtered by removing all MS/
MS fragment ions within ± 17 Da of the precursor m/z. MS/
MS spectra were window filtered by choosing only the top 
six fragment ions in the ± 50 Da window throughout the 
spectrum. The precursor ion mass tolerance was set to 0.02 Da 
and a MS/MS fragment ion tolerance of 0.02 Da. A network 
was then created where edges were filtered to have a cosine 
score above 0.7 and more than 4 matched peaks. Further, edges 
between two nodes were kept in the network if and only if each 
of the nodes appeared in each other’s respective top 10 most 
similar nodes. Finally, the maximum size of a molecular family 
was set to 100, and the lowest scoring edges were removed 
from molecular families until the molecular family size was 
below this threshold. The spectra in the network were then 
searched against GNPS’ spectral libraries. The library spectra 
were filtered in the same manner as the input data. All matches 
kept between network spectra and library spectra were required 
to have a score above 0.7 and at least four matched peaks. The 
.graphml network file was then visualized using Cytoscape 
v3.7.2 (Shannon et al. 2003) where individual sample data and 
metadata were locally plotted (per sample and metadata sample 
group relative intensities). To enhance annotation of potential 
compounds of interest using the mzCloud spectral library 
(Thermo Fisher Scientific), .raw files were also preprocessed 
using Compound Discoverer 2.1 (CD2.1) SP1 software 
(Thermo Fisher Scientific). Details regarding the settings 
are provided in Online Resource 3. GNPS and Compound 
Discoverer (annotation reported when above mzCloud 80% 
confidence in identity or similarity search) offer annotations 
with a level 2 confidence according to the Metabolomics 
Standards Initiative (i.e., putative annotation) (Sumner et al. 
2007; Schrimpe-Rutledge et al. 2016). To summarize and 
further enhance chemical structural information within the 
molecular network, substructure information (https​://ccms-
ucsd.githu​b.io/GNPSD​ocume​ntati​on/ms2ld​a/) (Hooft et al. 
2016), information from in silico structure annotations from 
Network Annotation Propagation (Silva et  al. 2018) and 
Dereplicator (Mohimani et al. 2017) were incorporated using 
the GNPS MolNetEnhancer workflow (https​://ccms-ucsd.
githu​b.io/GNPSD​ocume​ntati​on/molne​tenha​ncer/) (Ernst 
et al. 2019) with chemical class annotations retrieved from 
the ClassyFire chemical ontology (Djoumbou Feunang et al. 
2016). When no chemical structural information could be 
retrieved through the above searches, the MS/MS spectra 
were additionally searched via MASST (Wang et al. 2020) and 
SIRIUS + CSI:FingerID (Dührkop et al. 2015, 2019; Böcker 
and Dührkop 2016). MASST allows to query a single MS/MS 
spectrum across all public GNPS datasets giving an idea of the 
type of samples or matrices where the same MS/MS spectrum 
has been detected (Wang et al. 2020). SIRIUS + CSI:FingerID 
uses deep learning algorithms to predict the molecular and 
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structural formula of a molecule from MS/MS spectra (Shen 
et al. 2014; Dührkop et al. 2015, 2019; Böcker and Dührkop 
2016).

Contamination Filtering and Further Data Curation

Using a Kendrick Mass Filter, we explored the composition-
ality of our data to assess the potential presence of undesired 
chemical background (da Silva et al. 2019). Out of the 4360 
features obtained through MZmine preprocessing, more than 
1100 possessed repeat units typical of polyethylene glycol 
(PEG) and polypropylene glycol (PPG). Filtering of PEG 
followed by filtering of PPG was performed using a Kendrick  
Mass Filter (da Silva et al. 2019) with the following param-
eters: number of observed signals = 5, Kendrick mass 
defect = 0.01, and fraction base = 1. All Jupyter notebooks 
used are publicly available on GitHub (https​://githu​b.com/
SSI-Metab​olomi​cs/Autis​m_Suppl​ement​aryMa​teria​l).

Of the 3253 remaining features, we further excluded those 
with a maximum intensity in paper blanks/maximum intensity 
in sample ratio ≥ 0.2, as well as features with 80% or more gaps 
(i.e., missing value) in cases and/or in controls (1975 features 
filtered).

