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Abstract: Strigolactones (SLs) have been implicated in many plant biological and physiological
processes, including the responses to abiotic stresses such as drought, in concert with other phytohor-
mones. While it is now clear that exogenous SLs may help plants to survive in harsh environmental
condition, the best, most effective protocols for treatment have not been defined yet, and the mech-
anisms of action are far from being fully understood. In the set of experiments reported here, we
contrasted two application methods for treatment with a synthetic analog of SL, GR24. A number of
morphometric, physiological and biochemical parameters were measured following foliar application
of GR24 or application in the residual irrigation water in winter wheat plants under irrigated and
drought stress conditions. Depending on the concentration and the method of GR24 application,
differentiated photosynthesis and transpiration rate, stomatal conductance, leaf water potential,
antioxidant enzyme activities and yield in drought conditions were observed. We present evidence
that different methods of GR24 application led to increased photosynthesis and yield under stress
by a combination of drought tolerance and escape factors, which should be considered for future
research exploring the potential of this new family of bioactive molecules for practical applications.

Keywords: drought; foliar application; GR24; irrigation; strigolactone; wheat

1. Introduction

Strigolactones (SLs) are a structurally diverse class of carotenoid-derived signaling
molecules. For about four decades, SLs have been known as root exudate components
and germination stimulants for seeds of parasitic plants, an obviously detrimental role to
the producing plant. In 2005, they were proven to boost hyphal branching in arbuscular
mycorrhizal fungi, thus stimulating symbiosis establishment. Since 2008, they have been
recognized as a family of phytohormones, for which the first assigned endogenous role was
in the inhibition of shoot branching/tillering (for a comprehensive review, see [1]). Since
then, many additional effects have been added, such as the promotion of secondary shoot
growth and leaf senescence, the inhibition of adventitious rooting [2] or the stimulation of
lateral root density and epidermal cell length [3], as well as crop yield and seed quality [4].
Furthermore, it is now becoming apparent that SLs contribute to long-term survival in
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various harsh environmental conditions [5]. For example, as mentioned above, when
roots produce and release SLs into the soil as they do especially under nutrient-limiting
conditions, they promote the symbiosis with beneficial fungi [6] and thus, indirectly
improve their own nutrition [7]. It is also suggested that SLs are important for direct
acclimation responses and plant plasticity in response to nutrient availability, notably by
inhibiting branching/tillering and shaping root architecture under low nutrients [8].

During drought acclimation, a complex crosstalk between SLs and ABA (abscisic acid)
has been highlighted [5], with important differences depending on the organ (root vs shoot)
and on the type of plant (monocot vs dicot). In rice, SLs seem to inhibit ABA synthesis,
and thus, most SL-related mutants are reported as drought resistant [9]; however, it is not
known what the short- or long-term effects of exogenous SLs—such as the synthetic analog
GR24—would be on stomatal conductance or stress responses and general performance of
monocots; only in winter wheat, initial studies from our group and others have highlighted
a promotion of drought tolerance by GR24 treatment [10,11]. In dicots, the picture seems
more nuanced. SL production in tomato (Solanum lycopersicum L.) and Lotus japonicus
roots decreases, possibly to allow locally for the physiological increase of ABA [12]. In
shoots, all data converge instead in showing that SLs play a positive role in drought stress
tolerance and avoidance [13,14]. SL-depleted Arabidopsis thaliana (Arabidopsis), tomato
and L. japonicus exhibit higher sensitivity to drought stress in comparison to wild-type
plants [13,15,16]. In Arabidopsis, the application of GR24 rescues the drought sensitive
phenotype of SL-depleted mutants and increases the drought tolerance of wild-type plants
over the level of the untreated control [13]. In tomato and Arabidopsis, GR24 induces a
transient stomatal closure that was proven, in the latter, to be independent of ABA [14,15];
on the other hand, endogenous SLs are clearly able to increase stomatal sensitivity to
and/or movement of ABA in leaf tissues of dicots [12–14,16].

SL signaling has been also associated with reactive oxygen species (ROS) responses
in plants [17]. In a previous research on winter wheat (Triticum aestivum L.) plants, foliar
application of GR24 has been shown to increase antioxidant enzymes activity and to
decrease malondialdehyde, which are signs of a higher plant potential for drought tolerance;
however, no information on the deployment of stress avoidance mechanisms (e.g., stomatal
closure) or escape (e.g., higher biomass allocation to the roots) are available in wheat or
other monocots [10].

