Skip to main content
. 2021 Jun 17;21(12):4173. doi: 10.3390/s21124173

Table 3.

Performance Comparison with Supervised Learning Approaches in the Benchmark, Category 3.

N vs. AF N vs. I-AVB N vs. LBBB N vs. RBBB N vs. PAC N vs. PVC N vs. STD N vs. STE
GADF + MPCA + Adaboost Accuracy 0.9955 0.9994 0.9582 0.9983 0.9973 0.9978 0.9966 0.9987
AUROC 0.9971 0.9995 0.9851 0.9994 0.9966 0.9973 0.9966 0.9969
F-score 0.9959 0.9993 0.8440 0.9987 0.9964 0.9973 0.9965 0.9953
GADF + MPCA + SVM Accuracy 0.9406 0.9323 0.9867 0.9618 0.9599 0.9651 0.9799 0.9509
AUROC 0.9928 0.9972 0.9976 0.9944 0.9970 0.9934 0.9992 0.9850
F-score 0.9442 0.9272 0.9552 0.9716 0.9478 0.9572 0.9791 0.8451
GADF + MPCA + D-SVDD (proposed) Accuracy 0.9752 0.9754 0.9733 0.9981 0.9666 0.9333 0.9570 0.9821
AUROC 0.9849 0.9973 0.9598 0.9999 0.9860 0.9647 0.9804 0.9964
F-score 0.9771 0.9712 0.9062 0.9986 0.9541 0.9231 0.9550 0.9394