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Abstract: Advanced heart monitors, especially those enabled by the Internet of Health Things
(IoHT), provide a great opportunity for continuous collection of the electrocardiogram (ECG), which
contains rich information about underlying cardiac conditions. Realizing the full potential of IoHT-
enabled cardiac monitoring hinges, to a great extent, on the detection of disease-induced anomalies
from collected ECGs. However, challenges exist in the current literature for IoHT-based cardiac
monitoring: (1) Most existing methods are based on supervised learning, which requires both normal
and abnormal samples for training. This is impractical as it is generally unknown when and what
kind of anomalies will occur during cardiac monitoring. (2) Furthermore, it is difficult to leverage
advanced machine learning approaches for information processing of 1D ECG signals, as most of
them are designed for 2D images and higher-dimensional data. To address these challenges, a new
sensor-based unsupervised framework is developed for IoHT-based cardiac monitoring. First, a high-
dimensional tensor is generated from the multi-channel ECG signals through the Gramian Angular
Difference Field (GADF). Then, multi-linear principal component analysis (MPCA) is employed to
unfold the ECG tensor and delineate the disease-altered patterns. Obtained principal components are
used as features for anomaly detection using machine learning models (e.g., deep support vector data
description (deep SVDD)) as well as statistical control charts (e.g., Hotelling T2 chart). The developed
framework is evaluated and validated using real-world ECG datasets. Comparing to the state-of-
the-art approaches, the developed framework with deep SVDD achieves superior performances in
detecting abnormal ECG patterns induced by various types of cardiac disease, e.g., an F-score of
0.9771 is achieved for detecting atrial fibrillation, 0.9986 for detecting right bundle branch block, and
0.9550 for detecting ST-depression. Additionally, the developed framework with the T2 control chart
facilitates personalized cycle-to-cycle monitoring with timely detected abnormal ECG patterns. The
developed framework has a great potential to be implemented in IoHT-enabled cardiac monitoring
and smart management of cardiac health.

Keywords: cardiac monitoring; Internet of Health Things; tensor decomposition; anomaly detection;
statistical process monitoring

1. Introduction

The contraction of heart chambers is coordinated by the cardiac electrical activity.
Under normal condition, an electrical stimulus is generated by the pacemaker, i.e., the
sinus node, to activate both atria. The stimulus then travels down to the atrioventricular
node and propagates through the bundle of His–Purkinje fibers to stimulate the contraction
of left and right ventricles [1]. With the onset of cardiac disease, the function of the sinus
node and/or the conduction pathway will be interrupted, thereby affecting the normal
cardiac electrical activity [2]. It is imperative to monitor the cardiac electrical activity and
identify the disease-altered patterns for the detection of cardiac disease.

For decades, the electrocardiogram (ECG) has been extensively used as an indispens-
able procedure for the monitoring of cardiac electrical activity [3]. In clinical settings,

Sensors 2021, 21, 4173. https://doi.org/10.3390/s21124173 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5793-3042
https://doi.org/10.3390/s21124173
https://doi.org/10.3390/s21124173
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21124173
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21124173?type=check_update&version=2


Sensors 2021, 21, 4173 2 of 17

multiple electrodes are attached on the body surface to record the cardiac electrical ac-
tivity from different directions. As such, multi-channel ECG signals, i.e., 3-lead ECG or
12-lead ECG, are recorded, which are considered as the gold standard for the diagnosis
of cardiac disease. With advances in sensing and communication technologies, wearable
devices with more tolerable sensors (e.g., textiles [4] and skin-like sensors [5]) have been
increasingly developed to record the ECG in out-of-hospital settings. In particular, the
advent of the Internet of Health Things (IoHT) prompts the integration of a multitude
of sensors, computing units, and databases, together with patients and physicians in a
networked structure. For cardiac care, the IoHT empowers anywhere-and-anytime cardiac
health data collection and processing, which unleashes a great potential for continuous
patient-centered monitoring and early detection of cardiac anomalies [6,7].

Realizing the full potential of IoHT-enabled cardiac monitoring hinges, to a great ex-
tent, on the information processing of collected ECGs. Notably, the pattern of ECG signals
reveals rich information pertinent to the underlying cardiac condition. For example, absent
P wave or irregular R-R intervals suggest the onset of atrial fibrillation, and inverted T wave
is oftentimes associated with the occurrence of myocardial infarction [1]. In the past, cardi-
ologists were accustomed to manually analyzing the ECG and interpreting disease-altered
patterns. The past decade has witnessed the increasing uptake of computer programs
for automatic ECG analysis. In the literature, statistical models and machine learning
algorithms have been developed for ECG pattern recognition and anomaly detection. For
example, Yang et al. quantified the similarity in the ECG morphology for the detection
of myocardial infarctions. Based on the similarities, ECG signals were embedded into a
graph, and the node coordinates were used as features for classification [1]. Tripathy et al.
decomposed ECG signals using Fourier–Bessel series expansion-based empirical wavelet
transform. Descriptive statistics such as skewness and entropy were then extracted from
the wavelet coefficients for the identification of myocardial infarction [8]. With recent
advances in deep learning, deep neural networks have been increasingly leveraged for
ECG anomaly detection. Mathews et al. employed the Restricted Boltzman Machine and
deep belief network for the identification of arrhythmias in single-lead ECG [9]. Peimankar
and Puthusserypady deployed the convolutional neural network (CNN) and long short-
term memory (LSTM) network for the segmentation of P, QRS, and T waves from ECG
signals [10]. For more reviews on ECG pattern recognition algorithms, please refer to [11].