Thus, because of their intriguing biological properties, SLs are attracting interest not
only in basic plant biology research but also for their great potential for applications in
agriculture. They indeed can be seen as tools to manipulate shoot and root architecture,
to stimulate root colonization by arbuscular mycorrhizal fungi and enhance plant nutri-
tion; they have been also proposed as tools to manage drought resilience [5,18]. In this
regard, understanding their effects on plant physiology and biochemistry, along with
the practicalities of their application on different crops under various conditions relevant
for commercial production, may lead both to insights into how plants cope with harsh
environmental conditions such as drought, as well as to agricultural innovations. In this
manuscript, we focused on trials in which the effectiveness of the synthetic SL analog GR24
to improve winter wheat performances under drought was investigated. Namely, two
possible application methods for GR24 were compared: by leaf spraying or by delivery
via irrigation water. In parallel, the effects of such treatments on physiological and bio-
chemical parameters important for crop performances under stress were investigated. The
results provide further insights into the direct effect of SLs on the antioxidant machinery
in a monocot plant and suggest potential translational avenues for the application of SL
research in agriculture.

2. Results and Discussion
2.1. Plant/Atmosphere Gas Exchanges Are Altered by GR24 Treatments

Data collected in this work about photosynthesis rates indicated that both GR24
application methods led to a less strong reduction in this parameter under drought stress
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(Figure 1a); for a comparison with the values in irrigated samples, see Supplementary
Materials Figure S1a. The effect was more marked in plants that had received GR24 in the
residual irrigation water than as foliar spray (p ≤ 0.05). So, GR24 treatment mitigates the
detrimental effect of drought on photosynthesis.
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tial (e) and substomatal CO2 levels (Ci) (f) in wheat plants in response to two methods of GR24 application under drought 
stress conditions. Mock-treated plants in these graphs were equally drought-stressed but received a water and acetone 
solution; for irrigated control values, see Supplementary Materials Figure S1. Each value represents the mean ± SE (n = 4, 
each replicate the pool of four plants). Different letters on top of bars indicate significantly different means for p ≤ 0.05 
(LSD test). 

As highlighted in the introduction, SLs have been demonstrated to affect stomatal 
closure with different outcomes in monocots and dicots. While data in dicots largely sup-
port the hypothesis that SLs promote stomatal closure in ABA-dependent and independ-
ent ways [13,15] and excess SLs leads to better performances under stress also via higher 
sensitivity to ABA [4,23], a different pattern has been suggested in monocots. In rice leaves 
for example, ABA synthesis appears to be repressed by endogenous SLs, and stomatal 
limitation is decreased under osmotic stress in response to GR24 [9]. It must be noted here 
that the application of GR24 in the absence of drought stress did not significantly alter 

Figure 1. Photosynthesis rate (a), stomatal limitation (b), stomatal conductance (c), transpiration rate (d), leaf water potential
(e) and substomatal CO2 levels (Ci) (f) in wheat plants in response to two methods of GR24 application under drought stress
conditions. Mock-treated plants in these graphs were equally drought-stressed but received a water and acetone solution; for
irrigated control values, see Supplementary Materials Figure S1. Each value represents the mean ± SE (n = 4, each replicate
the pool of four plants). Different letters on top of bars indicate significantly different means for p ≤ 0.05 (LSD test).

Photosynthesis rates strongly depend on stomatal conductance, and stomatal conduc-
tance correlates negatively with stomatal limitation and CO2 availability to fixation [19–21].
Thus, it was of interest to determine whether the application of GR24 affects not only



Plants 2021, 10, 1223 4 of 13

photosynthesis but also these other parameters. Gas exchange data indicated that mock-
treated, drought-stressed plants (Figure 1b) had higher stomatal limitation compared to
unstressed controls (Supplementary Materials Figure S1b) but also that GR24 could bring
stomatal limitation down both if delivered via the residual irrigation water and—though
less pronounced—via foliar application (p ≤ 0.05) (Figure 1b; both under stress). The
stomatal limitation in stressed plants treated with 10 µM GR24 in the residual irrigation
water was close to the unstressed control values (Supplementary Materials Figure S1b).
Consistently, stress reduced stomatal conductance and transpiration rates (Supplementary
Materials Figure S1c,d) but less so in GR24-treated than mock-treated plants; the effect was
stronger if GR24 had been delivered via the residual irrigation water (Figure 1c,d).

