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Abstract
The COVID-19 pandemic resulted in a significant increase in the workload for the 
emergency systems and healthcare providers all around the world. The emergency 
systems are dealing with large number of patients in various stages of deteriorat-
ing conditions which require significant medical expertise for accurate and rapid 
diagnosis and treatment. This issue will become more prominent in places with lack 
of medical experts and state-of-the-art clinical equipment, especially in develop-
ing countries. The machine intelligence aided medical diagnosis systems can pro-
vide rapid, dependable, autonomous, and low-cost solutions for medical diagnosis 
in emergency conditions. In this paper, a privacy-preserving computer-aided diag-
nosis (CAD) framework, called Decentralized deep Emergency response Intelli-
gence (D-EI), which provides secure machine learning based medical diagnosis on 
the cloud is proposed. The proposed framework provides a blockchain based decen-
tralized machine learning solution to aid the health providers with medical diagno-
sis in emergency conditions. The D-EI uses blockchain smart contracts to train the 
CAD machine learning models using all the data on the medical cloud while pre-
serving the privacy of patients’ records. Using the proposed framework, the data of 
each patient helps to increase the overall accuracy of the CAD model by balancing 
the diagnosis datasets with minority classes and special cases. As a case study, the 
D-EI is demonstrated as a solution for COVID-19 diagnosis. The D-EI framework 
can help in pandemic management by providing rapid and accurate diagnosis in 
overwhelming medical workload conditions.
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Introduction

During epidemiological events, such as the COVID-19 pandemic, the emer-
gency services face a significant number of rapidly deteriorating patients with 
severe conditions and high chances of mortality. The computer-aided diagno-
sis (CAD) systems can help the emergency services to have an initial estimate 
of the patient’s conditions and to provide rapid response to a large number of 
patients. Artificial intelligence and machine learning are utilized for many appli-
cations in management of various aspects of smart environments and privacy 
preserving [1–3]. These algorithms and models can also be used for automated 
emergency response to pandemic conditions. Some of the proposed applications 
include early risk assessment [4], risk prediction in patients [5], clinical trials for 
drugs [6], measuring the effects of contamination [7] and allocation of priorities 
in receiving the diagnosis tests in areas with shortage of supply [8]. Furthermore, 
deep learning has been used for training different models for autonomous identi-
fication of infected patients by analyzing computed tomography (CT) and X-ray 
images [9] and to detect infected patients by analyzing their cough pattern [10]. 
The CAD based telemedicine can help patients with limited symptoms to receive 
the required diagnosis and treatment at home and only to visit hospitals in cases 
when their condition deteriorates.

