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Human encroachment into wildlife gut
microbiomes
Gloria Fackelmann 1✉, Mark A. F. Gillingham 1, Julian Schmid1,2, Alexander Christoph Heni1,2,

Kerstin Wilhelm 1, Nina Schwensow1 & Simone Sommer 1✉

In the Anthropocene, humans, domesticated animals, wildlife, and their environments are

interconnected, especially as humans advance further into wildlife habitats. Wildlife gut

microbiomes play a vital role in host health. Changes to wildlife gut microbiomes due to

anthropogenic disturbances, such as habitat fragmentation, can disrupt natural gut micro-

biota homeostasis and make animals vulnerable to infections that may become zoonotic.

However, it remains unclear whether the disruption to wildlife gut microbiomes is caused by

habitat fragmentation per se or the combination of habitat fragmentation with additional

anthropogenic disturbances, such as contact with humans, domesticated animals, invasive

species, and their pathogens. Here, we show that habitat fragmentation per se does not

impact the gut microbiome of a generalist rodent species native to Central America, Tome’s

spiny rat Proechimys semispinosus, but additional anthropogenic disturbances do. Indeed,

compared to protected continuous and fragmented forest landscapes that are largely

untouched by other human activities, the gut microbiomes of spiny rats inhabiting human-

disturbed fragmented landscapes revealed a reduced alpha diversity and a shifted and more

dispersed beta diversity. Their microbiomes contained more taxa associated with domes-

ticated animals and their potential pathogens, suggesting a shift in potential metagenome

functions. On the one hand, the compositional shift could indicate a degree of gut microbial

adaption known as metagenomic plasticity. On the other hand, the greater variation in

community structure and reduced alpha diversity may signal a decline in beneficial microbial

functions and illustrate that gut adaption may not catch up with anthropogenic disturbances,

even in a generalist species with large phenotypic plasticity, with potentially harmful con-

sequences to both wildlife and human health.
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In today’s globalized world, the emergence of evermore zoo-
noses highlights the importance in understanding which fac-
tors facilitate the transmission of pathogens between wildlife

and humans1. Landscape-scale disturbances that reduce habitat
size and increase habitat isolation can change environmental,
ecological, and host genetic factors, which play important roles in
disease ecology2. Human activities that may lead to such a dis-
turbance are manifold and include habitat fragmentation and
isolation, whose negative impacts on wildlife health can be
amplified by additional factors, such as the presence of and
contact with humans3,4, domesticated animals5,6, invasive
species7, and pathogens7. Generalist species are often more resi-
lient to environmental changes, important pathogen reservoirs,
and sources of zoonotic diseases8,9. Examining their ability to
alter their gut microbial composition and its genes, known as
metagenomic plasticity, when faced with human-driven envir-
onmental changes could help to understand the dynamics of
emerging diseases from wildlife.

While adaptation is most commonly associated with host
genomics, the adaptive potential of the gut microbiome remains
understudied10. The gut microbiome is an integral part of an
animal’s well-being, as the microbial community provides
essential nutritional services and protection against gut-invading
pathogens to its host and is an important driver of mucosal
immunity maintaining gut homeostasis11,12. Consequently, shifts
in this symbiont’s diversity pattern beyond the normal range of
variation is linked to the health of its host13–15. These shifts can
be adaptive, indicating metagenomic plasticity, as well as mala-
daptive if they are associated with a decrease in beneficial func-
tions, an increase in pathogens causing disease, or a decline in
fitness10,16. The latter is often referred to as dysbiosis, though a
more detailed definition of the patterns of dysbiosis is lacking17.

In the Anthropocene, habitat fragmentation and other
anthropogenic disturbances threaten wildlife18. Their effects on
the gut microbiome have been studied together19–22, but there is a
gap in understanding if habitat fragmentation per se perturbs the
gut microbiome or if the amplification by additional anthro-
pogenic factors, such as contact with humans, domesticated
animals, invasive species, and pathogens poses a greater threat to
wildlife gut microbial health. Here, we studied the gut microbial
composition of 384 individuals of a generalist rodent species,
Tome’s spiny rat Proechimys semispinosus, in seventeen study
sites in three tropical landscapes differing in their degree of
anthropogenic disturbance in Panama, Central America. The
three landscapes encompassed: (1) protected continuous tropical
forests and (2) protected forested islands in the Panama Canal
that allow us to study the effects of fragmentation on its own—
both landscapes are largely undisturbed by human activities—and
(3) nearby unprotected forested fragments embedded in an
agricultural matrix that are subjected to further anthropogenic
disturbances in addition to habitat fragmentation. By comparing
both protected landscapes to heavily human-disturbed, frag-
mented sites, our unique study design allowed us to, first, pick
apart the effects of habitat fragmentation (i.e., habitat reduction
and isolation) from those of additional anthropogenic dis-
turbances (i.e., contact with humans, domesticated animals,
invasive species, and pathogens within an agricultural matrix) on
the gut microbiome and, second, to meticulously characterize the
changes in gut community composition and metagenomic func-
tional potential. Our results show that habitat fragmentation on
its own does not impact the gut microbiome of our generalist
study species. However, the gut microbiomes of individuals
inhabiting forest fragments embedded in an agricultural matrix
with additional anthropogenic disturbances had lower alpha
diversity, displayed a shift in community composition and
greater dispersion (i.e., increased heterogeneity) in gut microbial

community structure between individuals, along with a shift in
potential metagenome functions. In addition, we found that taxa
associated with both domesticated animals (and their pathogens)
were over-represented in these microbiomes. These findings
could be early warning signs of the gut microbiome’s loss of
resilience23. Considering its integral role in host health, such a
loss could not only be detrimental to wildlife health, but could
also promote microbial pathogens with zoonotic potential.

