Skip to main content
. 2021 Jun 25;11:13323. doi: 10.1038/s41598-021-92725-8

Table 3.

LUAD and LUSC Classification Statistics.

Feature selection method Accuracy Specificity Sensitivity Precision F-measure 95% Bootstrap confidence interval
DGE (Top 500) 0.932476 0.901235 0.966443 0.9 0.932039 (0.9035, 0.9614)
PCA (Top 500) 0.942122 0.901235 0.986577 0.90184 0.942308 (0.9132, 0.9678)
mRMR (Top 500) 0.916399 0.888889 0.946309 0.886792 0.915584 (0.8842, 0.9453)
Lasso (68 Genes) 0.938907 0.907407 0.973154 0.90625 0.938511 (0.9100, 0.9646)
Xgboost (148 Genes) 0.935691 0.901235 0.973154 0.900621 0.935484 (0.9068, 0.9614)
Overlapping 131 Genes 0.938907 0.895062 0.986577 0.896341 0.939297 (0.9100, 0.9646)
17 Proposed Biomarkers 0.92926 0.889 0.9735 0.88957 0.9296 ( 0.9003, 0.9550 )