However, most existing algorithms for ECG pattern recognition (e.g., above-reviewed
algorithms) are based on supervised learning. A large number of ECG signals with labels
(i.e., the diagnostic information such as normal, abnormal, or a specific type of disease) are
required for the training of these algorithms. To obtain the labels, it requires cardiologists
to manually assess the ECG, which is labor-intensive and time-consuming. In the IoHT,
continuous cardiac monitoring is performed, and ECG signals are recorded for days,
weeks, and months [6]. It is prohibitive to manually label the ECG signals to implement the
supervised learning methods. More importantly, it is impractical to extensively collect and
manually label abnormal ECG cycles so that supervised algorithms can be trained. In most
cases, only the normal condition of a specific patient is available when the monitoring starts. It
is generally unknown about when and what type of cardiac disorders would be onset. Notably,
variations exist among patients and it is important to focus on patient-specific information for
the detection of subtle changes in cardiac conditions, especially at the early stage.

Therefore, semi-supervised and unsupervised algorithms are increasingly available
for ECG analytics. For example, Zhai et al. proposed a semi-supervised learning approach
for the detection of ventricular ectopic beats in the ECG. By examining the correlation
in spectrograms, normal cycles were identified in an unsupervised manner. They were
then used to train a semi-supervised learning model to distinguish disease-altered ECG
cycles [12]. Cardona et al. employed Gaussian mixtures for the modeling of ECG signals,
and a K-nearest neighbors clustering approach was used to separate normal from left
bundle branch block ECG samples [13]. He et al. processed the ECG signals with entropy-
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based principal component analysis (PCA). The extracted principal components were fed
into fuzzy c-means clustering for unsupervised detection of abnormal ECG patterns [14].

In addition, statistical control charts are oftentimes treated as unsupervised approaches
for process monitoring and anomaly detection. The goal of a control chart is to identify
nonconformities by comparing the monitoring statistics with control limits that are es-
tablished using normal samples. Although early studies focused on quality control in
manufacturing [15–17], statistical control charts have been increasingly extended to moni-
tor various processes, such as cyber-attacks [18] and project management [19]. In particular,
statistical control charts are widely used in monitoring healthcare systems and biological
processes. For example, Sogandi et al. developed a Bernoulli group exponential weighted
moving average control chart to capture state changes of papillary thyroid cancer. Dynamic
probability control limits were deployed to improve the algorithm’s applicability [20].
In [21], the authors deployed a Hotelling T2 control chart for cycle-to-cycle monitoring of
ECG. ECG signals were represented in a 3D state space in which heterogeneous recurrence
measures were calculated and used as features for the control chart.

Notably, disease-altered cardiac electrical activity manifests complex patterns, and ef-
fective IoHT-based cardiac monitoring calls for the adoption of advanced machine learning
and deep learning algorithms. However, the 1D ECG signal poses a significant challenge for
adopting a richer body of advanced machine learning algorithms that are designed for 2D
images and higher-dimensional data. Even for existing deep learning based ECG analysis,
many of them still follow the flow of “feature extraction and classification”. In other words,
time and/or frequency domain features are first extracted. Then, the features are fed into
deep neural networks for classification. Some studies developed end-to-end learning archi-
tectures that directly fed the collected ECG signals to the CNN model by considering the
signal amplitudes as features [22]. This is, nevertheless, not only vulnerable to noises, but
also hinders the adoption of powerful high-dimensional convolution operations in deep
learning. A few recent approaches attempted to address such challenge by representing the
ECG using image data. For example, Naz et al. [23] segmented the 1D ECG into equi-sized
segments and reshaped each segment into a 2D matrix (i.e., image). Du et al. [24] and
Hao et al. [25] analyzed the ECG papers as images using deep neural networks. Some other
works transformed 1D ECGs into gray-scale images by considering ECG traces as black
pixels, while the background were filled with white pixels [26]. In addition, Ullah et al. [27]
used continuous wavelet to decompose the 1D ECG and stacked the obtained wavelet
coefficients (along multiple scales) as a 2D image. Notably, it is difficult to fully preserve the
diagnostic information in the ECG by using spatial information of pixels in the converted
image (e.g., [23–26]), as the time and frequency information in the ECG signal could be
blurred and interrupted. Additionally, the spectrogram representation of ECG (i.e., [27])
generates redundant information in the converted image (due to the continuous change in
the position and scale of the wavelet), which makes the spatial correlation of image pixels
less interpretable.

In this study, a new framework is developed to leverage tensor representation of multi-
channel ECG for unsupervised anomaly detection. Specifically, a new time series imaging
approach is investigated to cast the ECG signal into a high-dimensional tensor. Further, we
leverage a low-rank tensor decomposition approach to unfold the ECG tensor and explore
the disease-induced abnormalities. The learned tensor-to-vector projection facilitates the
extraction of pertinent features about the underlying cardiac dynamics, which can be fed
into unsupervised machine learning algorithms and statistical control charts for condition
monitoring and anomaly detection. Our major contributions are summarized as follows:

1. We represent multi-channel ECG signals as a high-dimensional tensor for anomaly
detection. As opposed to existing approaches, we do not directly concatenate ECG
signals into the image format or use ECG papers. Instead, a new time series imaging
approach, i.e., Gramian Angular Field (GAF), is leveraged to cast multi-channel ECGs
into a tensor, which preserves temporal and spectral correlation in the signal while
maintain a high spatial interpretability.



Sensors 2021, 21, 4173 4 of 17

2. A low-rank tensor decomposition approach is investigated to extract essential ECG
features for unsupervised anomaly detection. Existing ECG analytics approaches
are difficult to be used for extracting information from ECG tensor due to the high
dimensionality and complex correlation structures. Additionally, most of them are
supervised and are not suitable for IoHT-based monitoring. In this study, the multi-
linear principal component analysis (MPCA) is investigated to unfold the ECG tensor
and extract features to characterize disease-induced abnormal patterns. The devel-
oped tensor decomposition–unsupervised anomaly detection scheme provides great
potential to realize personalized cardiac monitoring in the IoHT.