Results
Additional anthropogenic disturbance but not habitat frag-
mentation per se lowers gut bacterial diversity within indivi-
duals. To test if habitat fragmentation per se or additional
anthropogenic disturbance impacts the gut microbiome of a gen-
eralist species (Tome’s spiny rat) inhabiting lowland tropical rain-
forests in Central America (Supplementary Figs. 1 and 2), we first
calculated the diversity of microbes within each of the 384 sampled
individuals (i.e., the alpha diversity) using three metrics: the observed
number of amplicon sequence variants (ASVs), Shannon diversity,
and Faith’s phylogenetic diversity (PD). We used generalized linear
mixed models, which allowed us to control for the lack of inde-
pendence due to site-specific effects within landscapes and extraction
batches. Using model selection based on the information-theoretic
(IT) approach24, we found very strong support for an effect of
landscape on all three alpha diversity metrics: observed number of
ASVs (ΔAICC= 19.63, R2GLMM(m)= 0.473, R2GLMM(c)= 0.579,
Fig. 1a, Supplementary Data 1); Shannon diversity, in which alpha
diversity is weighted for abundance (ΔAICC= 5.84, R2GLMM(m)=
0.150, R2GLMM(c)= 0.171, Fig. 1b, Supplementary Data 2); and Faith’s
PD, which controls for phylogenetic relatedness (ΔAICC= 6.05,
R2GLMM(m)= 0.438, R2GLMM(c)= 0.480, Supplementary Fig. 3, Sup-
plementary Data 3). For all three alpha diversity metrics, this land-
scape effect was driven by a lower alpha diversity in forest fragments
surrounded by an agricultural matrix (landscape A, subjected to
additional anthropogenic disturbance) than in either protected con-
tinuous forests (landscape C, our control) or protected forested
islands (landscape I, subjected to fragmentation without further
anthropogenic disturbance, Supplementary Fig. 2) (observed number
of ASVs: βC= 242.4 (95% CI= 211.3–278.1), βI= 247.9 (95% CI=
203.6–301.9), βA= 202.4 (95% CI= 165.8–246.9); Shannon diversity:
βC= 4.453 (95% CI= 4.260–4.655), βI= 4.417 (95% CI=
4.054–4.813), βA= 4.053 (95% CI= 3.3707–4.430; Faith’s PD: βC=
21.61 (95% CI= 19.03–24.55), βI= 21.88 (95% CI= 18.15–26.38),
βA= 19.33 (95% CI= 15.99–23.36); Supplementary Data 4). Because
lower alpha diversity was observed in human-disturbed, fragmented
landscapes (A), but in neither of the protected landscapes with (I)
and without (C) habitat fragmentation, these results indicate that
habitat fragmentation per se does not impact gut bacterial diversity
within individuals, but that its combination with additional anthro-
pogenic disturbance does. Furthermore, the results suggest that this
effect may be driven more by rare taxa than abundant ones, since
the effect was less pronounced when accounting for abundance. The
effects of field season and sex were poorly supported by AICC model
comparison for any of the three alpha diversity metrics (Supple-
mentary Data 1–3). In addition, in all three alpha diversity models,
spatial autocorrelation between capture sites was poorly supported by
AICC model comparison (Supplementary Data 5) and, because
models including this parameter were less parsimonious than their
counterparts without the parameter, we opted against including this
parameter in our final alpha diversity models.

Additional anthropogenic disturbance but not habitat frag-
mentation per se causes both compositional shifts and greater
dispersion of gut bacterial community structures. Next, we
examined if and how habitat fragmentation and additional
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anthropogenic disturbances impact gut microbial diversity
between individuals, known as beta diversity. We first tested for
shifts in gut community composition by using the permutational
multivariate analysis of variance (PERMANOVA) test, which
tests if the centroids of all groups are the same. To account for the
lack of independence between study sites and landscapes, study
site was nested within landscape and passed through the ‘strata’
argument of the adonis function in the vegan package25. How-
ever, because the ‘strata’ argument impacts p-values but not the
calculation of AICC, we report results from both null hypothesis
significance testing and IT model selection. In addition, we report
Cohen’s d effect sizes and 95% confidence intervals26,27 calculated
using coordinates from the first two PCoA axes28. Again, using IT
model selection, we found strong support for an effect of land-
scape type on compositional shifts in beta diversity with regards

to both weighted (ΔAICC= 53.29, PCoA axis 1: Cohen’s dA-C=
−1.053 (95% CI=−1.332 to −0.771), Cohen’s dA-I=−1.110
(95% CI=−1.375 to −0.841), Cohen’s dC-I=−0.030 (95% CI=
−0.286 to 0.227); PCoA axis 2: Cohen’s dA-C=−0.904 (95%
CI=−1.176 to −0.629), Cohen’s dA-I=−0.847 (95% CI=
−1.100 to −0.593), Cohen’s dC-I= 0.109 (95% CI=−0.148 to
0.365); Fig. 1c, Supplementary Data 6) and unweighted UniFrac
distance metrics (ΔAICC= 21.74, PCoA axis 1: Cohen’s dA-C=
−1.501 (95% CI=−1.805 to −1.193), Cohen’s dA-I=−1.501
(95% CI=−1.790 to −1.208), Cohen’s dC-I= 0.058 (95% CI=
−0.198 to 0.314); PCoA axis 2: Cohen’s dA-C=−1.427 (95%
CI=−1.428 to −0.857), Cohen’s dA-I=−0.684 (95% CI=
−0.930 to −0.436), Cohen’s dC-I= 0.499 (95% CI= 0.233 to
0.763); Fig. 1d, Supplementary Data 7). This effect of landscape is
also supported by null hypothesis significance testing (weighted