Leaf water potential is considered a measure of the water status of a plant [22]. Thus,
leaf water potential values were compared in unstressed controls (Supplementary Materials
Figure S1e) and stressed plants (Figure 1e) that had been mock treated or had received
GR24 via the residual irrigation water or foliar application. The data showed that in
stressed plants, leaf water potential values were less negative in GR24-treated plants with
either method than in mock-treated plants. However, this change was more pronounced in
plants treated via foliar application (Figure 1e). Thus, while stomatal limitation was higher
(and stomatal conductance lower) upon foliar than irrigation application of GR24, leaf
water potential was less negative after the former than the latter treatment. This led to an
apparent contradiction between the higher stomatal conductance and less negative water
potential values in stressed plants treated with GR24 vs untreated. To try and explain it,
we estimated via the LI-COR software the intercellular (substomatal) CO2 concentration of
leaves (Ci), which is a critical parameter in photosynthesis and stomatal conductance. The
results showed that in stressed and GR24-treated plants, Ci values decreased in comparison
with equally stressed but mock-treated plants, and that the decline was sharper when
GR24 had been added to the residual irrigation water (Figure 1e). It is noteworthy that also
in unstressed controls, photosynthetic rates in GR24-treated plants showed an increasing
trend that became statistically detectable at 10 µM (Supplementary Materials Figure S1a).

As highlighted in the introduction, SLs have been demonstrated to affect stomatal
closure with different outcomes in monocots and dicots. While data in dicots largely sup-
port the hypothesis that SLs promote stomatal closure in ABA-dependent and independent
ways [13,15] and excess SLs leads to better performances under stress also via higher
sensitivity to ABA [4,23], a different pattern has been suggested in monocots. In rice leaves
for example, ABA synthesis appears to be repressed by endogenous SLs, and stomatal
limitation is decreased under osmotic stress in response to GR24 [9]. It must be noted
here that the application of GR24 in the absence of drought stress did not significantly
alter stomatal conductance, measured 48 h after treatment (see Supplementary Materials
Figure S1b). It is possible that if a transient, direct effect on stomata was induced under
non-stressing conditions, it was already undetectable 2 days after treatment, as reported
for other plants. Alternatively, SLs may have a similar antagonistic relationship with ABA
in wheat as they have in rice, and the higher stomatal conductance and transpiration in
our GR24-treated wheat leaves may be due to a decrease in endogenous ABA. This is an
issue of high importance that would deserve further, dedicated investigation; however,
the less negative water potential in GR24-treated plants vs untreated argues against this
hypothesis. On the other hand, the higher stomatal conductance in GR24-treated plants
upon drought stress could be driven by the lower Ci values. Hence, our results also imply
that the application of GR24 could alleviate the drop in photosynthetic performances due
to drought stress [23] in wheat, and that this, in turn, tends to keep stomata open to keep
up the CO2 supply.

A lower need to deploy stress avoidance strategies such as stomatal closure may be
due to increased tolerance via better strain mitigation or stress escape via better water
capture, and these strategies may not be necessarily deployed to the same extent in different
species or genotypes within the same species. For example, Zivcak et al. (2008) [24] have
compared several winter wheats genotypes in drought conditions, and they have found
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that the genotypes differed in stomatal conductance, and hence in the CO2 assimilation
rate. Genotypes with higher drought tolerance also display a delayed stomatal closure
and higher stomatal conductance caused mainly by higher osmotic adjustment; this leads
to higher net assimilation rate and higher production of assimilates and consequently
higher yield. The ability to maintain turgor under water deprivation in spite of a relatively
sustained gas exchange rates is what we observe especially for plants to which GR24
was delivered with the residual irrigation water. It should be noted here that stomatal
conductance can be affected by osmolyte adjustment or changes in temperature, as proved
in van ‘t Hoff equation. In our previous experiments with GR24, we could indeed observe
higher proline concentrations in winter wheat plants that had received GR24 [10]. However,
whether or not osmotic adjustment is different in GR24-treated plants, water availability
should be increased in the leaves of the plants that were treated with GR24 in the irrigation
water, to justify the more negative water potential than leaf-sprayed plants combined with
higher stomatal conductance.