3. The developed framework is effective in detecting various disease-induced anomalies
in the ECG. As opposed to many existing approaches that are designed for a specific
type of cardiac disease, features unfolded from the ECG tensor contain rich informa-
tion pertinent to a variety of disease-altered cardiac patterns. As such, the developed
framework is effective in the identification of a broad range of cardiac disorders. This,
in turn, makes it well-suited for IoHT-based monitoring.

The remainder of this paper is organized as follows: Section II presents details of
the research methodology. Section III describes the datasets used in this study and the
experimental design. Experimental results are shown in Section IV, and Section V includes
the discussion and conclusions arising out of this study.

2. Research Methodology

The overview of research methodology is schematized in Figure 1. First, multi-
channel ECG signals are converted into 2D images, which are further formulated as
a high-dimensional tensor. Second, the ECG tensor is projected into low-dimensional
representations, i.e., feature vectors, which capture a majority of variations in the original
tensor. With the extracted feature vectors, an unsupervised machine learning model is
leveraged for the detection of disease-induced abnormal patterns. Finally, a statistical
control chart is constructed for real-time cycle-to-cycle monitoring of cardiac conditions.

2.1. Formulation of the ECG Tensor

Converting ECG signals to high-dimensional data provides a great opportunity to
leverage a richer body of advanced machine learning methods for the identification of
disease-altered cardiac patterns. For the converting process, the rule of thumb is to preserve,
as much as possible, the temporal correlation in original ECG signals while enriching the
spatial interpretability in the obtained images. As discussed above, most widely used
existing approaches directly used ECG papers as images, which carry limited information
from the original signals.

GAF is a recently developed approach that computes a Gramian matrix from the time
series in the polar coordinate system [28]. The obtained matrix, in turn, can be considered
as a 2D image for further processing. By denoting the ECG signal with length M as
x = (x1, x2, . . . , xM)T , it can be rescaled into the range of [0, 1] as:

x̃m =
xm −min(x)

max(x)−min(x)
(1)

The rescaled ECG can then be denoted as x̃ = (x̃1, x̃2, . . . , x̃M)T . Further, the rescaled ECG
is represented in the polar coordinate system. For the mth point x̃m in the signal, its angle
ϕm and radius rm are computed as:{

ϕm = arccos(x̃m)
rm = m/M

(2)
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As such, the ECG trace along the time is converted to the trajectory warping among
the angles in polar coordinates. By exploring the angular variations, it provides a great
opportunity to reveal underlying dynamics of the ECG signals. More importantly, it
facilitates the generation of a Gramian matrix based on the angles. As discussed in [28], the
Gramian Angular Difference Field (GADF), denoted as G ∈ RM×M, can be defined as:

G =
[
sin
(

ϕi − ϕj
)]

i,j

=


sin(ϕ1 − ϕ1)
sin(ϕ2 − ϕ1)

. . .

. . .
sin(ϕ1 − ϕM)
sin(ϕ2 − ϕM)

...
. . .

...
sin(ϕM − ϕ1) · · · sin(ϕM − ϕM)

 (3)

Notably, if we define the inner product as 〈u, v〉 =
√

1− u2·v−u·
√

1− v2, Equation (3)
can be represented as [28,29]:

G =

√
1− x̃2·x̃T − x̃

(√
1− x̃2

)T
(4)

where 1 is the unitary vector.
It may be noted that G resembles a 2D image with

[
sin
(

ϕi − ϕj
)]

i,j as the value of

the (i, j)th pixel. In other words, G can be considered as a 2nd-order ECG tensor. Further,
a stack of images from multiple ECG channels (e.g., 12 images from the 12-lead ECG
signal) will form a 3rd-order ECG tensor, A ∈ RM×M×C, i.e., A = G(1) ⊕ G(2), . . . ,⊕G(C),
where G(c) is the GADF image converted from the cth channel and C is the number of ECG
channels. The ⊕ represents the operation of concatenation of the images along the 3rd
dimension (see Figure 1).

Figure 2 illustrates the process of transforming a single channel of ECG as a GADF
image. Specifically, the rescaled ECG signal is first mapped into the polar coordinate system
using Equation (2). Then, the GADF image is generated by calculating each element in the
Gramian matrix in Equation (3). Notably, distinct traces are obtained when projecting the
normal and abnormal ECG signals onto the polar coordinate system. The resulted GADF
images are able to depict the variations between normal and abnormal ECG patterns. For
example, the abnormal ECG is associated with a wider QRS complex with a small peak.
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This is reflected as a wider and intermittent yellow band in the GADF image. Additionally,
the inverted T wave manifests as a dark band on the GADF image, as opposed to a light
band for normal ECG.
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Notably, a long ECG signal (i.e., a large M) may pose challenges on the construction
and processing of the GADF image. Similar to [28], we adopt the piecewise aggregate
approximation (PAA) strategy to reduce the ECG length while preserving its main mor-
phology. The basic idea of the PAA is to divide the original time series (with length M) into
M′ equi-sized segments (M′ ≤ M). By averaging the values in each segment, a new time
series with a reduced length M′ can be obtained. For more information about the PAA,
please refer to [30].

2.2. Low-Rank ECG Tensor Decomposition

The ECG tensor contains important information pertinent to the underlying disease-
altered cardiac electrical activity. Accurate detection of cardiac disorders hinges, to a great
extent, on the information processing and feature extraction from the ECG tensor. Notably,
off-the-shelf deep learning architectures, such as CNN, can be directly applied on the ECG
images for disease pattern recognition. However, most deep learning architectures only
focus on supervised learning, and they can hardly be interpreted due to the black-box
nature (e.g., it is difficult to comprehend how the variables are combined to make the
prediction due to the multilayer nonlinear structure of the model). To facilitate both super-
vised and unsupervised anomaly detection, a low-rank tensor decomposition approach,
i.e., MPCA [31] is explored in this study. The objective of low-rank tensor decomposition is
to obtain a compact representation of the high-dimensional tensor while preserving the
correlation structure in the data [32]. The resulted low-dimensional representation, i.e.,
projected tensors, can be considered as features for both supervised and unsupervised
anomaly detection.