Fig. 1 Additional anthropogenic disturbance influences gut microbial diversity and structure in the generalist spiny rat P. semispinosus. a, b Gut
microbial alpha diversity within spiny rat individuals inhabiting protected, continuous forests (control landscape C, green, n= 103 individuals), protected,
isolated forest fragments (islands) with no further anthropogenic disturbance (landscape I, blue, n= 136 individuals), and forest fragments embedded in an
agricultural matrix with additional anthropogenic disturbance (landscape A, orange, n= 145 individuals). Alpha diversity is measured by a the observed
number of ASVs (i.e., ASV diversity) and b Shannon diversity, which also accounts for species abundance. Boxplots display the median with the center line,
hinges represent 25th and 75th percentiles, and whiskers extend to 1.5 times the interquartile range. Each dot represents a sampled spiny rat individual.
c, d Principal coordinates analysis (PCoA) plots of the diversity between spiny rat individuals accounting for phylogenetic diversity and weighted (c) and
unweighted (d) for abundance using UniFrac distances. Each dot represents a P. semispinosus individual sampled in landscape C (green), landscape I (blue),
or landscape A (orange). Sample sizes in the PCoA plots equal to a and b. Ellipses indicate 95% confidence intervals. Inset boxplots show the weighted (c)
and unweighted (d) UniFrac distances to the study site centroids within each landscape (n= 89 individuals in C, n= 126 individuals in I, n= 107 individuals
in A). Boxplot parameters the same as in a and b.
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UniFrac: p < 0.001 for 9,999 permutations, R2= 0.142, F= 37.70;
unweighted UniFrac: p < 0.001 for 9,999 permutations, R2=
0.052, F= 11.37; Supplementary Data 8). Although both metrics
account for phylogenetic relatedness, weighted UniFrac takes
ASV abundance into consideration as well. These results show
that the gut bacterial community composition of spiny rats
inhabiting the disturbed forest fragments embedded in an agri-
cultural matrix was shifted in comparison to the microbial
community of spiny rats inhabiting protected landscapes with (I)
and without (C) habitat fragmentation, which themselves had
very similar microbial compositions (Fig. 1c and d, Supplemen-
tary Fig. 4). These results demonstrate that fragmented land-
scapes with additional anthropogenic disturbance (e.g., contact to
domesticated animals, invasive species, humans, and their
pathogens) can alter gut microbial community structures. This
shift is largely driven by changes in the most abundant gut
microbes, rather than differences in their presence or absence,
because the effect was strongest when accounting for abundance.

Next, we assessed if—in addition to shifting gut microbial
community composition—habitat fragmentation combined with
additional anthropogenic disturbance also impacted gut microbial
community dispersion by testing for differences in homogeneity
of variance between the landscapes using the distances calculated
by PERMDISP229. We found strong support for differences in
dispersion between the landscapes for both weighted (ΔAICC=
11.49, R2GLMM(m)= 0.339, R2GLMM(c)= 0.350, Fig. 1c insert,
Supplementary Data 9) and unweighted UniFrac distances
(ΔAICC= 4.10, R2GLMM(m)= 0.251, R2GLMM(c)= 0.271, Fig. 1d
insert, Supplementary Data 10), while accounting for study site-
specific effects (see Methods). These differences in variance were
driven by the forest fragments embedded in an agricultural matrix,
which had greater dispersion in beta diversity than study sites in
the continuous forests or on the forested islands (weighted UniFrac:
βC= 0.107 (95% CI= 0.093–0.122), βI= 0.104 (95% CI=
0.082–0.132), βA= 0.178 (95% CI= 0.138–0.230); unweighted
UniFrac: βC= 0.338 (95% CI= 0.326–0.350), βI= 0.335 (95%
CI= 0.310–0.361), βA= 0.379 (95% CI= 0.347–0.414); Supple-
mentary Data 11). These findings reveal that it is not the effect of
habitat fragmentation per se, but fragmentation in combination
with additional anthropogenic disturbance that causes greater
dispersion in community structure between individuals. This
suggests that human disturbances at the landscape level can both
shift gut microbial community structure and increase community
dispersion in wildlife gut microbiomes, even in generalist species
that are considered to be more resilient to environmental changes9.
In addition, the most abundant gut microbes, as opposed to more
rare taxa, had a stronger effect on these patterns of gut community
change. The effects of field season and sex for both PERMANOVA
and PERMDISP2 analyses were poorly supported by AICC model
comparison, regardless of the UniFrac metric used (Supplementary
Data 7-10). In addition, in all PERMDISP2 models, spatial
autocorrelation between capture sites was poorly supported by
AICC model comparison (Supplementary Data 12) and, because
models including this parameter were less parsimonious than their
counterparts without the parameter, we opted against including this
parameter in our final PERMDISP2 models.

Additional anthropogenic disturbance but not habitat frag-
mentation per se causes shifts in gut microbial community
structure and metagenome functions. We conducted an in-
depth analysis of compositional differential abundance to deter-
mine which taxa were driving the differences in beta diversity
between the forest fragments (A) and both protected landscapes
with (I) and without (C) fragmentation (landscapes I and C were
pooled together since the results from both the PERMANOVA

and PERMDISP2 tests showed that there were no statistically
supported differences in beta diversity between these landscapes).
To do so, we applied an analysis of composition of microbiomes
(ANCOM) test30 and found 142 ASVs across 33 taxa and nine
classes to be differentially abundant (at w > 95%, see Methods)
between the study sites in the fragmented forest landscape and
those in the protected continuous forests and forested islands
(Fig. 2). The taxonomic group with the greatest number of dif-
ferential ASVs was Allobaculum (34 ASVs, class Erysipelotrichia),
followed by the S24-7 family (23 ASVs, class Bacteroidia), and the
Gastranaerophilales order (12 ASVs, class Melainabacteria)
(Fig. 2a). On the one hand, several taxa containing differentially
abundant ASVs were over-represented in the protected landscapes
without additional anthropogenic disturbance (C and I), such as
Clostridium sensu strincto 1, Roseburia, and the Eubacterium
coprostanoligenes group. On the other hand, some ASVs belonged
to taxa that were over-represented in the fragmented landscape
with additional anthropogenic disturbance (A), such as Odor-
ibacter, Gastranaerophilales, and members of Mollicutes RF9.
While these and 17 other taxa were over-represented either in
landscapes C and I or in landscape A, the remaining ten taxo-
nomic groups did not show such a distinct division and instead
contained some ASVs that were more abundant in landscapes C
and I, while other ASVs were more abundant in landscape A, most
notably Allobaculum and the S24-7 family. More details are pre-
sented in the Supplementary Information. These results suggest
that the patterns of gut microbial community change observed
here may be driven by shifts in abundances of taxa already present
in the gut microbiome (Supplementary Fig. 5), along with both the
loss of certain (potentially commensal) species and the gain of
other (potentially pathogenic) species.