For designing accurate machine learning based CAD systems, the researchers 
require a significant amount of data for modeling the symptoms of the disease. 
However, training accurate medical machine learning models requires high-qual-
ity data which contains enough samples from each category and specific cases. 
These data improves the machine learning models and allow them to identify 
minority classes with higher accuracy. However, a larger part of the data that 
can help the researchers to model the diseases is not publicly available as pri-
vacy does not allow sharing the patient data. Therefore, the subject of privacy-
preserving for medical applications is of significant interest for researchers. The 
blockchain technology is one of the most prominent technologies proposed for 
privacy-preserving and protecting medical records. Recently, blockchain technol-
ogy is integrated into different fields, scenarios, and environments. Examples of 
this integration include data sharing for the Industrial Internet of things (IIoT) 
[11], large-scale heterogeneous network (LS-HetNet) and 5G-enabled smart cities 
[12]. This technology has been used for securing healthcare data in various recent 
studies. For example, Gupta et  al. [13], Healthify [14], Bittins [15] proposed 
blockchain-based solutions for secure medical and healthcare data transfer and 
sustaining trust while satisfying data exchange requirements within the healthcare 
ecosystem. Furthermore, privacy protection in IoT services has been investigated 
[16]. In addition to secure data transfer, the blockchain is also proposed for secure 
training of machine learning models. Shen et  al. [17] proposed secureSVM, a 
privacy-preserving Support Vector Machine (SVM) training scheme over block-
chain-based encrypted internet of things (IoT) data. In their proposed framework, 
two main entities exist: (1) IoT Data Provider and (2) data analyst. Each data pro-
vider pre-processes IoT data instances, encrypts them locally using their private 
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keys, and records them in a blockchain-based shared ledger. The data analyst who 
wants to train an SVM model can get access to the encrypted data. In this frame-
work, during the training process, interactions between the data analyst and data 
providers are crucial for exchanging intermediate results. PrivySharing [18], is 
a privacy-preserving framework focused on secure IoT data sharing in a smart 
city environment. The proposed strategy ensures that personal/critical user data 
is kept confidential, securely processed, and is exposed to the stakeholders on a 
need-to-know basis as per user-defined Access Control List (ACL) rules embed-
ded in smart contracts. Chen et al. [19] proposed a Blockchain-based secure inter-
hospital system, which was used to share electronic medical records (EMRs) 
between different hospitals. Their proposed scheme is immune to data manipu-
lation and data leak. Dai et  al. [20] proposed a blockchain-enabled Internet of 
Medical Things (IoMT) to address the security and privacy concerns of IoMT 
systems. Shu et  al. [21] proposed a certificate-less scheme, which offers secure 
storage for sharing medical data on the blockchain. They stated that their scheme 
would satisfy the security requirements (integrity, privacy, and traceability) in 
medical cyber-physical systems (MCPS). In their work, the scheme consists of 
two layers and the medical records are stored off-chain. Jaleel et al. [22] proposed 
a medical data sharing framework by collaborating with different IoMT devices. 
Since devices created by different vendors offer different data types and formats, 
this framework aims to fix incompatible data, merge them, and finally publish 
them. Moreover, the blockchain has also been proposed to be utilized for research 
regarding COVID-19 pandemic [23]. Fadaeddini et al. proposed a framework for 
training machine learning models on decentralized blockchain network [24, 25].

To utilize the security of decentralized blockchain-based networks for medical emer-
gency systems, in this paper, we propose a CAD framework that allows the collabora-
tion of different clinics, hospitals, and medical centers during pandemics. The proposed 
framework, called Decentralized deep Emergency response Intelligence (D-EI), uses a 
combination of blockchain and machine learning for emergency CAD. The proposed 
decentralized framework guarantees data integrity and patient privacy. As a case study, 
the applications of the D-EI framework is investigated for several COVID-19 diagnosis 
criteria and a machine learning based CAD using D-EI is proposed. The electro-cardio-
grams (ECG), computed tomography (CT) scans, X-ray images and cough recordings 
of the patients are used in this investigation. The experimental results show that the 
proposed framework can provide a highly effective solution for rapid and privacy pre-
serving CAD in pandemic conditions.

The rest of the paper is organized as follows: In “Decentralized Deep Emer-
gency Intelligence”, D-EI framework is detailed. “D-EI for Emergency Intelligence 
in COVID-19 Pandemic” is dedicated to D-EI as a solution for privacy preserving 
COVID-19 diagnosis. Finally, “Conclusion” concludes the paper.
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Decentralized Deep Emergency Response Intelligence

The sharing of medical test results and other personal data is required for manage-
ment of public health emergencies during pandemics. This requirement raises issues 
regarding the security of data and the privacy of the patients. Blockchain and smart 
contracts can provide a solution for these issues. In the decentralized approach, data 
remains distributed on individual devices, and therefore, data will remain anony-
mous. This approach is opposite to the centralized approach in which the data is 
aggregated on a central server, and at best, the data can be pseudonymized. Using 
the D-EI framework, patients can share their test results between different hospi-
tals and medical centers without any concern regarding their privacy and accurate 
machine learning models can be trained using these data.