Originating from the PCA, MPCA performs multilinear dimension reduction on
tensor data. According to multilinear algebra, a Kth-order tensor, X ∈ RI1×I2×...×IK , can be
represented as the following product:

X = V ×1 U(1) ×2 U(2) × . . .×K U(K) (5)
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where V is the low-dimensional projected tensor (i.e., the core tensor) and U(k) ∈ RIk×Pk ,
Pk < Ik is an orthogonal projection matrix. The objective of MPCA is to optimally determine
a set of orthogonal projection matrices, U =

{
U(k), k = 1, 2, . . . , K

}
, so that the projected

tensor, V , captures the majority of variations in X [32]. For the present study, in particular,
MPCA aims to maximize the total tensor scatter in the projected tensor S (i) as:{

U(1), U(2), U(3)
}
= arg max

U(1), U(2),U(3)

N

∑
i=1
‖S (i)‖2

F (6)

and
S (i) = A(i) ×1 U(1)T

×2 U(2)T
×3 U(3)T

(7)

In Equation (6), the total tensor scatter, ‖S (i)‖2
F, is defined with the Frobenius norm,

which is calculated based on the inner product of two tensors [32]. With the projected tensor,
S (i) ∈ RP1×P2×P3 , the ith ECG sample can finally be represented by a 1D feature vector,
i.e., ϑ(i) = vec

(
S (i)

)
, where vec (·) denotes the vectorization operation. An iterative

algorithm can be used to solve Equation (6) and obtain the orthogonal projection matrices,
U(1), U(2), U(3). For more information about the optimization procedure, please refer
to [31,33]. When a new ECG sample is collected, the tensor representation, A(new), is firstly
obtained using GADF. Then, the projected tensor can be calculated using Equation (7),

S (new) = A(new) ×1 U(1)T ×2 U(2)T ×3 U(3)T
. Finally, the feature vector of the new sample

is obtained as ϑ(new) = vec
(
S (new)

)
.

2.3. Unsupervised ECG Anomaly Detection

To this end, it is imperative to quantitatively associate the feature vector, ϑ(i), with the
cardiac condition (normal vs. abnormal, or more specifically, the type of cardiac disease)
for the purpose of anomaly detection. In this study, both unsupervised machine learning
algorithm, i.e., deep support vector data description (deep SVDD) and statistical control
chart, i.e., Hotelling T2 are investigated for ECG anomaly detection. Developed by Tax
and Duin [34], the objective of SVDD is to find the minimum-volume hypersphere that
encloses the majority of the normal data in the feature space. Given a set of feature vectors
from normal ECG tensors as ϑ(i), i = 1, 2, . . . , N0, the primal problem of SVDD can be
formulated as:

min
R, c,γ

(
R2 + γ

N0
∑

i=1
ξ(i)

)
Subject to ‖φ(ϑ(i))− c‖2 ≤ R2 + ξ(i), ξ(i) ≥ 0, ∀i = 1, 2, . . . , N0

(8)

where c is the center and R is the radius of the hypersphere. The slack variables, ξ(i), allow a
soft boundary, i.e., normal samples can be placed out of the hypersphere with penalty. The
parameter γ controls the tradeoff between the volume of the hypersphere and the number
of errors (i.e., the number of normal samples out of the hypersphere); φ

(
ϑ(i)

)
denotes

a nonlinear mapping function. Solving Equation (8) requires the formulation of its dual
problem, which incorporates a kernel function, K

(
ϑ(i), ϑ(j)

)
. In most cases, the Gaussian

kernel is used, i.e., K
(
ϑ(i), ϑ(j)

)
= 〈φ

(
ϑ(i)

)
, φ
(
ϑ(j)

)
〉 = exp

(
−‖ϑ(i) − ϑ(j)‖2/2σ2

)
[35].

Instead of directly learning the hypersphere, Ruff et al. [36] further trained a deep neu-
ral network to map the input into a latent space, in which the mappings of normal samples
are located within, whereas mappings of anomalies are placed outside the hypersphere.
This leads to the deep SVDD algorithm, which has been shown to outperform classic SVDD
in anomaly detection [36]. The objective function of deep SVDD is formulated as:

min
W

1
N0

N0

∑
i=1
‖φ(ϑ(i);W)− c‖2 +

λ

2

L

∑
l=1
‖Wl‖2

F (9)
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where φ
(
ϑ(i);W

)
denotes a neural network model with L hidden layers, and

W =
{

W1, W2, . . . , WL
}

is a set of weights, with Wl denoting the weights of layer l.
The first term minimizes the mean distance of all training (i.e., normal) samples to the
center. The second term is a weight decay regularizer on the weights of the neural network,
W . Here, λ controls the regularization and ‖·‖F represents the Frobenius norm. When a
new sample is presented, an anomaly score can be obtained by measuring its mapping with
respect to the center, i.e., ‖φ

(
ϑ(new),W∗

)
− c‖2, where W∗ denotes the trained network

weights, which are obtained using stochastic gradient decent. For more details of deep
SVDD, please refer to [36].

In addition to the unsupervised machine learning algorithm, statistical control charts
can be leveraged for the unsupervised detection of disease-induced cardiac activity.
Notably, a variety of control charting schemes can be used, and in this study we em-
ploy the Hotelling T2 control chart on the obtained ECG feature vector (i.e., ϑ(i)). First, the
mean and covariance matrix of in-control samples, i.e., ϑ0 and S0, are computed from the
in-control feature set, ϑ(i), i = 1, 2, . . . , N0. Then, given a new ECG signal, the feature
vector, ϑ(new), will be obtained, as discussed in Section 2.2, and the Hotelling T2 monitoring
statistic can be calculated as:

T2 =
(
ϑ(new) − ϑ0

)T
S−1

0

(
ϑ(new) − ϑ0

)
(10)

The upper control limit (UCL) of the T2 control chart can be estimated using the
empirical distribution of the T2 statistics from the in-control samples, i.e., the (1− α)100th

percentile obtained from the empirical distribution is used as the UCL [32].