To better understand the shifts in genomic functional potential
between the microbiomes of spiny rats inhabiting protected versus
fragmented and anthropogenically disturbed landscapes, we used
PICRUSt231–34 in conjunction with ANCOM30. Four predicted
pathways were determined to be differentially abundant between
the protected landscapes (C and I) and the fragmented landscape
with additional anthropogenic disturbance (A; at w > 95%, see
Methods): pathway 1861 (formaldehyde assimilation II—RuMP
Cycle; Supplementary Fig. 6), pathway 2941 (L-lysine biosynthesis
II; Supplementary Fig. 7), the teichoic acid pathway (teichoic
acid (poly-glycerol) biosynthesis; Supplementary Fig. 8), and
pathway 7210 (pyrimidine deoxyribonucleotides biosynthesis
from CTP; Supplementary Fig. 9). Three of the four pathways
were predominately more abundant in landscape A (pathway
1861, pathway 2941, and the teichoic acid pathway; Supplemen-
tary Figs. 6–8), while pathway 7210 was predominately more
abundant in landscapes C and I (Supplementary Fig. 9). More
details are presented in the Supplementary Information. The taxa
associated with the differentially abundant predicted pathways
were the same as those belonging to the differentially abundant
ASVs identified in the previous paragraph, with the exception of
the additional taxa associated with pathway 7210 (Supplementary
Information; compare Fig. 2 to Supplementary Figs. 6–9).
Although these four predicted pathways were predominantly
more abundant in either landscape C and I or in landscape A,
there was no distinct pattern in which one particular pathway was
always more abundant in a certain landscape across all the taxa
containing that pathway, thus reflecting again the results based on
differentially abundant ASVs (compare Fig. 2a to Supplementary
Figs. 6a–9a). Altogether, this demonstrates that habitat fragmenta-
tion per se does not alter the gut microbial functional potential,
but that habitat fragmentation in combination with additional
anthropogenic disturbance does. In addition, the changes in
metagenome functions seem to be driven by shifts in the predicted
abundances of pathways already present in the gut metagenome.
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Discussion
Faced with global change in the Anthropocene, wildlife all over
the world has come under threat as humans advance further into
wildlife habitats35,36. Of increasing interest in conservation biol-
ogy is to understand the evolutionary responses of wildlife to
human-driven selection pressures18. Within this context, it has

been proposed that, although species may adapt over time under
selection of their genes, gut microbiomes may carry potent
adaptive potential due to the short generation times of microbes,
the possibility to transfer genes, and because of their sheer size in
numbers, meaning evolution can occur at a faster rate10. In this
study, we sequenced the gut microbiomes of 384 Tome’s spiny rat
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P. semispinosus individuals inhabiting three landscapes that dif-
fered in their degree of habitat fragmentation and further
anthropogenic disturbance. Our results show that the gut
microbiomes of spiny rat individuals inhabiting fragmented
landscapes with additional anthropogenic disturbance (such as
contact to domesticated animals, invasive species, humans, and
their pathogens) had lower alpha diversity and a shifted and more
dispersed gut bacterial community composition, indicating that
human disturbances at the landscape level can have both location
and dispersion effects on the gut microbiomes of wildlife, even in
generalist species that are considered to be more resilient to
environmental changes9. Habitat fragmentation alone, however,
had no supported effects on the gut microbiome of this generalist
rodent.

In this study, we observed two distinct patterns of gut
microbial community change in spiny rats inhabiting fragmented
landscapes with additional anthropogenic disturbance that were
not observed in spiny rats inhabiting protected landscapes
without additional human impact: gut microbial compositional
shifts and greater dispersion in beta diversity. The latter aligns
with the observations made by several studies that the microbial
composition of hosts with perturbed microbiomes often displays
greater heterogeneity of variance or greater dispersion, meaning
there are greater changes in microbial structure between
individuals14,15,37–43. This has been termed the Anna Karenina
Principle, derived from Leo Tolstoy’s famous novel of the same
name, which states that all healthy microbiomes are alike, while
perturbed microbiomes are all different41. This pattern of dis-
persion in the face of a stressor may be caused by stochastic i.e.,
random processes41. Such processes could be driven by the
random colonization of bacteria novel to the individual’s gut
microbiome in the anthropogenically more disturbed landscape
or by random extinction of resident bacteria in the face of novel
competition caused by some spiny rat individuals that come into
more intense contact with human activities than others, perhaps
due to the proximity of their home range to the edges between
the forest patches and the agricultural matrix humans live in.
This could cause a stochastic drift in the structural composition
of the gut microbiome, leading to a dispersed pattern in beta
diversity44.

Greater variation in beta diversity coupled with a reduction in
alpha diversity could be early warning signs of declining host
health23,41. Gut microbial maladaptation has been linked to
a wide range of diseases (ref. 16 and references herein) and
infections14,45 and may facilitate co-infections15. Wildlife health
and susceptibility to pathogens play important roles in the
Anthropocene, as humans come into increasing contact with
potentially maladaptive wildlife, which could lead to the trans-
mission of zoonotic diseases.

Community structure can be molded not only by stochastic
processes but also by deterministic ones (such as habitat specia-
lization or environmental filtering46; for an in-depth discussion on
the influence of stochastic versus deterministic effects on beta
diversity, see ref. 47), which may result in heterogeneous selection
depending on the environment48,49. Inhabiting the landscape

that is not only affected by fragmentation but also by further
anthropogenic disturbance—surrounded by a matrix composed of
patchworks of agricultural fields, various domesticated animals,
roads, and houses—could mean that individuals are subjected to a
heterogeneous palette of microbes, wherein each individual is
exposed to a unique composition of microbes. This can lead to a
dispersed pattern in beta diversity, driven by inter- and intras-
pecific competition among gut microbes together with the effects
of host mucosal immunity, which determine an individual’s
microbiome composition. This would be an example of hetero-
geneous selection49. We found a wide range of ASVs belonging to
taxa associated with domesticated animals to be over-represented
in the gut microbiomes of spiny rats in anthropogenically dis-
turbed landscapes. For example, members of the bacterial class
Mollicutes contain a wide range of agriculturally relevant patho-
gens, such as Mycoplasma bovis, a causative agent of pneumonia
and mastitis in cattle50,M. gallisepticum, a consequential pathogen
in poultry that causes chronic respiratory disease in chickens and
turkeys51, and M. suis, which causes anemia in pigs52. In addition,
hemotrophic mycoplasma are known to infect dogs and cats53,
while Odoribacter—isolated from the oral microbiomes of dogs
and cats—causes periodontitis in infected animals54, and the
family Erysipelotrichaceae has been linked to gut inflammation in
mice models and metabolic disorders in hamster models55.
However, these higher-ranking taxa do not only include pathogens
and since our results are based on 16S rRNA gene sequencing,
which rarely permits reliable taxa identification at the species level,
further investigations are required.