Data Visualization and Outlier Handling

To detect overall patterns in our data, we performed prin-
cipal component analysis (PCA), which allowed us to 
assess the consistency of repeated pool injections (i.e., 
repeated injections of the same pooled samples should 
cluster in PCA). When performing these calculations on 
our “raw” unfiltered feature table (4360 features), seven 
samples were revealed as clear outliers, of which two 
controls and five cases. After contamination filtering 
and data curation (1281 features), six outliers remained 
since one outlier (control) was due to PEG contamina-
tion. Among the investigated potential explanations for 
these outliers, no pattern was found when looking at 
position on the plate layout, potential RT shift impairing 
the alignment, and metadata. However, targeted analysis 
of labeled internal standards and unlabeled endogenous 
homologs showed that significant (but unexplained) 
errors occurred during LC-MS/MS acquisition, with 
many undetectable compounds (TraceFinder 4.1 Clinical 
Research, Thermo Fischer Scientific) (Online Resource 
4). A heatmap representation of the data (1,281 fea-
tures) using MetaboAnalyst 4.0 (Chong et al. 2018) con-
firmed the six outliers with very low intensities (Online 
Resource 4). Therefore, we decided to exclude these out-
liers from further statistical analyses.

Statistics

Using the filtered feature table, we calculated pair-wise 
Euclidean distances (1281 features, 68 samples) and per-
formed permutational multivariate analyses of variance 
(PERMANOVAs) (Anderson 2001) to assess how much of 
the variance in the data is explained by a certain variable in 
the metadata. We investigated the following variables: ASD 
(yes/no), ASD subtype, gender, birth weight, gestational 
age, age at sampling, month of birth, and injection order. 
The Adonis R2 value indicates to what extent the variance is 
explained by the tested variable. Significance threshold was 
set at 0.05. Calculations were performed using the ggplot2, 
ggfortify, ggsci, rlang, viridis, and vegan packages in R soft-
ware v4.0.3 (R Core Team 2020).

Finally, the curated dataset (1281 features, 68 samples, unpaired 
samples) was processed using MetaboAnalystR3.0 (Pang et al. 
2020), R v4.0.3, and RStudio v1.3.1093. We replaced the remain-
ing missing values by a small value (half the minimum positive 
value in the original data). We further applied a glog transfor-
mation and Pareto scaling. We ran a fold change analysis with a 
threshold of 2 (case/control or control/case). We performed t tests 
and Wilcoxon rank-sum tests with FDR correction for multiple 
comparisons. We performed PCA (including the four pooled sam-
ples). We could not reliably use the partial least squares discrimi-
nant analysis (negative Q2 in cross validation). All scripts used 
for statistical analysis are publicly available on GitHub (https​:// 
githu​b.com/SSI-Metab​olomi​cs/Autis​m_Suppl​ement​aryMa​teria​l).

Results

Subjects

Subjects’ characteristics are presented in Table 1 (details in 
Online Resource 5).

Cases and controls were similar in terms of gestational 
age, birth weight, age at sampling, and age of their mother 
at birth. The most prevalent ASD subtype was childhood 
autism. Most cases had only one diagnosis, but six had both 
unspecified pervasive development disorder and autism 
(either childhood autism or atypical autism). None had 
more than two diagnoses. Median age at first diagnosis was 
5.6 years (range 1.1–7.8). Most subjects were born at term 
(gestational age ≥ 38 weeks). Only three cases and two con-
trols were born preterm.

Molecular Network Analysis

From all features for which a MS2 spectrum had been 
acquired (2217 features over 4360), a feature-based 
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molecular network was computed via GNPS. Annota-
tion could be retrieved for 150 (113 unique unlabeled) 
features (3.4%) of which 103 (83) by matching to GNPS 
libraries (annotation level 2) and 47 (30) by matching 
to our in-house library using Trace Finder (annotation 
level 1, Online Resource 6). Using the MolNetEnhancer 
workflow (Ernst et al. 2019), putative chemical structural 
information at the chemical class level, corresponding to 
a level 3 annotation, could be retrieved for an additional 
859 features. Hence, nearly 46% (1009) of the mass spec-
tral features could be putatively annotated at a level 1 to 
3 (Online Resource 6). Annotation covered 31 chemical 
classes including 53 subclasses and 116 direct parents, 
such as medium-chain fatty acids, phosphatidylcholines, 
nucleotides, amino acids, bile acids, steroids, acylcarniti-
nes, and catecholamines.

