Skip to main content
. 2021 Jun 19;12(6):724. doi: 10.3390/mi12060724

Table 1.

Resonance performance, application, and excitation/detection methods of resonators with different structures.

Structure Material Dimension Frequency Quality Factor Excitation/Detection Application Reference
Double-clamped Carbon nanotubes 1005.9 μm (l) 500 Hz acoustic drive Anti-fatigue property Ref [35]
VO2 100 (l)×5(w)μm 32.6 kHz electric drive Self oscillation Ref [92]
Pyrolytic carbon 400 (l)×30 (w)×0.6 (t) µm 233 ± 4 KHz electric drive/detection MTA Ref [65]
Si 352.2 KHz 30,160 differential drive Accelerometer Ref [120]
Si 800 (l)×280 (w) nm 1.26 MHz electric drive Self oscillation Ref [91]
Carbon nanotubes 4 μm (l) 4.2 MHz 48,000 electrostatic drive /mixing detection Force sensing Ref [56]
h-BN 6.7 nm (t) 14.06 MHz 39 thermodynamic fluctuation Resonator Ref [121]
Carbon nanotubes 1 μm (l) 46–51.5 MHz electric drive/detection Energy loss Ref [59]
Si 7.7 (l)×0.33 (w)×0.8 (t) μm 70.72 MHz 1.8×104 magnetomotive transduction High frequency Resonator Ref [36]
Single-layer graphene 1.1 (l)×1.93 (w)×0.0003 (t) μm 70.5 MHz 78 optical drive Resonator Ref [122]
Silicon nanowire 1.8 (l)×0.04 (t) μm 96 MHz 5500 electric drive Electromechanical system Ref [40]
GaAs 3 (l)×0.25 (w)×0.2 (t) μm 116.7 MHz 1700 SET detection Quantum mechanics Ref [70]
Silicon nitride 2 (l)×0.165 (w)×0.125 (t) μm 145 MHz 400 laser drive/detection Energy loss Ref [33]
SiC 2.3 (l)×0.15 (w)×0.1 (t) μm 190 MHz 5000 reflection bridge Mass sensing Ref [82]
Silicon nanowire 2.25 (l)×0.142 (w) μm 200 MHz 2000 magnetomotive transduction High frequency resonator Ref [32]
Single-clamped Fe0.7Ga0.3/PZT 1000 (l)×200 (w)×5 (t) μm 3.549 KHz 2500 electric/ magnetic drive Resonance tuning Ref [39]
TP MH 1000 (l)×65 (w) μm 19±3.8 kHz piezoelectric excitation MTA Ref [67]
Carbon nanotubes 1–15 (l) μm 57.04 kHz 3000 optomechanical detection Mass sensing Ref [34]
Pt-C 5 (l) μm 662.5 kHz. 149±13 electrical detection Original process Ref [45]
SiC nanowire 10 (l)×0.05 (d) μm 1 MHz 10,000 optical detection Spin coupling Ref [79]
Si 7 (l)×0.2 (w)×0.1 (t) μm 1.12 MHz 5000 Atomic spin Ref [21]
GaAs 4 (l)×0.8 (w)×0.2 (t) μm 8 MHz 2700 piezoelectric excitation Resonance tuning Ref [47]
Porous nano cantilever 4 (l)×0.130 (w)×0.220 (t) μm 9.66 MHz Mass sensing Ref [88]
Si 5 (l)×0.3 μm 19.16 MHz 5000 electrical detection Mass sensing Ref [85,86]
Si 5–10 (l) μm 20–120 MHz 7500–8500 electrical detection Mass sensing Ref [87]
SiC 0.6 (l)×0.4 (w)×0.1(t) μm 127 MHz 900 electrical detection High frequency resonator Ref [1]
Carbon nanotubes 205 (l)×1.78 (d) nm 328.5 MHz 1000 radio signal detect Mass sensing Ref [81]
Hemispherical Shell Metallic glasses 3 mm (d) 13.944 kHz 6200 optical detection Gyroscope Ref [13]
Polycrystalline diamond 1.1 mm (d) 18.316 kHz 20,000 optical detection Resonator Ref [93]
Ring Si 1–6 mm (r) 2163.8 Hz 510,000 electrostatic drive Gyroscope Ref [25]
Si 720 μm (d) 134.31 kHz electrostatic drive Resonator Ref [27]
Microdisk Diamond 38 μm (d) 930 MHz >104 laser detection Mass sensing Ref [24]
SiC 19.5 μm (d) 10.14~16.48 MHz 850~1360 laser detection Multi-mode Ref [14]
GaAs 13 μm (r) 1.3 GHz optomechanical detection Energy loss Ref [97]
Drum SiN 100 nm (t) 121.1 kHz 5.3×106 optical interference Octave frequency tuning Ref [23]
Graphene 285 nm (t) 13.92 MHz 416.6 High-frequency stochastic switch Ref [26]
Graphene 4 μm (d) 52.19 MHz 55 electric drive Oscillator Ref [99]
Graphene 4 μm (d) 60–75 MHz 500–3000 optical detection In plane stress detection Ref [100]
Fork Si 3 KHz 6.8×103 optical levers detection Resonator Ref [115]
Silicon nitride 20 μm(l) 16.51 MHz Resonator Ref [116]
SAW/BAW Si 4.3 MHz 60,000 electrostatic excitation Gyroscope Ref [107]
AlN 1 μm (t) 106.69 MHz electrical excitation High-order harmonics Ref [109]
AlN/Au 500 nm (t) 161.4 MHz 1116 electrical excitation Infrared detector Ref [106]
Graphene oxide/AlN 1 μm (t) 226.3 MHz transmission spectrum detection Humidity sensor Ref [105]
AlN 1 μm (t) 446 MHz 1500 RF excitation Resonator Ref [103]
Diamond/ZnO 1020 μm (t) 3 GHz Fast spin control Ref [110]