The shift in gut microbial community composition in spiny
rats inhabiting fragmented landscapes with additional anthro-
pogenic disturbance can be seen as further evidence of an
adaptive shift in microbiome composition41,49. We found that
some differentially abundant taxa, although present across all
landscapes, showed a shift in their abundance towards either the
two protected landscapes or the anthropogenically more dis-
turbed landscape. This supports the notion of the up- or down-
regulation of existing taxa in response to stressors, more than the
acquisition of novel or loss of established microbial members.
Among these taxa is the family S24-7, which is able to ferment a
wide range of carbohydrates, leading to the conclusion that it may
strive in several different niches in the gut environment56. In
addition, the genus Allobaculum has demonstrated rapid accli-
mation to changes in sugar availability by being able to quickly
assimilate added glucose, enabling it to take over cultured
microbiomes57. A. stercoricanis is the only species within the
genus Allobaculum and is not only a common member of the gut
microbiome of dogs, but also produces the short chain fatty acid
(SCFA) butyrate as a byproduct of fermentation58. Among other
functions, SCFAs play pivotal roles in maintaining gut health59.
Several of the ASVs that were over-represented in the protected
landscapes belong to taxa known for their production of short
chain fatty acids, such as Clostridium sensu strincto 1, Roseburia,
and the Eubacterium coprostanoligenes group60–63. Taken toge-
ther, this suggests a potential for gut microbial adaptability, which
could translate into increased metagenomic plasticity for this

Fig. 2 Differentially abundant ASVs between the protected landscapes (C and I) and fragmented landscape A with additional anthropogenic
disturbance identified by ANCOM. a The 142 ASVs out of a total of 4213 ASVs determined to be differentially abundant (at w > 95%) between landscapes
C and I (green) and landscape A (orange). Each dot is an ASV plotted in decreasing order by its coefficient with confidence intervals as 1.96 times the
standard error. Dots to the right of center zero in orange represent ASVs over-represented in landscape A, while dots to the left in green represent ASVs
over-represented in landscapes C and I. ASVs are grouped by most detailed taxonomic assignment. Taxa are colored according to class. b Volcano plots of
differentially abundant ASVs (at w > 80%) and those leading up to the determined cutoff value w0= 0.95 are displayed in a. Each dot represents an ASV
plotted by its F statistic as a measure of effect size and by its W value, which is a count of how many times the null hypothesis was rejected for that
particular ASV. The dots are colored by taxonomic class as in a.
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rodent host faced with the selective pressures of anthropogenic
disturbance.

Based on predicted pathway abundances, spiny rats show
potential for gut microbial metagenomic plasticity in response to
a more intense anthropogenic disturbance (but not habitat frag-
mentation per se). We found four predicted pathways that were
differentially abundant between landscape A and landscapes C
and I. The pathway over-represented in the protected landscapes
(pathway 7210: pyrimidine deoxyribonucleotides biosynthesis
from CTP) represents a salvaging pathway of free bases and
nucleosides to biosynthesize pyrimidine nucleotides, which can
be preferable to de novo biosynthesis pathways that require
more energy64,65. In contrast, the pathways over-represented in
the fragmented landscape with additional anthropogenic dis-
turbance (pathway 1861: formaldehyde assimilation II—RuMP
Cycle; pathway 2941: L-lysine biosynthesis II; and the teichoic
acid pathway: teichoic acid (poly-glycerol) biosynthesis) encom-
pass the synthesis of cell wall components65–69, which play a key
role in pathogenesis67,70, and the assimilation of formaldehyde71

generated during inflammation72 and during the oxidation of
methane65,71 (emitted in noninsignificant amounts by ruminant
livestock and their manure73). More details regarding the path-
way functions are presented in the Supplementary Information.
This could indicate selective pressures stemming from living in
the vicinity of methane-emitting livestock or from gut inflam-
mation in the spiny rats and a need for greater fortification of cell
walls, perhaps to enhance pathogen recognition. However, more
experimental evidence would be needed to demonstrate this and
it should be noted that the potential metagenomic functions of
the gut microbes in these spiny rats are derived from predicted
pathways based on short 16S rRNA amplicon sequencing. Fur-
thermore, the accuracy of these metagenomes is dependent on the
information annotated in databases, which do not encompass the
full range of possible bacterial functional capacity, especially for
lesser-known and understudied bacterial taxa. All four differen-
tially abundant pathways were present in spiny rat microbiomes
across all the landscapes, as opposed to certain pathways being
present exclusively in one landscape type. This supports the
notion of the up- or downregulation of existing pathways in
response to stressors, as was the case with the differentially
abundant microbes that, to a greater extent, reflected a shift in
their composition and, to a lesser extent, a gain or loss of specific
bacterial taxa.

In conclusion, although our results suggest that the gut
microbiome of the generalist spiny rat may possess the metage-
nomic plasticity to adapt to anthropogenic disturbances by
shifting its gut microbial composition and functional potential,
the increased variation and dispersion in gut microbial structure
following the Anna Karenina Principle suggest that this adapta-
tion may not be occurring fast enough. As human encroachment
into wildlife habitats increases, it remains to be seen if this
capacity for gut microbial adaptation can keep up with stacking
anthropogenic disturbances. It also highlights the urgency for
further studies to assess the generality of our results across a
broader range of mammalian species and geographic locations.
While the gut microbiome is a key component in host health and
likely plays a role in (wildlife) susceptibility to pathogens, the
direct mechanisms driving the gut microbiome’s potential role in
the transfer of zoonotic diseases to humans remains to be
elucidated.