3. Materials and Experimental Design

The proposed framework is evaluated and validated using real-world ECG data from:
(1) the 2018 China Physiological Signal Challenge (CPSC2018) dataset [37] and (2) the
PhysioNet Long-term ST dataset [38,39]. The CPSC2018 dataset contains 12-lead ECG
recordings from 6877 patients. Each recording lasts from six seconds to one minute and
is digitalized at 500 Hz sampling rate. A label, i.e., the diagnosis of cardiac condition, is
assigned to each ECG recording by expert annotators. In total, nine conditions are included
in the CPSC2018 dataset, and the number of recordings under each condition is provided
in Table 1. The long-term ST dataset includes 86 ECG recordings that are 21 to 24 h in
duration and exhibit ST-segment changes, such as slow ST level drift and ischemic ST
episodes. Each ECG recording is digitalized at 250 Hz and contains two or three leads.
Notably, each ECG cycle is reviewed by experts and assigned with a label (i.e., normal or a
specific type of cardiac condition) in the long-term ST dataset.

Table 1. ECG Data Included in the CPSC2018 dataset.

Cardiac Condition Count

1 Normal (N) 918
2 Atrial fibrillation (AF) 1098
3 First-degree atrioventricular block (I-AVB) 704
4 Left bundle branch block (LBBB) 207
5 Right bundle branch block (RBBB) 1695
6 Premature atrial contraction (PAC) 556
7 Premature ventricular contraction (PVC) 672
8 ST-segment depression (STD) 825
9 ST-segment elevation (STE) 202

In this study, we use the CPSC2018 dataset to evaluate the proposed framework with
unsupervised machine learning approach, i.e., deep SVDD. Similar to [1], an ensemble
cycle is obtained from each ECG recording by averaging all the cycles in that recording.
The ensemble cycle is fed into the proposed framework, which determines if it is associated
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with normal or abnormal cardiac condition. For the long-term ST dataset, it is well-suited
for implementing patient-centered cardiac monitoring because continuous ECG recordings
for a few hours are included, and each ECG cycle has been assigned with a label. Therefore,
the long-term ST dataset is used to evaluate the proposed framework with the Hotelling
T2 control chart on individual patients.

With the CPSC2018 dataset, we further conduct a sensitivity analysis to evaluate
the performance of the proposed framework with respect to the size of the GADF image.
It may be noted that the larger the GADF image, the more information can be captured
from the original ECG signal. However, large GADF images will pose challenges in the
low-rank tensor decomposition. It is important to investigate if the proposed framework
is sensitive to the change in the size of GADF image. Moreover, the proposed framework
is compared with a few benchmark approaches for performance evaluation. Specifically,
three categories of benchmark approaches are considered:

1. Directly use 12-lead ECG without converting each lead into a GADF image.
Notably, handcrafted ECG features have been extensively investigated for pattern
recognition of cardiac disorders. Following [40], multiple time- and frequency-domain
features are extracted from each ECG sample, which are then fed into the deep
SVDD. We denote this benchmark approach as 12ECG + HandFeatures + D-SVDD.
Furthermore, existing studies have applied MPCA on multi-channel signals for fea-
ture extraction [41]. Again, the output of MPCA is processed by the deep SVDD.
We denote this benchmark approach as 12ECG + MPCA + D-SVDD. Furthermore,
each 12-lead ECG sample is a 2D matrix, which can be directly processed by the deep
SVDD. We denote this approach as 12ECG + D-SVDD. The proposed framework is
denoted as GADF + MPCA + D-SVDD.

2. Unsupervised learning without using the deep neural network. That is, after formu-
lating ECG tensor and MPCA, the obtained low-dimensional projected tensor is fed
into the classic SVDD algorithm in Equation (8). We denote this benchmark approach
as GADF + MPCA + C-SVDD.

3. Supervised learning models. That is, instead of unsupervised learning, two widely
used machine learning models for ECG analysis, i.e., Adaboost [42] and support vector
machine (SVM) [43] are implemented. The models are trained with both normal and
abnormal ECG samples with labels. We denote these benchmark approaches as
GADF + MPCA + Adaboost and GADF + MPCA + SVM, respectively.

4. Results

Following the experimental design in Section 3, results for the sensitivity analysis and
performance comparisons using the CPSC2018 dataset are firstly reported in Section 4.1.
Further, Section 4.2 demonstrates the results of patient-centered cardiac monitoring using
Hotelling T2 control charts.

In this study, the performance of the proposed framework is evaluated by three
widely-used metrics, i.e., accuracy, area under the ROC curve (AUROC) and the F-score.
Given the true positive (TP), false positive (FP), true negative (TN), and false negative (FN)
obtained from the anomaly detection result, the accuracy is calculated as:

Accuracy =
TP + TN

TP + FP + TN + FN
(11)

The precision and recall, which are closely related to the Type I error and Type II
error, respectively, are calculated as Precision = TP/(TP + FP) and Recall = TP/(TP + FN).
With that, the F-score is obtained as:

F− score = 2· Precision·Recall
Precision + Recall

(12)

In addition, the true positive rate (TPR) and false positive rate (FPR) can be computed as:
TPR = TP/(TP + FN) and FPR = FP/(FP + TN). The receiver operating characteristic (ROC)
curve plots TPR against FPR by varying classification thresholds, which can be summarized
by the AUROC to show the ability of the model for predicting an abnormal sample.
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4.1. Unsupervised Machine Learning for ECG Anomaly Detection

We first evaluate the sensitivity of the developed framework with respect to the length
of ECG (i.e., the size of the corresponding GADF image). Here, we vary the length of ECG
(i.e., M′) by tuning the PAA algorithm before generating the GADF image. As shown in
Figure 3, fine-grained ECG patterns are well captured by the GADF image when the signal
length is 64. The smaller GADF image (e.g., the one generated from ECGs with a length of
32) shows similar patterns as the 64 × 64 image, which preserves most information of the
ECG signal. When the ECG length is further reduced to 16, the generated image is blurred
and less smooth. Some patterns shown in the larger GADF images are diminished in the
small image. Notably, even with such a small GADF image, the coarse-grained patterns
that are induced by cardiac disease (e.g., ST elevation/depression) can still be revealed.
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Figure 3. The effect of ECG length on the GADF image; the image generated from a longer ECG captures fine-grained patterns
of the signal, and the image generated from a shorter ECG (length reduced using PAA) captures coarse-grained patterns.