2.2. GR24 Treatment Increases Root Biomass, Root-to-Shoot Ratio and Yield in Winter Wheat

One of the most parsimonious hypotheses to be explored in order to explain a higher
water availability in GR24-treated plants, especially in the group treated via the residual
irrigation water, could be more performant roots that are better at water capture. This
could be achieved via a relatively larger root apparatus and/or lower tissue resistance to
water flow, for example by increased aquaporin activity. While we have no direct molecular
indication on the latter hypothesis in our experimental system, aquaporin genes have been
found to be dysregulated in SL-related Arabidopsis mutants undergoing drought [13],
making this point worthy of investigation. Concerning the former hypothesis, the root
and shoot dry weight (g per plant) of all treatments were measured in both irrigated and
drought stress conditions in our experiment. The results showed higher root weight in
GR24-treated plants, with root dry weight greater in plants that had received GR24 with the
irrigation water (Figure 2a), and the same trend was true for shoots (Figure 2b). Moreover,
the extent of weight gain was higher in roots than shoots of plants that had received GR24
in the residual irrigation water, thus increasing their root-to-shoot ratio (Figure 2c). Note
that a similar pattern is visible also in the absence of stress (Supplementary Materials
Figure S2). GR24-treated plants had also a higher yield than untreated controls (Figure 2d,
Figures S2 and S3).

Thus, the skewed resource allocation towards the roots and the higher water availabil-
ity this entails for the shoots, coupled to the lower Ci values reported in Figure 1e for the
GR24-treated plants (especially if in their residual irrigation water), may contribute to the
marked water-spending behavior displayed by the latter group, which kept their stomata
more open than untreated controls irrespective of their water potential.

2.3. GR24 Treatment Decreases Hydrogen Peroxide (H2O2) Content

As a byproduct of oxidative aerobic metabolism, H2O2 is continuously produced
in plants under stress [25]. Additionally, one of the adverse consequences of any stress,
including drought, is an accumulation of cellular ROS, which will be converted to H2O2
in the enzymatic scavenging process. H2O2, as a ROS, functions in signal transduction
pathways and gene expression modulation in plants under abiotic stresses [26]. The H2O2
content in wheat plants was significantly decreased by the application of GR24 under
drought stress, compared to mock-treated plants (p ≤ 0.05). The lowest H2O2 content
was observed in plants that received 10 µM GR24 via the irrigation water (Figure 3); a
similar, though less marked pattern, was visible in unstressed control plants treated with
the highest GR24 concentration (Supplementary Materials Figure S4). As it is known
that H2O2 in guard cells promotes ABA-regulated stomatal closure [27], lower H2O2 in
GR24-treated leaves could be (in principle, and if reflected in guard cells) a contributing
reason for higher stomatal conductance.
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2.4. Antioxidant Enzymes Activity