Methods
Study area and sample collection. This study was conducted in the Panama
Canal area, Panama, Central America (Supplementary Fig. 1), a unique study area
which allowed us to distinguish between the effects of habitat fragmentation per se
(i.e., habitat reduction and isolation) from those of additional anthropogenic

disturbance (i.e., contact with humans, domesticated animals, invasive species, and
their pathogens within an agricultural matrix). The construction of the Panama
Canal over a century ago led to the flooding of the surrounding areas, resulting in
the isolation of mountain tops that became isolated, forested islands, which were
placed under protection that continues to this day. The Panama Canal is bordered
by similar tropical lowland rainforests (Barro Colorado Natural Monument) that
are also protected. Anthropogenic disturbance by agriculture and increased human
settlements in the north-east of the study area begins 25 km away from the pro-
tected forests74. The result is a unique arrangement of three different landscapes:
(1) continuous tropical forests that are largely undisturbed anthropogenically due
to their protected status (continuous forest, control group, C); (2) tropical forest
fragments in the form of forested islands surrounded by water (i.e., forest frag-
ments embedded in a water matrix) that are also protected and thus not subjected
to additional anthropogenic disturbance (forested islands, I), allowing us to study
the effects of fragmentation alone; and (3) unprotected fragmented tropical forests
embedded in an agricultural matrix (forested fragments in an agricultural matrix,
A) that are subjected to anthropogenic disturbances in addition to fragmentation
(Supplementary Fig. 2). This setup allowed for the categorization of these land-
scapes based on the matrices in which the forest patches are embedded. For the
continuous forests (landscape C), the protected forest “patches” are embedded in a
forest matrix, meaning there are no patches per se, but rather the forest is con-
tinuous, therefore this landscape is our control group. Although the islands (I) also
harbor protected forest patches like landscape C, these patches are embedded in a
matrix of water, since the islands are located in the Panama Canal, allowing the
study of fragmentation alone and not fragmentation in combination with addi-
tional anthropogenic disturbances. Finally, the forest fragments (landscape A) are
unprotected forest patches embedded in an agricultural matrix subjected to addi-
tional anthropogenic disturbance such as contact with humans, domesticated
animals, invasive species, and pathogens. The forest patches in all three landscapes
are tropical lowland rainforests. The difference between the landscapes lies in the
matrices, which are distinctly different (forest, water, and agriculture) and thus
allow the landscapes to be categorized into three groups (C, I, and A; Supple-
mentary Fig. 2).

For analysis of the gut microbiome, we sampled one of the most abundant
terrestrial mammal species common to all three landscapes, the generalist Tome’s
spiny rat Proechimys semispinosus75. This rather large rodent species, whose weight
can exceed 700 g76, primarily feeds on fruits and seeds and is thus an important
seed disperser in the tropics77,78. Tome’s spiny rat is solitary, though not territorial,
meaning home-ranges between individuals can overlap and individuals may share
or co-occupy burrows79. Similar to generalist rodents in temperate forests and
habitat generalists overall, this rodent species is able to adapt to and exploit
heterogeneity in its environment by, for example, adjusting its reproductive efforts
and output80. Within each landscape, rats were sampled in at least five different
study sites, all at a similar altitude near the Panama Canal (sites C1–C5 nC= 103,
I1–I6 nI= 136, and A1–A6 nC= 145, Supplementary Fig. 1). Spiny rat individuals
were live-trapped and fecal samples collected as described in detail in ref. 75. during
three field seasons (October 2013 to May 2014, October 2014 to May 2015, and
September 2016 to April 2017). In the field, fecal samples were stored in RNAlater
and transferred to −20 °C upon daily return back to the field station.

This study was carried out within the framework of the German Science
Foundation (DFG) Priority Program SPP 1596/2 Ecology and Species Barriers in
Emerging Infectious Diseases (SO 428/9-1, 9-2, with full ethical approval according
to the Smithsonian IACUC protocol 2013-0401-2016-A1-A7 and 2016-0627-2019-
A1-A2). Permission to export samples to Germany was granted by the Panamanian
government (SE/A-21-14, SE/A-69-14, SEX/A-22-15, SEX/A-24-17, SEX/A-120-16,
and SEX/A-52-17).

DNA extraction, PCR amplification, library preparation, and 16S rRNA gene
sequencing. DNA was extracted from fecal samples using the NucleoSpin Soil Kit
(Macherey-Nagel, Germany) following the manufacturer’s instructions. This pro-
tocol includes a bead-beating step to mechanically lyse bacterial cells using ceramic
beads that was carried out using the SpeedMill PLUS (Analytik Jena, Germany)
with two 3-minute cycles of bead-beating separated by a 3-minute resting period.
Following the manufacturer’s instructions, the supernatant was transferred from
the tubes with ceramic beads to new collection tubes following centrifugation and
prior to precipitation. The remaining steps were conducted according to the pro-
tocol instructions. Twelve extraction blanks containing only the extraction reagents
and no fecal matter were included throughout the entire extraction process and
subsequently sequenced.

Polymerase chain reaction (PCR) amplification and barcoding were conducted
in two steps (two-step PCR). In the first step, we targeted the 291 bp fragment of
the hypervariable V4 region located in the 16S rRNA gene using the universal
bacterial primers 515 F (5′-GTGCCAGCMGCCGCGGTAA-3′) and 806 R (5′-
GGACTACHVGGGTWTCTAAT-3′)81,82, appended with forward-primer CS1
adapters (CS1-515F) and reverse-primer CS2 adapters (CS2-806R) in order to use
Fluidigm chemistry (Access Array System for Illumina Sequencing Systems,
Fluidigm Corporation). PCR reactions of 10 µL consisted of 200 nM primers
(pooled forward and reverse primers), 5 µL AmpliTaq Gold 360 Master Mix, 1 µL
extracted DNA sample, 1 µL DNA template (5–10 ng), and dH20. PCR conditions
were as follows: initial denaturation at 95 °C for 10 min, 30 cycles at 95 °C for 30 sec
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for denaturation, 60 °C for 30 sec for annealing, and 72 °C for 45 sec for elongation,
followed by a final elongation at 72 °C for 10 min. PCR success for each individual
sample was verified using gel electrophoresis.