As shown in Figure 4, with larger GADF images, the proposed framework tends to
achieve higher accuracy, AUROC, and F-score. Here, the first 10 principal components are
kept in the MPCA (i.e., p = 10). It may be noted that over 90% in accuracy and AUROC are
achieved by the proposed framework with the three image sizes under most of abnormal
conditions. The three image sizes reach similar performances when a long segment of the
ECG has been altered by the disease (e.g., the elevation of the ST segment). Nevertheless, it
is difficult for a small GADF image to preserve fine-grained patterns in the detection of
I-AVB and PVC.

Table 2 demonstrates the results of performance comparison with three benchmark ap-
proaches in Category 1. As shown in the results, it is not effective in detecting disease-induced ab-
normities by directly applying the deep SVDD on the 12-lead ECG matrix (i.e., 12ECG + D-SVDD).
Furthermore, for hand-crafted features (i.e., 12ECG + HandFeatures + D-SVDD), they are effec-
tive in detecting some types of disease-altered patterns, e.g., AF and LBBB, whereas they
are limited in their ability to identify I-AVB, PCA, and STD. This is because, in the literature,
most hand-crafted ECG features are carefully designed according to a specific disease.
In other words, some hand-crafted features are only effective for detecting certain types of
cardiac disease. They are limited in the ability to identify other types of cardiac disorders.
This, in turn, makes hand-crafted ECG features not well-suited for cardiac monitoring
in the IoHT, because it is difficult to have the prior knowledge regarding what type of
cardiac disease will occur before monitoring (see the discussion in Section 2). Moreover,
applying MPCA directly on the 12-lead ECG signal (i.e., 12ECG + MPCA + D-SVDD) results
in compromised performances for most types of cardiac disease. Finally, the developed
framework achieves superior results for the detection of all types of cardiac diseases in the
CPSC2018 dataset. To confirm, we have performed a paired t-test to evaluate if the mean of
the F-scores achieved by the developed framework differs significantly from the F-scores
achieved by each of the benchmark approaches (with a null hypothesis of equal means).
A p-value of 0.0097, 0.0002, and 0.0022 is obtained from the paired t-test between the
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developed framework vs. 12ECG + HandFeatures + D-SVDD, 12ECG + MPCA + D-SVDD,
and 12ECG + D-SVDD, respectively. Therefore, the performances of the developed frame-
work are significantly better (under the level of significance α = 0.05) than the benchmark
approaches in Category 1.
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Table 2. Performance Comparison with Benchmark Approaches in Category 1.

N vs.
AF

N vs.
I-AVB

N vs.
LBBB

N vs.
RBBB

N vs.
PAC

N vs.
PVC

N vs.
STD

N vs.
STE

12ECG + HandFeatures +
D-SVDD

Accuracy 0.9505 0.7600 0.9644 0.8623 0.7525 0.8254 0.5874 0.9018
AUROC 0.9726 0.8261 0.9696 0.9031 0.8061 0.8671 0.5806 0.8602
F-score 0.9552 0.7000 0.8889 0.8968 0.6726 0.7660 0.4586 0.5217

12ECG + MPCA +
D-SVDD

Accuracy 0.6213 0.6492 0.8844 0.8375 0.6689 0.6825 0.6017 0.8616
AUROC 0.6325 0.6630 0.7099 0.8897 0.6183 0.7042 0.6021 0.6313
F-score 0.7119 0.5440 0.4800 0.8850 0.3265 0.6063 0.6293 0.4364

12ECG + D-SVDD
Accuracy 0.7129 0.6985 0.9467 0.8681 0.6823 0.7143 0.5387 0.9018
AUROC 0.7555 0.7153 0.9183 0.9190 0.6287 0.7259 0.5005 0.8094
F-score 0.7264 0.6288 0.8065 0.9021 0.3066 0.5982 0.3264 0.5417

GADF + MPCA +
D-SVDD (proposed)

Accuracy 0.9752 0.9754 0.9733 0.9981 0.9666 0.9333 0.9570 0.9821
AUROC 0.9849 0.9973 0.9598 0.9999 0.9860 0.9647 0.9804 0.9964
F-score 0.9771 0.9712 0.9062 0.9986 0.9541 0.9231 0.9550 0.9394

When comparing with conventional unsupervised learning approach (i.e.,
GADF + MPCA + C-SVDD in the benchmark, Category 2), the effectiveness of the de-
veloped framework is further highlighted. More importantly, the developed framework
performs well in detecting all types of disease-induced cardiac anomalies in the CPSC2018
dataset. As shown in Figure 5, the performance of conventional SVDD fluctuates dra-
matically among different cardiac conditions, and most of the achieved F-scores are low
(e.g., only around 0.61 and 0.6 F-scores are achieved for separating normal from LBBB and
STE, respectively). On the contrary, the proposed framework that leverages deep SVDD
achieves over 0.95 accuracy, AUROC, and F-score for most cases. The superb performance
of deep SVDD is mainly due to the trained data-enclosing hypersphere [36].
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in the benchmark, Category 2.