Decentralized Privacy‑Preserving Framework

A smart contract is a transaction protocol which is executed automatically and per-
forms different functions such as funds transfer, calculations, and information stor-
age on a blockchain [26]. The smart contract includes the value, address, functions, 
and state of the transactions executed between the participating nodes. It accepts 
transactions as input, executes the code, and provides the output. Notable character-
istics of smart contracts are accuracy, immutability, security, self-enforcement, fast 
execution, and self-verifiability. In other words, smart contract is a programming 
code which allows decentralized automation. Upon execution, the smart contract 
executes itself and enforces the agreement conditions. Usually, the smart contracts 
are developed in a programming language called Solidity over various blockchain 
networks such as Stellar, Ripple, Ethereum, and EOS. These platforms ensure that 
data will be protected against cyber-security attacks such as modification, spoofing, 
and fabrication attacks.

Although the smart contracts are considered secure, there are still vulnerabili-
ties which should be considered in development of smart contract based applications 
[27]. An example of security vulnerabilities in Ethereum smart contracts is reen-
trancy attack which may happen when a smart contract calls an external contract 
that takes over the control flow and calls back into the calling contract before the 
first invocation is finished. This process can lead to improper initialization, mishan-
dled exceptions, unprotected self-destruction, and delegation calls to untrusted con-
tracts [27]. However, there are solutions for these vulnerabilities. For example, reen-
trancy can be solved by avoiding calling an external function until all of the internal 
functions are finished. Alternatively, developers can avoid security vulnerabilities 
by removing the selfdestruct function. Furthermore, there are many formal verifica-
tion techniques (Formalization based on Lem or F* [28]), code analysis tools (Secu-
rify [29], Zeus [30]), or security audits (OpenZeppelin [31], SmartDec [32]) that 
developers can perform before deploying the smart contract, to eliminate security 
weaknesses. Moreover, security patterns can be applied in the design phase from 
the beginning. Therefore, even though smart contracts are not immune to vulner-
abilities, security issues can be handled and smart contracts can be verified using 
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different tools and techniques. For Solidity programming language, used in the pro-
posed D-EI, a satisfiability modulo-theories (SMT)-based formal verification mod-
ule is utilized to verify the smart contracts [33]. This verification tool is integrated 
into the Solidity compiler, and during compilation, issues warnings for potential 
failures.

In the proposed D-EI framework, there are two groups of stakeholders and one 
controller. The first stakeholder is a patient. The health records of the D-EI frame-
work members can be distributed across emergency response teams, clinics and hos-
pitals for usage by the patient and for training CAD models. In emergency situations 
the patients require to have access to all of their medical records, wherever they are. 
Since the focus of the current study is on the COVID-19 pandemic, we assume these 
records are COVID-19 test results. However, the D-EI is also applicable in other 
medical and healthcare scenarios. The second group of D-EI stakeholders are medi-
cal centers. The medical centers store the healthcare data, medical records, and test 
results of patients. The D-EI controller is a smart contract, which is responsible for 
storing and accessing records on a blockchain network and handling permissions 
and access. Moreover, the smart contract encrypts the values before creating a trans-
action and stores them on the blockchain. It will also be responsible for storing files, 
if necessary. Finally, the smart contract is utilized for machine learning based CAD 
and delivers the final test result.

Figure 1a shows the overall architecture of the proposed D-EI framework. The 
patient medical information (such as medical images and lab results) are stored in 
a decentralized manner on the blockchain using InterPlanetary File System (IPFS) 
[34]. IPFS is a decentralized peer-to-peer protocol which distributes files between 
a list of trusted nodes known as bootstrap nodes and makes them available to other 
users by Content Identifiers (CIs) and content-based addressing. It takes advantage 
of cryptographic hashes to store files on a blockchain network. Figure 1b, c show 
COVID-19 CAD using D-EI. First, a patient takes an RT-PCR test (Step 1), and the 
result is added to the system by a nurse via the smart contract (Step 2). Then, the 
smart contract will create a transaction, and this value will be stored on the block-
chain (Step 3). In this scenario, since we will only work with binary results (either 0 
or 1, for negative or positive results), there is no need for file storage.

Later, if other tests are taken, their result will be added to the system (steps 7 and 
8) using a simple weighted average fusion method, and the final result will be shown 
to the patient (steps 9 and 10). The raw results will be a list in the format of “[Test 
name, Result]”. For example, [PCR, 1] means the result of RT-PCR is positive or 
[Cough, 0] means the cough test result is negative. The patient data can also be used 
for training the CAD models using similar method.