Molecular families (independent clusters of nodes) from 
the 15 predominant putatively annotated chemical classes 
are presented in Fig. 1 (see details in Online Resource 6). 
Plotting the average intensities in the three groups (cases, 
controls, paper blanks) in the ring of the nodes allowed to 
quickly spot clusters of features coming from noise or con-
taminants (detected in blanks) and focus on the others. To 
further ease the interpretation, we also plotted fold change 
values in the core of the nodes (one can also plot P values) 
to allow for a quick overview of the molecular families 
with potential biological relevance (see the example of 
bile acids in Fig. 2). This analysis showed the potential of 
DBS in covering various chemical classes and the power 
of feature-based molecular network analyses and related 
metabolome mining tools in expanding the interpretability 
of complex untargeted metabolomics data.

Statistical Analyses

Principal component analysis revealed that repeated pool 
injections clustered satisfactorily showing that the LC-MS/
MS data acquisition was of acceptable quality (Fig. 3). When 
looking at the two groups (cases/controls), no clear separa-
tion was observed, even after removal of outliers (Fig. 3).

PERMANOVA (Fig.  4, Online Resource 7) revealed 
that the variance in the data was not significantly explained 
by the grouping (cases/controls) (Adonis R2 = 0.0199, P 
value = 0.226), even when distinguishing subtypes of ASD 
(Adonis R2 = 0.123, P value = 0.546, see Table 1 for details 
on subtypes of ASD). Similarly, the gender, birth weight, 
and injection order did not significantly explain the vari-
ance in the data (Adonis R2 < 0.02, P value > 0.05). However, 
variation in the data explained by gestational age (Adonis 
R2 = 0.0429, P value = 0.021), age at sampling (Adonis 
R2 = 0.0425, P value = 0.016) and especially month of birth 
(Adonis R2 = 0.272, P value = 0.001) was significant (Fig. 4).

Results of univariate analyses and fold change analysis 
were carefully scrutinized feature by feature. Consider-
ing our small sample size and potential pitfalls inherent 
to untargeted metabolomics related to contaminants or 
integration errors, we thought essential to inspect each 
result to eliminate false positives and spurious findings. 
Our inspection consisted of a five-step logic starting with 
peak integration and shape quality (MZmine). We then 
plotted all individual intensity values to assess whether 
the case/control difference was driven by four or fewer 
samples. If not, we reported the extent of missing values 
in each group, checked the consistency of replicated pool 
injections, and finally checked whether the feature was 

Table 1   Subjects characteristics

More details are provided in Online Resource 5.
a ICD10 classification (World Health Organization 1993)

n = 68

Cases Controls

Age at 1st Jan. 2006 (median [range]) 7.3 mo [0.8–11.6] 7.5 mo [0.8–11.6]
Gender (girls/boys) 7 / 25 8 / 28
Classification of cases (ICD10)a

- F84.0 Childhood autism 15 -
- F84.1 Atypical autism 6 -
- F84.5 Asperger syndrome 3 -
- F84.8 Other pervasive developmental disorders 4 -
- F84.9 Unspecified pervasive developmental disorders 10 -
Gestational age (median [range]) 40 weeks [33–41] 39 weeks [30–42]
Birth weight (median [range]) 3498 g [2210–4880] 3490 g [977–4850]
Age at sampling (median [range]) 6 days [3–9] 6 days [4–10]
Age of mother at birth (median [range]) 32.3 years [20.8–41.5] 31.8 years [18.3–41.2]
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present in the feature-based molecular network, annotated 
as a contaminant or in a node cluster with such annotation 
(Online Resource 8). A large proportion of the inspected 

features were excluded based on these criteria, showing 
the importance of such a verification in order not to pur-
sue spurious findings in future studies.