In the second PCR step, the CS adapters were attached to sample-specific
primer pairs that contained 10 bp barcodes and adapter sequences used for
Illumina sequencing. PCR reactions of 20 µL consisted of 4 µL (400 nM) barcode
primers (pooled forward and reverse primers), 10 µL AmpliTaq Gold 360 Master
Mix, 3 µL amplified DNA from PCR step one, and dH20. PCR conditions were as
above, but included 10 cycles instead of 30. Throughout all PCR steps, negative
controls containing only the reagents were included and subsequently sequenced. A
detailed description of the library preparation is provided in ref. 83. In short, 403
fecal samples, 12 extraction blanks, and eight PCR controls were paired-end
sequenced using our in-house Illumina MiSeq sequencing platform at the Institute
of Evolutionary Ecology and Conservation Genomics, Ulm University, Germany.

Bioinformatics. To process the reads from Illumina amplicon sequencing, we used
the DADA2 plug-in within QIIME 2 (version 2018.6.0)84, which encompasses
primer removal, denoising, chimera removal, and merging of paired-end reads85.
DADA2 detects rare variants that differ by only one nucleotide and assembles these
into ASVs86. The median sequencing depth after DADA2 was just under 26,000
reads per sample. Following denoising, ASVs were taxonomically assigned using
the regularly updated SILVA database (v128)87–89 via the classify-sklearn function
in QIIME 2 with its default confidence value settings (0.7)90. ASVs which could not
be assigned to any known bacterial sequences at the domain and phylum levels, as
well as ASVs identified as chloroplast or mitochondrial sequences were excluded
from the analysis. An unrooted, phylogenetic tree was then constructed using
FastTree (version 2.1.10 Double precision)91 and rooted in Dendroscope (version
3.5.10)92 using an added archaeon sequence (accession number: KU656649) as the
outgroup that was later removed. The sample metadata, the taxonomy table
including read counts, and the rooted tree were imported into R93 (version 3.6.1)
using the phyloseq package94 (version 1.28.0). All further analyses, unless otherwise
stated, were performed using R93.

Once imported from QIIME 2 into R, the extraction blanks and PCR controls
contained 90 out of a total of 5633 taxa. Of the 90 taxa, 65 were unique to the
blanks/controls and subsequently removed from the dataset. We filtered all ASVs
with fewer than 20 reads in total (total abundance) and that were present in less
than 2% of all samples (prevalence) from the dataset prior to further downstream
analyses. This removed 6 of the remaining 25 ASVs in the blanks/controls. Using
prevalence-based contaminant identification with the default threshold of 0.1 from
the decontam package95 (version 1.4.0), three of the remaining 19 ASVs were
identified as possible contaminants and subsequently removed from the dataset.
We used both QIIME 2 and the rarecurve function from the vegan package25

(version 2.5.5) to generate alpha diversity rarefaction curves, which yielded
comparable results. Based on these curves, we set the sequencing depth threshold at
5000 reads per sample and thus eliminated samples with fewer than 5000 reads
from downstream analyses, leaving us with a total of 384 fecal samples.

Statistics and reproducibility
Alpha diversity. To determine intraindividual diversity, we calculated three alpha
diversity measures: observed number of ASVs (observed ASVs), Shannon
diversity96, which takes abundance into account, and Faith’s phylogenetic diversity
(PD), which also accounts for phylogeny97. Using generalized linear mixed models
(GLMMs) from the lme4 package98 (version 1.1.21), we modeled alpha diversity
according to landscape (landscape C, landscape I, and landscape A) and sequencing
depth to account for differential sequencing effort between samples99. In addition,
we included the variables sex (female, male, or unknown) and field season (2013/
2014, 2014/2015, or 2016/2017), as there is evidence to suggest that these factors
could influence the gut microbiome100–102. To facilitate model convergence,
sequencing depth was scaled. To control for the lack of independence between
study sites and extraction batches (two extraction batches), we set study site nested
within landscape as well as extraction batch as (separate) random factor variables.
To ensure that estimates were not inflated by collinearity between explanatory
variables, we checked variance inflation factors, which were all below a value of
two, indicating low collinearity103. We used a negative binomial error distribution
when modeling the count data (observed ASVs) and a gamma distribution with a
log link function when modeling the continuous data (Shannon diversity and
Faith’s PD). Model selection was based on the information-theoretic (IT) approach
using a second order Akaike’s information criterion corrected for small sample
sizes (AICC) as an information criterion and Akaike weights (ω) to determine
model support24. For all GLMMs, we report both conditional and marginal coef-
ficients of determination of each model (R2GLMM(c), which explains the variance of
both the fixed and random factors, and R2GLMM(m), which explains the variance of
the fixed factors only)104, which we calculated as the variance explained by the best
model, the ΔAICC, conditional parameter estimates (β), and 95% confidence
intervals (95% CI) using model averaging with a cumulative AICCω of 95%24. In
the main body of the article, we present back-transformed parameter estimates and
95% confidence intervals for models with a log link function, while the log
transformed versions of these values are presented in the Supplementary Data.
Finally, we tested for spatial autocorrelation between the capture sites using a

spatial exponential covariance structure on the scaled capture site coordinates in
each of the three alpha diversity models using the glmmTMB package105 (version
0.2.3).