D‑EI Smart Contract

In the proposed D-EI framework, a single Ethereum-based [35] smart contract is 
utilized. It is used to manage data sharing between medical centers and patients 
and to receive test results and perform diagnosis based on results. Before con-
necting to the smart contract, patients and clinics are required to set up a crypto 
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wallet or a blockchain browser. By doing so, they will be given a unique block-
chain address, which will act as an identifier and distinguishes users from each 
other. Moreover, in order to re-use this address and to connect to it using other 
apps, browsers, or wallets, they are given a private key or mnemonic phrase. Met-
aMask [36] is utilized for this task in the proposed D-EI framework. The address 
given to the patient (for example, 0xBe3F06...Fd67993c) is unique and can only 
be used by the patient. For programming the Ethereum-based smart contract, 
Solidity 0.5.0 [37] is employed. Compiling the smart contract is done using Truf-
fle Suite [38], and the migration for development on a local blockchain and fur-
ther evaluation and tests, was achieved by Ganache [39]. The connection between 

Fig. 1   Decentralized framework for sharing data between different data holders for telemedicine
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the front-end and blockchain is controlled by web3.js [40], an Ethereum JavaS-
cript API. Figure 2 shows the deployment and test phases.

Restricting access to unauthorized users is vital in smart contracts. In order to 
manage access control and security of the smart contract, OpenZeppelin, a secu-
rity tool for Solidity, was utilized. For registering in the proposed D-EI system, 
first, clinics and hospitals must access the application and register with their unique 
address given by MetaMask or any other crypto wallet. Upon registration, they will 
be given ClinicRole, which is an administrator role for that specific clinic. After that, 
when this clinic adds new patients to the system, these patients will be assigned a 
PatientRole, and they will be linked to their corresponding clinic. Each patient can 
also be linked to different clinics since each clinic or hospital has a unique address. 
Therefore, a patient’s distributed medical records will be accessible to him in a 
decentralized and secure manner. This was achieved by employing OpenZeppelin’s 
AccessControl module [41], which assigns different roles to different system stake-
holders while taking care of permissions and secure access. At first, the patients 
must create a wallet address. Then, for registration, they must contact the medical 
centers and provide their blockchain address for the record. After the clinic or hos-
pital verifies them (via their insurance card, ID card or passports), the clinic or hos-
pital can add the patient to the smart contract via their address, and the Patient role 
will be assigned to them. Moreover, only accounts that have been granted the Clini-
cRole can grant or revoke PatientRole for an account that is linked to them. Algo-
rithm 1 and Algorithm 2 demonstrate how OpenZeppelin’s AccessControl module 
was employed in the smart contract, how the roles are granted to stakeholders of the 
system and how new users and admins can be registered and added. Here, two roles 

Fig. 2   Deployment and test phases of D-EI



684	 New Generation Computing (2021) 39:677–700

123

(clinicRole and patientRole) are defined. In OpenZeppelin, roles are referred to by 
their “bytes32” identifier (Algorithm 1 – lines 1 and 2). The address passed on to the 
constructor is the initial administrator. 

The _setupRole and _setRoleAdmin (Algorithm 1 – lines 4 and 5) are OpenZep-
pelin functions. The _setupRole takes a role and address as its arguments and cre-
ates a new role linked to its creator’s address (clinicAddress). The _setRoleAdmin 
function links two roles and by default clinicRole is the admin role of patientRole. 
The isClinicAdmin and isPatient functions, which make use of OpenZeppelin’s pre-
defined hasRole function, will be used to handle access control throughout the entire 
smart contract, and they return a Boolean value (True or False).