Fig. 1   Feature-based molecular network displaying the 15 predomi-
nant putative chemical classes and their subclasses. Nodes represent 
mass spectral features and are used as a proxy for a metabolite. Con-
nected nodes represent high tandem mass spectral similarity, and thus 
high chemical structural similarity. The thickness of the gray edges 
connecting nodes varies according to the cosine score representing to 
what extent two connected metabolites are chemically similar (based 
on MS2 spectra, from 0.7: less similar and thin edge to 1.0: identi-

cal and thick edge). The name of annotated metabolites (levels 1 and 
2), details on chemical classes with fewer than 4 metabolites (absent 
on this figure), chemical classification scores (Ernst et  al. 2019), all 
unknowns, and group intensities for all features (average, standard 
deviations) are detailed in Online Resource 6. Note that data repre-
sent a summary of most predominant classes per molecular family 
retrieved through either GNPS spectral library matching or in silico 
structure annotation and may contain false positives
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Among the 24 features with a fold change (case/control) 
value < 0.5 or > 2.0, only one passed manual inspection 
(Table 2, the full table is in Online Resource 8).

Inspection criteria: peak integration or shape quality, initial 
missing values, single values plot, presence, and consistence 
in replicated pool injections, annotation, or connection to con-
taminants. For details, see Online Resource 6.

Eluting quite late (RT = 6.64 min, ID8605), this relatively 
hydrophobic compound had a detected m/z of 1014.4892 and 
was not connected to any other node in the network analysis 
(see its mass spectrum in Online Resource 9). It could not 
be annotated, but the algorithm of SIRIUS + CSI:FingerID 
pointed at a raw formula of C36H63N21O14 ([M + H] + , only 
7.12% scoring). This compound was more than twice as 
intense in controls as in cases (FC 0.42, average intensity in 
cases 2.73E + 05 and controls 7.51E + 05) and would need 
further investigation, especially as it was not detected in 
many samples (Online Resource 8). A MASST search was 
performed; however, the feature with m/z 1014.4892 was not 
found in any of the public datasets on GNPS.

No feature was significantly differentially abundant in cases 
and controls according to the univariate analyses with FDR 
correction for multiple comparisons (P values in Table 2).

Features that were differentially abundant before FDR 
correction are presented in Table 2. As a high proportion 
of features were deemed irrelevant after inspection, we are 

presenting only the two relevant features that passed our 
quality control criteria. The full list and inspection details 
can be found in Online Resource 8. Methacholine was found 
to be significantly more abundant in cases when compared 
with controls (average intensity in cases 4.41E + 07 and 
controls 3.94E + 07) both when using a t test (p = 0.0021) 
and a Wilcoxon rank-sum test (p = 0.0031). The corre-
sponding node (ID159) in the network analysis was con-
nected to another node with a mass difference of − 0.036 m/z 
(225  ppm) which could not be annotated. None of the 
applied metabolome mining tools was able to retrieve chemi-
cal structural information for the second compound signifi-
cantly more abundant in cases than in controls (ID5593, 
m/z 1014.4892, average intensity in cases 5.71E + 05 and 
controls 4.35E + 05). SIRIUS + CSI:Finger ID predicted a 
molecular formula of C11H22N2O3 (M+H+, 99.96% scor-
ing). Its RT of 2.78 min could indicate a medium polarity 
with a logP between − 1.0 and 0.5 when compared with 
tryptophan (RT 2.56 min, HMDB experimental logP − 1.06) 
and hippuric acid (RT 3.04 min, HMDB experimental logP 
0.31).

Among the 273 compounds reported in two recent 
reviews (Glinton and Elsea 2019; Shen et al. 2019), 22 
were cited at least three times in ASD literature, of which 
18 could be linked to features in our study after manual 
verification (Table 3, Online Resource 10).

Average intensity in
Cases

Controls 

Paper blanks

Fold change value 
(case/control)

- 2.0

- 1.5

- 1.0
Glycochenodeoxycholic acid

ID4647

Glycoursodeoxycholic acid
ID4591

Glycocholic acid
ID4663

Taurocholic acid
ID7284

Glycocholic acid
ID2178

Glycocholic acid
ID4660

ID4883

ID7356
-53.048

+35.038-18.010
-H2O

+49.982

-18.010
-H2O

-18.010
-H2O

+2.015
H2

-36.021
-2H2O

-18.010
-H2O

Mass difference (m/z)