Drought stress or other environmental challenges induce metabolic imbalances that
can cause oxidative stress in plant cells. To cope with such stress, plants usually rely on
antioxidant defenses, which can be enzymatic or non-enzymatic. The former are usually
considered as the most effective; the major enzymatic categories involved are superoxide
dismutase (SOD), ascorbate peroxidase (APX), peroxidase (POX), and catalase (CAT). The
latter two rapidly get rid of excess H2O2 presumably to allow low steady-state levels in
pathways of redox signaling. CAT is considered as an essential element for the removal
of H2O2 produced in the peroxisomes during photorespiration [28]. Furthermore, SOD
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catalyzes the superoxide radical conversion to H2O2, and POX uses H2O2 for substrate
oxidation in the cytosol, vacuole and cell walls [29]. Moreover, in wheat plants, it has been
proposed that all environmental cues including drought [30] induce oxidative damage, em-
phasizing the importance of regulating the antioxidant system efficiently to cope with these
abiotic stresses. In this regard, the maintenance of high levels of antioxidants is considered
beneficial for the plant, which thereby becomes able to counter the negative effects of
ROS [30]. In our experiments, we observed an overall clear trend towards the induction of
antioxidant enzymatic activities in leaves of GR24-treated plants under drought stress. The
results are shown in Figure 4: application of GR24 with the residual irrigation water signif-
icantly enhanced the activities of antioxidant enzymes in all treatments (p ≤ 0.05), with
the 10 µM concentration being the most effective. On the other hand, foliar application of
GR24 induced a significant difference in comparison with mock-treated, drought-stressed
plants for all measured antioxidant activities, except APX, only at the higher concentration
(10 µM). As expected, a negative correlation between H2O2 content (Figure 3) and antiox-
idant enzymes activities was observed, especially the H2O2-scavenging CAT and APX.
These results show that the application of GR24, especially via the roots, might help wheat
plants to attain higher drought mitigation and tolerance in comparison to mock-treated
plants, thanks to potentiated antioxidant mechanisms. The induction of the antioxidant
machinery by GR24 has been suggested earlier [10,31]. As discussed in the previous para-
graphs, this—together with the morphological plasticity demonstrated in Figure 2—might
also diminish the need for stress avoidance via stomatal closure, which can explain why
we observed higher stomatal conductance in response to GR24 in this experiment.
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Once again, GR24 effects may be achieved via crosstalk with other hormones or a
more direct effect on the antioxidant system. For example, a modulation of ABA levels
or sensitivity by GR24 may promote osmotic adjustment via proline [32] and aquaporin
expression [13,33] but also induction of antioxidant defenses and, as a consequence, sup-
pression of ROS-driven damage [30]. It is worthy of note that in tomato, leaves with high
levels of endogenous SLs will have lower stomatal conductance under no or mild stress
conditions compared to leaves with wild-type levels of SLs, due to higher ABA sensitivity
of their guard cells; however, the former will be able to keep significantly higher stomatal
conductance levels and photosynthesis rates under drought stress than the latter, likely
due to better drought tolerance and less need to deploy avoidance [12]. However, we did
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not measure plant hormone concentrations in this work, so while a certain degree of ABA
involvement in the observed phenotype is likely, it remains speculative at this stage. As
a final note, the racemic mixture of GR24 used here contains equimolar amounts of two
enantiomers, which were shown in Arabidopsis to activate both the SL pathway and the
sibling pathway initiated by KARRIKIN INSENSITIVE 2 (KAI2) [34], also involved in
drought resistance [35]. Therefore, even though this unexpected bioactivity in the KAI2
pathway was not proven to occur in other plant species yet, care should be exerted in
ascribing the results to either pathway whenever rac-GR24 is used.
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3. Conclusions

Given the effects of SLs in several biological systems, scientists are now working to
find practical applications for these molecules to improve crop performances [5]. GR24
is a stable chemical compound with interesting features towards microorganisms in the
rhizosphere, besides an undeniable promoting effect on plants stress tolerance; this gives it
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great potential in agricultural applications. In this work, we compared two GR24 delivery
methods on a commodity crop, confirming that GR24 could boost winter wheat tolerance
and escape to drought, and showing that the delivery method could differentially affect
the intensity and efficacy of the physiological and biochemical responses to drought stress.
Indeed, while these results confirm the positive effect of GR24 in drought irrespective
of the delivery way, some features of the response were specific to the method, offering
suggestions to translate basic plant biology insights into fine-tuned field applications.