Finally, the proposed framework is compared with supervised learning approaches
(in the benchmark, Category 3) for anomaly detection. Notably, we still follow the pro-
posed ECG tensor representation and MPCA for feature extraction and only change the
deep SVDD to supervised models, i.e., Adaboost and SVM. Here, the radial basis function
is used as the kernel function of the SVM. The regularization parameter is fixed as 1 and
the gamma parameter is calculated as 1/(number of features × the variance of feature set),
where the number of features (i.e., principal components) is p = 10. For Adaboost, each tree
is split according to the Gini index, and the maximum depth is set as 14. As shown in Table 3,
the proposed unsupervised anomaly detection framework and the supervised approaches
achieve close performances for most disease types in the CPSC2018 dataset. To confirm, a
paired t-test is performed to check if the mean of the F-scores obtained by the developed
framework differs from that achieved by each of the benchmark approaches (with a null
hypothesis of equal means). As a result, a p-value of 0.1366 and 0.4904 is obtained from
the paired t-test between the developed framework vs. GADF + MPCA + Adaboost and
GADF + MPCA + SVM, respectively. Therefore, close performances (without significantly
different means under the level of significance α = 0.05) are achieved for the developed
framework as well as the two supervised learning approaches. This indicates that the
proposed framework is effective in delineating disease-altered ECG patterns and separating
them from normal patterns.

Table 3. Performance Comparison with Supervised Learning Approaches in the Benchmark, Category 3.

N vs.
AF

N vs.
I-AVB

N vs.
LBBB

N vs.
RBBB

N vs.
PAC

N vs.
PVC

N vs.
STD

N vs.
STE

GADF + MPCA +
Adaboost

Accuracy 0.9955 0.9994 0.9582 0.9983 0.9973 0.9978 0.9966 0.9987
AUROC 0.9971 0.9995 0.9851 0.9994 0.9966 0.9973 0.9966 0.9969
F-score 0.9959 0.9993 0.8440 0.9987 0.9964 0.9973 0.9965 0.9953

GADF + MPCA + SVM
Accuracy 0.9406 0.9323 0.9867 0.9618 0.9599 0.9651 0.9799 0.9509
AUROC 0.9928 0.9972 0.9976 0.9944 0.9970 0.9934 0.9992 0.9850
F-score 0.9442 0.9272 0.9552 0.9716 0.9478 0.9572 0.9791 0.8451

GADF + MPCA +
D-SVDD (proposed)

Accuracy 0.9752 0.9754 0.9733 0.9981 0.9666 0.9333 0.9570 0.9821
AUROC 0.9849 0.9973 0.9598 0.9999 0.9860 0.9647 0.9804 0.9964
F-score 0.9771 0.9712 0.9062 0.9986 0.9541 0.9231 0.9550 0.9394
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4.2. Patient-Centered Cardiac Monitoring

We leverage the PhysioNet long-term ST dataset to evaluate the performance of the
developed framework for patient-centered cycle-based monitoring. Notably, IoHT-based
heart monitors oftentimes collect ECG with fewer channels, e.g., 1-lead or 3-lead ECGs,
to improve the efficiency in monitoring and data transmission. Thus, we only use one
ECG channel to evaluate our framework. For a patient, the GADF + MPCA + Hotelling
T2 is implemented, in which T2 statistics are calculated from successive ECG cycles for
monitoring. Here, normal cycles from the first 5000 cycles (approximately 80 min) are
considered as Phase-I data to calculate U(1), U(2), U(3) in Equation (6) and ϑ0 and S−1

0 in
Equation (10), and construct the UCL of the control chart. This is practical as the first few
hours of IoHT-based monitoring can be conducted under the supervision of cardiologists,
and the patient-specific normal cycles can be manually identified. For illustration purpose,
we only demonstrate the results of Phase II monitoring with 500 successive cycles of two
patients in the dataset.

As shown in Figure 6, the developed framework is effective in detecting disease-
altered ECG cycles when used in continuous monitoring settings. The upper panel of
Figure 6 shows the ECG signal collected in approximately 8 min (500 cycles). The lower
panel shows the corresponding Hotelling T2 control chart. Based on the normal cycles in
the first 80 min, the UCL is obtained as 35.39. During monitoring, when a new ECG cycle
is collected, a T2 statistic is calculated and plotted on the control chart. For the 500 cycles
shown in Figure 6, the F-score achieved by the developed framework is 0.9863. It may be
noted that the detected out-of-control cycles (marked as red circles on the control chart) are
with abnormal morphological patterns. As shown in Figure 6, we zoom in on two segments
of the ECG signal, and the detected abnormal cycles are highlighted in red. All three cycles
demonstrate disease-altered patterns in the ST segment, which coincide with the labels
provided by expert annotators. More importantly, cycles that are similar in morphology
will obtain close T2 statistics (see highlighted abnormal cycles in Figure 6), which indicates
the effectiveness of the developed framework in delineating the morphological patterns of
the ECG signal.
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Figure 7 illustrates the cycle-based monitoring results for patient s20081 in the Phys-
ioNet long-term ST dataset. Similar to Figure 6, ECG cycles with abnormal morphologies
are detected as out-of-control cycles. Here, the UCL is obtained as 19.53 according to
the Phase-I data (i.e., normal cycles in the first 80 min of monitoring) of this patient.
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The F-score achieved is 0.9143. Notably, if 19.53 is used as the UCL for patient s20041
(shown in Figure 6), more false alarms will be generated. This is because patient-to-patient
variations exist even in the normal data. Thus, it is imperative to delineate the “normal
condition” based on a patient’s own normal data for cardiac monitoring.
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5. Conclusions and Discussion

In this study, a new framework is developed for unsupervised ECG anomaly detection.
We first represent the multi-channel ECG as a 3rd-order tensor using GADF. Then, a low-
rank tensor decomposition approach, i.e., MPCA, is leveraged to unfold the ECG tensor and
extract essential features. Finally, an unsupervised machine learning approach, i.e., deep
SVDD and statistical control chart, i.e., Hotelling T2 chart, are implemented for cardiac
condition monitoring and anomaly detection. The developed framework is extensively
evaluated and validated on two real-world ECG datasets, i.e., CPSC2018 and PhysioNet
Long-term ST. Experimental results have demonstrated the effectiveness of the proposed
framework in detecting a variety of abnormal cardiac conditions, including AF, I-AVB,
LBBB, RBBB, PAC, PVC, STD, and STE. Notably, the proposed framework works in an
unsupervised manner, which has a great potential to be implemented in IoHT settings
for personalized cardiac monitoring. This, in turn, will benefit the large population of
cardiac patients by facilitating early identification of disease patterns and timely delivery
of life-saving therapies.