Fig. 2   Network of molecular features putatively annotated as bile 
acids with average group intensities, fold change values, mass differ-
ences, and cosine scores displayed. Molecular family #75 is composed 
of eight bile acid structural analogues (see details in Online Resource 
6). Coloring according to the fold change values makes it easier to 
spot the families with differential abundance in cases vs. controls. Dis-
playing average intensities for the three groups (cases, controls, paper 

blanks) allows for a quick control of the matrix signals (paper blanks, 
here none of the features were detected in the matrix) and confirma-
tion of fold change. On edges, while the thickness of the connection 
represents to what extent two metabolites are chemically similar, the 
mass difference is essential to support annotation as it translates into 
how molecules differ from one another (e.g., water loss, conjugation, 
adducts, etc.)
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When the [M + H]+ adduct could not be found (± 5 ppm), 
common adducts were searched including [M + Na]+, 
[M + K]+, [M + 2H]2+, and [M + H-H2O]+.

See full list of compounds considered and more details 
in Online Resource 10.

Discussion

To assess the potential of newborn DBS to study early 
biochemical markers of ASD shortly after birth, we 
compared DBS samples from newborns that have later on 
been diagnosed with ASD to newborns that have not. Our 
study showed the capacity of untargeted metabolomics as an 
analytical tool applied to biobanked DBS samples to cover 
several metabolites relevant to ASD, thus suggesting that 
biochemical markers of ASD are present at birth and could be 
targeted during neonatal screening. In addition, our method 
pinpointed other factors which have a strong influence on the 
metabolic profile of newborn DBS, such as gestational age, 
age at sampling and month of birth, and which are important 

to consider when designing metabolomic studies in neonatal, 
biobanked DBS.

One study from 2013 was performed on newborn DBS 
samples from 16 autistic children and assessed 90 biomarkers 
(not only small molecules) using immunoassays (Mizejewski 
et al. 2013) of which three sets of five were associated with 
ASD. Another study was performed on DBS but in older ASD 
children (n = 83, age 2–10 years) and was targeting 45 metabo-
lites (Barone et al. 2018), of which 9 were significantly higher 
in ASD children. However, the potential of DBS in untargeted 
metabolomics studies has not yet been fully studied, and never 
in the context of ASD (see recent reviews (Glinton and Elsea 
2019; Shen et al. 2019)).

Among the 22 compounds that had been repeatedly (≥ 3 
times) reported in the literature to be involved in ASD, 18 
could be putatively annotated in our study, showing that our 
analytical pipeline covers many relevant metabolites, includ-
ing some specific to gut microbiota activity. Despite thorough 
curation and inspection of the acquired data, no feature was 
significantly differentially abundant in cases and controls after 

Fig. 3   Principal component 
analysis of the 68 samples after 
outlier removal. Each sphere 
represents one sample. Axes 
are principal components 1 
(x) and 2 (y) explaining 5.1% 
and 10.4% of the variation in 
the data, respectively. The four 
replicated pool injections cluster 
satisfactorily. Coloring reflects 
the type of samples, i.e., cases, 
controls and, four replicated 
pool injections. No clear 
distinction between cases and 
controls can be observed
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FDR correction. This shows that a bigger sample size will be 
required for the study of ASD using newborn DBS along with 
appropriate consideration of the confounders specific to these 
samples to reduce their impact.

Among the hits and interesting findings of our study, we 
could show that a methacholine structural analog could be 
a relevant marker for ASD, as it was found at a higher—
although not significant—abundance in newborns that have 
been diagnosed with ASD by age 7. Methacholine is a cho-
line ester drug acting as non-selective muscarinic receptor 
agonist. It is mainly known as methacholine chloride for 
its use in assessing bronchial hyper-reactivity in asthmatic 
patients. Although muscarinic receptors were not associ-
ated with ASD in children (Lee et al. 2002), lower esti-
mates of ASD risk among children exposed during fetal life 
to muscarinic receptor 2 agonists were reported (Janecka 
et al. 2018). Higher abundance of methacholine in DBS of 
ASD cases, as seen in our study, would therefore not be 
easily explained and demand further investigation. How-
ever, detecting a drug metabolite such as methacholine in 
newborn samples is unexpected; thus, it is more likely that 
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Table 3   Compounds reported in the literature three or more times as being associated with ASD