4. Materials and Methods
4.1. Plant Materials and Growth Conditions

This study was conducted in the greenhouse of the College of Agriculture, Shiraz
University, Shiraz, Iran. Seeds of Triticum aestivum L. cv. Sirvan (relatively drought-
tolerant) [36] and an extensively cultivated variety in Iran) were provided by the Seed and
Plant Improvement Institute, Karaj, Iran. Rac-GR24 (GR24 hereby) was kindly supplied
by Professor Binne Zwanenburg (Radboud University, Nijmegen, NL). The experiment
was evaluated using a completely randomized design with four replications. Wheat seeds
were germinated in a growth chamber (28/20 ◦C day/night) on filter paper and then sown
in 7–liter plastic pots. The pots were filled with soil:sand in a 2:1 ratio (soil classification:
fine, mixed, mesic, Cacixerollic Xerochrepts). According to the soil analysis at the time of
planting, the final electrical conductivity, pH, and available N, P, and K of the experimental
soil were 0.60 dS m–1, 7.09, 0.15%, 12 mg kg–1 and 720 mg kg–1, respectively. All pots were
fully irrigated (100% of field capacity, FC) for twenty days after sowing; only unstressed
controls were kept at 100% FC during the whole experiment. Data from these irrigated
plants are provided in the supplementary material. Besides mock-treated and unstressed
controls, five treatments were carried out with four plants in each pot and 4 pots, for a
total of 16 plants/treatment pooled in 4 replicates/treatment: drought stress with foliar
application of GR24 (5 and 10 µM), drought stress with application of GR24 (5 and 10
µM) via the residual irrigation water, drought stress and mock treatment (see below). For
plants under water-deficit stress, soil moisture content was maintained at 40 ± 5% FC.
Soil water content in each pot was measured using a TRIME-FM TDR (Time Domain
Reflectometry, IMKO Micromodultechnik, Ettlingen, Germany). Water stress treatments
were initiated 20 days after planting, at which time the plants had 3 expanded leaves.
GR24 was applied twice for both the foliar application method and the application with
irrigation: at the tillering (after 14 days of drought stress treatment) and anthesis stages
(after 60 days of drought stress treatment). The GR24 stock solution was dissolved in
acetone and then distilled water was added to reach the desired dilution, while the control
plants were mock-treated with a water and acetone solution corresponding to the 10 µM
GR24 treatment. For both groups, treatment was done via foliar spraying or in the residual
irrigation water. To ensure GR24 uptake in plants treated by foliar application, leaves were
sprayed completely and homogeneously until runoff. Samples for biochemical analyses
were collected 2 days after the last GR24 treatment, i.e., from 82-day-old plants after 62 days
of drought treatment. At the same time, whole plants were harvested, and morphological
features were measured. Shoots including spikes were removed from the soil surface, soil
was carefully washed from the roots, and different plant parts were dried separately for
a week at 65 ◦C before weighing. Based on the root and shoot dry weight (g per plant),
root/shoot ratios were calculated.

4.2. Hydrogen Peroxide Content

Hydrogen peroxide (H2O2) content was determined spectrophotometrically according
to a published method [37]. H2O2 was extracted by homogenizing 0.5 g leaf samples
in 0.5 mL of 0.1% (w/v) trichloroacetic acid (TCA). The homogenate was centrifuged at
12,000× g and 4 ◦C for 10 min. The reaction mixture contained 0.5 mL of leaf extract
supernatant, 2 mL reagent (1 M KI in double-distilled water) and 0.5 mL of 10 mM K-
phosphate buffer (pH 7.0). The blank probe consisted of 0.1% TCA in the absence of leaf
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extract. The reaction was let develop for 1 h in darkness. The amount of H2O2 was calculated
using a standard curve prepared with known concentrations of H2O2 (measured by absorbance
at 390 nm), and the H2O2 content was expressed as µmol g−1 of fresh weight (FW).

4.3. Preparation of Enzyme Extract and Antioxidant Enzymes Assays

Superoxide dismutase (SOD, EC 1.15. 1.1) activity was measured according to a pub-
lished method with some modifications [38]. Flag leaves (500 mg FW) were homogenized
in 5 mL extraction buffer consisting of 50 mM Na-phosphate buffer (pH 7.8), 0.05% (w/v)
β-mercaptoethanol and 0.1% (w/v) ascorbate. For the assay, 3 mL of 50 mM Na-phosphate
buffer (pH 7.8) containing 9.9 mM L-methionine, 57 µM nitro-blue tetrazolium (NBT) and
0.0044% (w/v) riboflavin were mixed with 0.2 mL of enzyme extract. The reaction was ter-
minated after 10 min by removing the test tubes from the light source. Purple formazan, the
reaction product of NBT, was measured at 560 nm. The supernatant volume corresponding
to 50% inhibition of the reaction in this assay was assigned a value of 1 enzyme unit.

For the assays of catalase (CAT, EC 1.11.1.6), ascorbate peroxidase (APX, EC 1.11.1.11)
and peroxidase (POX; EC 1.11.1.7), we used fully expanded flag leaves (500 mg FW)
immediately frozen in liquid nitrogen and homogenized by a homogenizer in 1 mL of ice-
cold 0.1 M K-phosphate buffer (pH 7.8) containing 1 mM ethylenediamine tetraacetic acid
(EDTA), 1 mM ascorbic acid, 0.5% (v/v) Triton X-100 and 2% (w/v) polyvinylpyrrolidone
(PVP K-12). Insoluble materials were removed by centrifuging at 12,000× g for 20 min at
4 ◦C, and the supernatants were used for the enzymatic assays as described below.