Beta diversity. To assess the gut bacterial community composition between indi-
viduals, we calculated weighted and unweighted UniFrac distance matrices using
the phyloseq package94, which both take phylogenetic relatedness into considera-
tion and, in the case of weighted UniFrac, weighs this information according to
abundances106,107. We tested for differences in beta diversity between the three
landscapes using the permutational multivariate analysis of variance (PERMA-
NOVA) test implemented in the adonis function of the vegan package25,108. The
fixed variables in our full model were: landscape, sex, field season, extraction batch,
and sequencing depth. In addition, we nested study site within landscape and
passed the factor site through the ‘strata’ argument to block permutations within
this nested group. We retained extraction batch in our full model to statistically
account for its model support (Supplementary Data 6 and 7). We then passed every
possible combination of our full model through the adonis function to generate a
model selection table sorted according to AICC values (as described above), which
we calculated using the AICC equation24 with input values from the ‘residuals’ and
‘sum of squares’ output of the adonis function. We report coefficients of deter-
mination of each model (R2). We also report Cohen’s d effect sizes and 95%
confidence intervals26,27 calculated using coordinates from the first two PCoA
axes28. In addition to building a model selection table sorted according to AICC

values, we also subjected this PERMANOVA test to null hypothesis significance
testing with 9999 permutations and present p-values, F-values, and R2. We did this
because blocking permutations within capture sites using the ‘strata’ argument in
adonis only affects p-values. This means that in our AICC calculations we are only
partially able to account for any potential spatial effects driven by capture sites by
nesting capture site within landscape.

We investigated the homogeneity of the variances of each landscape using the
PERMDISP2 test implemented in the betadisper function of the vegan package
using the distance to the spatial median within study sites25,29. Because
PERMDISP2 is sensitive to unbalanced study designs, using the distance to
centroid within study site enables to accurately reflect the strong effect of study
site-specific heterogeneity (while retaining variation within and across sites) and to
control for bias in estimates due to variation in sample sizes between study
sites29,109. To account for bias due to small sample sizes within study sites, we only
included study sites for which we had data for 15 or more individuals (C1–C4
nC= 89, A2–A3 nA= 107, and I1, I3–I6 nI= 126, ntotal= 322 individuals)25,109.
We then modeled the distances to the centroids using GLMMs from the lme4
package98 with a gamma distribution and log link function for continuous data.
The explanatory variables and random factor variables were the same as described
above for the alpha diversity metrics, as was the model selection process and the
testing for spatial autocorrelation between the capture sites.

Because population density can affect the gut microbiome in its diversity and
structure110, we initially included this explanatory variable (number of P.
semispinosus individuals per hectare, scaled) in our alpha and beta diversity
analyses. However, controlling for host density did not quantitatively change our
results (compare Supplementary Data 1-4 and 6-11 to Supplementary Data 13-22)
and, in order to not overparameterize our models, we chose to exclude this variable
in our final analysis, though we present the results in the Supplementary
Information.

Differential abundance analysis. For an in-depth investigation of the ASVs driving
the differences between landscapes, we implemented the analysis of composition of
microbiomes (ANCOM) test, which was developed specifically for microbiome
analyses and which we chose because of its merits of being conservative and
boasting low false discovery rates compared to other differential abundance
tests30,111. Since the results from both the PERMANOVA and PERMDISP2 tests
showed that there were no statistically supported differences in beta diversity
between the protected continuous forests (landscape C) and the protected forested
islands (landscape I; see Results), there was no biological reason to treat these
landscapes differently and, thus, we pooled these two landscapes together to
compare them against the unprotected forest fragments embedded in an agri-
cultural landscape (landscape A) to understand the effects of additional anthro-
pogenic disturbance. Since landscape was the only fixed parameter to consistently
affect beta diversity and to take full advantage of ANCOM’s strength as a non-
parametric differential abundance test (i.e., a conservative test that does not make
any assumption of parametric distributions)30, we ran the function with only
landscape as an explanatory variable. As is recommended for large microbiome
datasets, we ran ANCOM choosing a moderate correction parameter, which
applies the Benjamini–Hochberg (BH) procedure to correct for multiple
testing30,112. In addition, we determined ASVs for which the null hypothesis was
rejected with a rate of at least 95% (cutoff value w0= 0.95) to be differentially
abundant. In order to plot the differentially abundant ASVs in a volcano plot, we
adapted code from the QIIME 2 plug-in for compositional data analysis q2-
composition84 to run in R and extracted F values from the ANOVA ran on each
ASV based on centered log-ratio transformations (clr) of the ASV table. We also
extracted model parameter estimates and standard errors in order to show which
ASVs were more or less abundant in each landscape type.
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Predicting microbial genomic functional potential. After establishing which
ASVs were differentially abundant between the disturbed and undisturbed land-
scapes, we implemented the stand-alone PICRUSt231–34 (version 2.1.4-b) to predict
metagenomes based on our 16S rRNA gene amplicons. To determine which pre-
dicted pathways were differentially abundant between the disturbed and undis-
turbed landscapes, we first generated unstratified pathway abundances (i.e., a
“compressed” table listing the predicted abundances of each pathway, combining
all the ASVs contributing to each pathway) based on community-wide pathway
abundances (i.e., abundances per pathway versus per ASV) and input these into
ANCOM using the same parameters and procedure as described above. To elu-
cidate which ASVs within each of the identified pathways were differentially
abundant between the disturbed and undisturbed landscapes, we then generated
stratified pathway abundances (i.e., an “expanded” table listing the predicted
abundances of each ASV within each pathway) based on community-wide pathway
abundances. Due to the large size of our dataset, we were forced to divide our
dataset into smaller parts based on samples (not ASVs), running approximately
100 samples in each run. We then combined the outputted tables of each run and
filtered the combined table according to the previously identified differentially
abundant pathways. The table of predicted abundances for each pathway was then
input into ANCOM using the same parameters and procedure as described above.
We also added taxonomic assignments to each ASV and removed pathways that
are not known to occur in bacteria. We visualized the results as described in the
previous paragraph, resulting in one plot per pathway showing, for each pathway,
which ASVs were more or less abundant in which landscape along with the
taxonomic identification for each ASV.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Microbiome sequences are deposited on NCBI under the accession code PRJNA715350
(https://www.ncbi.nlm.nih.gov/bioproject/PRJNA715350).

Code availability
The scripts for our analysis are stored on GitHub (https://github.com/gfackelmann/
human-encroachment-into-wildlife-gut-microbiomes) and archived in Zenodo under the
citable https://doi.org/10.5281/zenodo.4725220113.
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