Compound name &  
HMDB ID

Annotation levela Raw formula m/z [M + H]+ RT 
(min)

Feature ID 
(MZmine 2.41)

Detected by 
Compound 
Discoverer 2.1

Literature reference

Arginine
HMDB0000517

1 C6H14N4O2 175.11895 0.35 1450 ND (Kuwabara et al. 2013; Anwar 
et al. 2018; Liu et al. 2019)

Aspartic acid
HMDB0000191

1 C4H7NO4 134.04478 0.41 1073 ND (De Angelis et al. 2013; West 
et al. 2014; Kang et al. 2018; 
Liu et al. 2019; Wang et al. 
2019; Rangel-Huerta et al. 
2019)

Citric acid
HMDB0000094

4 C6H8O7 193.03428 0.35 1776 Yes (Kałużna-Czaplińska 2011; West 
et al. 2014; Bitar et al. 2018)

Creatine
HMDB0000064

2 C4H9N3O2 132.07675 0.40 16 Yes (Mavel et al. 2013; Lussu et al. 
2017; Bitar et al. 2018)

Creatinine
HMDB0000562

2 C4H7N3O 114.06619 0.40 281 Yes (West et al. 2014; Lussu et al. 
2017; Liu et al. 2019; Chen 
et al. 2019)

Decanoylcarnitine
HMDB0000651

1 C17H33NO4 316.24823 6.00 3633 Yes (Barone et al. 2018; Wang et al. 
2019; Rangel-Huerta et al. 
2019)

Glutamic acid
HMDB0000148

1 C5H9NO4 148.06043 0.38 136 Yes (De Angelis et al. 2013; West 
et al. 2014; Lussu et al. 2017; 
Kang et al. 2018; Anwar et al. 
2018; Bitar et al. 2018; Delaye 
et al. 2018; Rangel-Huerta 
et al. 2019)

Glutamine
HMDB0000641

2 C5H10N2O3 147.07642 0.40 107 Yes (Kang et al. 2018; Anwar et al. 
2018; Smith et al. 2019)

Glycine
HMDB0000123

3 C2H5NO2 76.03930 0.38 1177 ND (Ming et al. 2012; Mavel et al. 
2013; De Angelis et al. 2013; 
Lussu et al. 2017; Delaye et al. 
2018; Smith et al. 2019, 2020)

Glycolic acid
HMDB0000115

- C2H4O3 77.02332 - ND ND (Emond et al. 2013; Noto et al. 
2014; Chen et al. 2019)

Hippuric acid
HMDB0000714

2 C9H9NO3 180.06552 3.04 5174 ND (Yap et al. 2010; Kałużna-
Czaplińska 2011; Emond et al. 
2013; Lussu et al. 2017)

Histidine
HMDB0000177

2 C6H9N3O2 156.07675 0.32 342 Yes (Ming et al. 2012; De Angelis 
et al. 2013; Gevi et al. 2016)

Lactic acid
HMDB0000190

- C3H6O3 91.03897 - ND ND (Kuwabara et al. 2013; Lussu 
et al. 2017; Kang et al. 2018; 
Smith et al. 2020)

p-cresol
HMDB0001858

- C7H8O 109.06479 - ND ND (De Angelis et al. 2013; Gevi 
et al. 2016; Kang et al. 2018; 
Chen et al. 2019)

Phenylalanine
HMDB0000159

1 C9H11NO2 166.08625 1.70 594 + 5370 + 287 Yes (De Angelis et al. 2013; Gevi 
et al. 2016; Wang et al. 2019)

Serine
HMDB0000187

2 C3H7NO3 106.04987 0.40 437 ND (Ming et al. 2012; De Angelis 
et al. 2013; West et al. 2014; 
Bitar et al. 2018; Delaye et al. 
2018)

Succinic acid
HMDB0000254

- C4H6O4 119.03388 - ND ND (Yap et al. 2010; Emond et al. 
2013; Mavel et al. 2013; West 
et al. 2014; Smith et al. 2020)
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this feature is an endogenous choline ester with similar 
fragmentation behavior to methacholine.