Performances of the developed framework have been compared with three groups
of benchmark approaches. First, the developed framework achieves better performances
than those directly using 12-lead ECG signals. This is because tensor representation of
ECG facilitates the delineation of temporal patterns of ECG trace in a high-dimensional
space, which helps reveal hidden information that is difficult to extract directly from the
1D ECG. The MPCA approach is able to fully utilize the spatial and spectral information
in the ECG tensor to highlight cycle-to-cycle variations from all ECG channels. As such,
pertinent features about the underlying cardiac dynamics can be effectively extracted.
On the contrary, even MPCA and deep SVDD can be directly applied on the 1D ECGs (e.g.,
the benchmark approach 12ECG + MPCA + D-SVDD), they are hampered in extracting
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sufficient information for the detection of abnormal ECG patterns. Second, the developed
framework outperforms conventional unsupervised anomaly detection approaches (e.g.,
the benchmark approach GADF + MPCA + C-SVDD). This is mainly because the developed
framework leverages the deep neural network to better cluster normal ECGs into the data-
enclosing hypersphere. Third, the developed framework achieves comparable, if not better,
results comparing to the supervised machine learning approaches, i.e., SVM and Adaboost.
Usually, unsupervised learning approaches are less powerful in classification tasks than
supervised learning approaches, because the latter utilize label information for training.
Thus, the results obtained from the comparison further demonstrate the strong power of the
developed framework in differentiating normal and abnormal ECG patterns. Although the
developed framework incorporates multiple complex models, the computational burden is
low. Once the framework is established, it can predict if the new ECG cycle is normal or
abnormal within half a second, which meets the requirement of real-time monitoring as
the heart rate is usually between 60 to 100 beats per minute. For detailed discussion on the
computational complexity of GADF, MPCA, and deep SVDD, please refer to [28,31,36].

This study is among the first attempts to leverage GAF for tensorizing multi-channel
ECG signals and further unfold the ECG tensor by low-rank tensor decomposition for
unsupervised cardiac monitoring and anomaly detection. Notably, some previous studies
have used GAF images for ECG analysis. For example in [44], the authors calculated the
Hjorth parameters from ECGs, which were further mapped into 2D images using GAF.
Nevertheless, the approach in [44] follows the ad-hoc “feature extraction and classification”
scheme, with simple statistics (e.g., mean and skewness of the GAF image pixels) as features
and K-nearest neighbors as the classifier. Such an approach is limited in its ability to fully
exploit the hidden information for the identification of disease-altered ECG patterns, as
complex cardiac dynamics are oftentimes present during IoHT-based cardiac monitoring.
Additionally, our framework directly transforms each channel of the ECG signal into a
GAF image. As such, high interpretability is preserved, as patterns of the GAF image are
closely associated with the temporal variations in the ECG signal (see Figure 2). This is
particularly important when implementing the developed framework in clinical practice.

There are some limitations of this study that need to be further explored in future
work. For example, the ECG data used to evaluate the developed framework are not
contaminated by noises. We need to improve the framework to enhance its robustness
against instrumental and other type of noises. Additionally, although the developed
framework shows a great potential to identify early signs of cardiac disorders, it has not
been evaluated when the abnormal conditions considered in this study are fully developed.
In addition, we will investigate if the proposed framework is effective when the abnormal
ECG patterns are induced by multiple types of cardiac disorders jointly. This will pave
the way for implementing a developed framework for monitoring high-risk patients after
heart surgery.
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38. Jager, F.; Taddei, A.; Moody, G.B.; Emdin, M.; Antolič, G.; Dorn, R.; Smrdel, A.; Marchesi, C.; Mark, R.G. Long-term ST database: A

reference for the development and evaluation of automated ischaemia detectors and for the study of the dynamics of myocardial
ischaemia. Med. Biol. Eng. Comput. 2003, 41, 172–182. [CrossRef]

39. Goldberger, A.; Amaral, L.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, H.E.
PhysioBank, physiotoolkit, and physionet: Components of a new research resource for complex physiologic signals. Circulation
2000, 23, e215–e220. [CrossRef]

40. Bin, G.; Shao, M.; Bin, G.; Huang, J.; Zheng, D.; Wu, S. Detection of Atrial Fibrillation Using Decision Tree Ensemble.
In Proceedings of the 2017 Computing in Cardiology Conference (CinC), Rennes, France, 24–27 September 2017; Volume 44,
pp. 1–4.

41. Paynabar, K.; Jin, J.; Pacella, M. Monitoring and diagnosis of multichannel nonlinear profile variations using uncorrelated
multilinear principal component analysis. IIE Trans. 2013, 45, 1235–1247. [CrossRef]

42. Rajesh, K.N.; Dhuli, R. Classification of imbalanced ECG beats using re-sampling techniques and AdaBoost ensemble classifier.
Biomed. Signal Process. Control. 2018, 41, 242–254. [CrossRef]

43. Dohare, A.K.; Kumar, V.; Kumar, R. Detection of myocardial infarction in 12 lead ECG using support vector machine. Appl. Soft
Comput. 2018, 64, 138–147. [CrossRef]
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