The CAT activity was measured by monitoring the disappearance of H2O2 at 240 nm
in a reaction mixture consisting of 0.3 mL of 100 mM H2O2, 1.5 mL of 50 mM Na-phosphate
buffer (pH 7.8) and 0.2 mL of leaf extract [39]. The activity was reported as enzyme units
(µmol of H2O2 decomposed per minute) per FW gram of leaf (ε = 39.4 mM cm−1).

The APX activity was measured on 0.2 mL of leaf extracts as described [40], added
to 1.0 mL reaction mixture containing 0.1 mM EDTA, 0.1 mM H2O2, 0.5 mM ascorbate
and 50 mM K-phosphate buffer (pH 7.0). The H2O2-dependent oxidation of ascorbate
was followed by decreased absorbance at 290 nm (ε = 2.8 mM cm−1). One unit of APX
was defined as the amount of enzyme that breaks down 1 µmol of ascorbate min−1 g−1

of protein.
The POX activity was assayed using 0.2 mL of leaf extract mixed with 1.78 mL of

reaction mixture containing a 50 mM phosphate buffer (pH 7.0) and 0.05% guaiacol, fol-
lowed by the addition of 20 µL of 10 mM H2O2. The oxidation of guaiacol was measured
by the increase in absorbance at 436 nm (ε = 26.6 mM−1 cm−1) for 1 min in the presence of
H2O2 [41]. One unit of POX was defined as the amount of enzyme that caused an increase
in the absorbance of 0.01 min−1.

4.4. Measurement of Leaf Water Potential and Gas Exchange Rates

The leaf water potential was measured in all plant groups using a pressure chamber
technique (PMS instrument company, ALBANY Oregon 97322) 48 h after GR24 applica-
tion at anthesis in the GR24-treated groups along with net photosynthetic rate, stomatal
conductance, transpiration rate, stomatal limitation and substomatal CO2 concentration
(Ci) on fully expanded flag leaves in four plants per group using an infrared gas analyzer
(LICOR, Lincoln, NE 68504, USA) during daytime between 10:00 a.m. and 2:00 p.m., with
photosynthetic photon flux density exceeding 1800 µmol m−2 s−1. Stomatal limitation data
were presented as percentage, calculated according to the following equation: stomatal
limitation = (1 − Ci/Ca) × 100, where Ca is the ambient CO2 concentration.

4.5. Statistical Analysis

The experiments were repeated twice, and the collected data were subjected to the
analysis of variance (one-way ANOVA) using the SAS statistical software package SAS 9.1.
When appropriate, means were compared using the LSD test (p ≤ 0.05). All the values are
expressed as the means of four replicates ± standard error (SE).
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/plants10061223/s1. Figure S1: Photosynthesis rate (a), stomatal limitation (b), stomatal
conductance (c), transpiration rate (d), leaf water potential (e) and substomatal CO2 levels (Ci)
(f) in wheat plants in response to two methods of GR24 application under irrigated conditions. Mock-
treated plants received a water and acetone solution. Each value represents the mean ± SE (n = 4,
each replicate the pool of four plants). Different letters on top of bars indicate significantly different
means for p ≤ 0.05 (LSD test). Figure S2: Root dry weight (a), shoot dry weight (b), root/shoot ratio
(c), and yield (d) in wheat leaves in full irrigation condition, in response to two application methods
for GR24. Mock-treated plants received a water and acetone solution. Each value represents the
mean ± SE (n = 4, each replicate the pool of four plants). Different letters on top of bars indicate
significantly different means for p ≤ 0.05 (LSD test). Figure S3: Spike appearance at maturity. Figure
S4: H2O2 in wheat plants in response to two methods of GR24 application in full irrigation conditions.
Mock-treated plants received a water and acetone solution. Each value represents the mean ± SE
(n = 4, each replicate the pool of four plants). Different letters on top of bars indicate significantly
different means for p ≤ 0.05 (LSD test). Figure S5: Catalase (a), peroxidase (b), superoxide dismutase
(c) and ascorbate peroxidase (d) enzyme activities in wheat leaves in full irrigation conditions, in
response to two application methods for GR24. Mock-treated plants received a water and acetone
solution. Each value represents the mean ± SE (n = 4, each replicate the pool of four plants). Different
letters on top of bars indicate significantly different means for p ≤ 0.05 (LSD test).
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