Two other unknown features would benefit from being 
monitored in future studies. One relatively hydrophobic 
compound (ID8605, m/z 1014.4892) showed an important 
fold change (much lower in cases) but was not detected in 
many samples maybe due to low intensities. The second 
compound (moderately polar, ID5593, m/z 1014.4892, 
C11H22N2O3) was significantly higher in cases before FDR 
correction and detected in more than 65% of samples.

We have shown that gestational age, age at sampling, and 
month of birth are strong drivers of metabolomic profiles in 
newborn DBS samples. This demonstrates the importance 
of considering these confounders when designing a future 
study using such samples.

Prematurity has been involved in numerous adverse health 
outcomes (Saigal and Doyle 2008) and metabolic maturity 
has previously been shown to be reflected in the blood and 
other matrices of infants after birth (Gil and Duarte 2018; 
Ernst et al. 2020). Although, in the present study, only three 
cases and two controls were premature (< 38 weeks of ges-
tational age), we saw a significant effect of gestational age 
on the metabolomic profile of newborns thus showing that 
gestational age is an important factor to be controlled for in 
newborn DBS studies.

Similarly, we found that age at sampling has a significant 
impact on the newborn blood metabolome. From 3 to 10 days 
of age, only 1 week has passed, and yet fundamental meta-
bolic changes occur in the newborn possibly in connection 

with post-natal nutrition, the maturation of the newborn’s 
microbiome as well as environmental conditions (health-
care, hospital vs home, etc.). The endogenous anabolism/
catabolism balance is in itself a strong variable to consider at 
that age. From 2009 onwards, the Danish newborn screening 
program has indeed chosen to standardize the age at DBS 
sampling to 48 to 72 h to optimize the window where poten-
tial inborn errors of metabolism would be detected best and 
as early as possible since quick intervention is essential in 
such cases (Dionisi-Vici et al. 2006). The iPSYCH sample 
was based on diagnoses of psychiatric disorders recorded in 
Danish health registries in 2012 (Pedersen et al. 2018). Such 
diagnoses are often given after several years of age, which 
is why the iPSYCH sample included subjects born latest in 
2005, year at which the age at sampling was not so narrowly 
standardized.

Another major change that occurs in newborns at 
birth and in the following days is the gut maturation 
and its further colonization by microbes (Milani et  al. 
2017). This topic has been under expanding attention in 
the last decade, and the development and involvement of 
gut microbiota in neurodevelopment is being scrutinized 
extensively (Cerdó et al. 2019). The exact dynamics of the 
microbiota development in the placenta and during the first 
days of life is still uncertain (Backhed et al. 2015; Milani 
et al. 2017), as well as to what extent its activity can be 
reflected in the blood. A recent study has shown that gut 
microbial alpha-diversity can be predicted from the human 
blood metabolome (Wilmanski et al. 2019) suggesting 

Table 3   (continued)

Compound name &  
HMDB ID

Annotation levela Raw formula m/z [M + H]+ RT 
(min)

Feature ID 
(MZmine 2.41)

Detected by 
Compound 
Discoverer 2.1

Literature reference

Taurine
HMDB0000251

3 C2H7NO3S 126.02194 0.43 428 ND (Yap et al. 2010; Ming et al. 
2012; Kuwabara et al. 2013; 
Mavel et al. 2013; Lussu et al. 
2017; Sharon et al. 2019)

Threonine
HMDB0000167

2 C4H9NO3 120.06552 0.40 476 ND (Ming et al. 2012; Anwar et al. 
2018; Bitar et al. 2018; Liu 
et al. 2019)

Tryptophan
HMDB0000929

2 C11H12N2O2 205.09715 2.53 164 Yes (Noto et al. 2014; Gevi et al. 
2016; Lussu et al. 2017; Anwar 
et al. 2018; Rangel-Huerta 
et al. 2019)

Tyrosine
HMDB0000158

1 C9H11NO3 182.08117 0.72 58 Yes (Kang et al. 2018; Bitar et al. 
2018; Wang et al. 2019)

Valine
HMDB0000883

2 C5H11NO2 118.08625 0.42 ND Yes (De Angelis et al. 2013; Lussu 
et al. 2017; Smith et al. 2019)

ND not detected
a Annotation level of confidence according to the Metabolomics Standards Initiative (i.e., putative annotation) (Sumner et al. 2007; Schrimpe-
Rutledge et al. 2016)
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that microbial metabolites explain a significant amount 
of the variation in the human blood metabolome. Thus, 
although sampled at an early stage in life, it is plausible 
that microbial metabolites mediating health may be found 
in dried blood spots from newborns (Ernst et al. 2020). 
Studying both fecal and blood samples will be essential to 
answer questions related to the impact of gut microbes on 
the gut-brain axis, especially in the context of psychiatric 
disorders where the brain is the main organ concerned but 
indeed located quite far from the gut. Microbial metabolites 
would necessarily need to travel in the blood (or lymph) 
and through the blood-brain barrier to interact with the 
brain. In our study, some detected metabolites could partly 
derive from gut microbiota activity such as DL-indole-3-
lactic acid (ID3461, Meng et al. 2020; Laursen et al. 2020), 
taurine (ID428, level 3, Sharon et al. 2019), various bile 
acids (Online Resource 6, Wang et al. 2019), or inosine 
5′-monophosphate (ID1133, level 3, Adams et al. 2019b).

Lastly, we found that month of birth explains a significant 
variation in metabolomic profiles of newborns (Fig. 4). 
Whether there is a yearly cyclic pattern or whether our 
findings are specific to 2005 remains to be determined. 
Explanations could include aspects related to pregnancy 
conditions varying along the year such as diet, weather 
conditions and sun exposure (e.g., impact on vitamin D 
levels, type and extent of physical and social activities, 
mood and stress (Keller et al. 2005)), exposure to “seasonal” 
infectious diseases (e.g., influenza), exposure to varying air 
quality (e.g., pollution or pollens (D’Amato et al. 2015)), 
as well as sample storing conditions which might fluctuate 
over the year (e.g., sample transport at higher temperatures 
during summer).

Gender and birth weight were not found to explain a 
significant part of the variance in the metabolomic profiles 
of newborn DBS samples in our study, despite the obvious 
connection between gestational age and birth weight. The 
gender misbalance which reflects the gender disparity in 
ASD (a quarter were girls) and small sample size could 
explain this finding. Some studies have indeed reported 
that the profile of newborn girls and boys differed in, for 
instance, blood amino acids and acylcarnitines (Ruoppolo 
et al. 2015), as well as urine profiles (Diaz et al. 2016). 
Despite our finding, we believe that gender and birth weight 
should be adjusted for and taken into consideration when 
designing metabolomics studies in newborns. Several of the 
tested confounders are inter-connected with, for instance, 
reports of more males being born preterm (Challis et al. 
2013) and females being born lighter (Wilkin and Murphy 
2006), both associations being explained by mechanisms 
that are likely to be reflected in the metabolome such as 
inflammatory response and insulin resistance, respectively.

Limitations and Strengths

To minimize the use of highly valuable and rare samples, 
we analyzed only 37 pairs of cases and controls in this 
study aiming at assessing the potential of DBS samples 
in ASD research. Despite the small sample size that did 
not confer enough statistical power for pinpointing strong 
marker metabolites of ASD, we could detect numerous 
metabolites associated with ASD in previous studies and 
identify a number of confounders to be considered in future 
untargeted metabolomics study using newborn DBS. Other 
confounders not evaluated in our study will need to be 
assessed in future studies, including metabolic changes 
in DBS associated with time and storage conditions. 
Hematocrit variation could not be measured in our study 
as we had access to only one punch of paper and did not 
have the possibility to measure a surrogate marker such as 
potassium in the same punch as done by others (Petrick 
et al. 2017). Furthermore, metabolites detected in this study 
are inherently reflective of sampling protocols, including 
extraction protocols and MS acquisition parameters, and 
should be interpreted within these limitations.

Conclusions

This is the first untargeted metabolomics study assessing 
the potential of biobanked newborn DBS samples in ASD 
research. The development of biobanks and reuse of sys-
tematically collected DBS samples for research purposes in 
connection with registry data represent many new oppor-
tunities to study the physiopathology and early signs of 
diseases, with extraordinary impacts in prevention, diag-
nosis, and treatment strategies. We showed that untargeted 
metabolomics on DBS samples offer a wide and relevant 
coverage of metabolites for the study of ASD and that the 
new processing tools used in our method largely expand the 
interpretability of such complex data.
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