Algorithm 2 represents the registration of new admins (head of a department, a 
doctor, or a nurse) for the same clinic and its patients. Here, we make use of the 
previously defined isClinicAdmin function in Algorithm  1. The grantRole func-
tion is also a part of OpenZeppelin AccessControl module. This function utilizes 
the implicitly available msg.sender from global variable msg, which contains the 
address of the stakeholders, and the user who is currently connected to the system. 
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Fig. 3   A patient viewing his/her COVID-19 test results added to the system

Fig. 4   The architecture of the deep neural network of Arrhythmia classification model
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After the smart contract tested locally, it was deployed on an online blockchain 
named Kovan Testnet Network [42] for further evaluation. Furthermore, for upload-
ing files on IPFS and later downloading them, an IPFS API named Infura [43] was 
employed. Figure 3 shows the UI of the D-EI system, accessed by a patient who is 
viewing his/her COVID-19 tests result. As shown, the Cough and CT/X-ray tests 
were positive, and after applying the CAD, the final result is shown. This data can 
also be used for training CAD machine learning models.

Machine Learning‑Aided COVID‑19 CAD Framework

For demonstration of the machine learning-based COVID-19 CAD on D-EI, the 
application of deep learning methods for Arrhythmia classification, cough detection, 
chest CT segmentation, and X-ray classification are investigated in this paper. For 
the Arrhythmia classification, a convolutional neural network, as shown in Fig. 4, 
is utilized. In this architecture, all convolution layers apply 1D convolution with 32 
kernels of size 5. Max-pooling of size 5 and stride 2 are used in all pooling layers. 
The predictor network consists of five residual blocks followed by two fully-con-
nected layers with 32 neurons each. Finally, a Softmax layer is used to predict output 
class probabilities. Each residual block contains two convolutional layers, two recti-
fied linear unit (ReLU) activation function, a residual skip connection, and a pooling 
layer.

The cough classification model is illustrated in Fig. 5. This architecture employs 
densely connected layers, and each dense layer uses a ReLU activation function. 
Same as before, the Softmax activation function is used in the last layer. First, the 
input of this architecture is a recorded cough, save as an audio file. However, before 
feeding it to the input, the sound must be converted into a Mel-Spectrum format, and 
then it can be sent to the first dense layer.

Fig. 5   The architecture of the deep neural network of COVID-19 cough classification model

Fig. 6   The architecture of deep neural network of X-ray classification model
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The X-ray classification model makes use of convolutional layers, as shown 
in Fig. 6. In this model, the input X-ray images are resized to 100 × 100 pixels. 
A series of Conv2D layers with a kernel of size 3, ReLU activation function, and 
MaxPooling2D layers with a pool size of 2 are employed. The convolutional lay-
ers output is then passed to a Flatten layer, with passes its output to a dense layer 
with 64 units. Next, a Dropout with a value of 0.5 is applied in order to prevent 
overfitting. Finally, a dense layer with a Softmax activation function is used as the 
final output.

For CT image segmentation, the U-Net architecture, illustrated in Fig.  7, is 
employed. The U-shaped network is comprised of two different paths: a contract-
ing path and an expansive path. The contracting path is a convolutional network 
that consists of repeated application of 3 × 3 convolutions, each followed by a 
ReLU and a filter of size F, which in this case study was set to 32. Furthermore, 
MaxPooling2D and Dropout were employed in the contracting path. The expan-
sive path merges the feature and spatial information through transposing and con-
catenations of the features from the contracting path.

Fig. 7   The architecture of U-Net for chest CT segmentation

Fig. 8   The overall fusion method used in this paper
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A problem with combing the results of multiple deep learning models is that 
a wrong prediction from any of these models could lead to a wrong conclusion. 
Data fusion is a technique that merges various forms of data (obtained from dif-
ferent sensors or data sources) in order to procure more reconcilable and accurate 
information compared to the raw data that is mostly indecisive, imprecise, incon-
sistent, and conflicting [44]. Although, the PCR is the standard test for COVID-
19 diagnosis, even this test is not completely accurate [45, 46]. Therefore, in 
this paper, the results of the three different deep learning models are combined 
together for COVID-19 CAD. The functionality of the utilized simple fusion 
method is illustrated in Fig.  8. As shown, a patient can take different tests ( T1 , 
T2 , ..., TN ) up to N tests, and each test will produce a result ( R1 , R2 , ..., RN

 ), 0 
for negative and 1 for positive results. For every test, a weight will be assigned. 
Tests that have proven to be more accurate will have higher weights (e.g., PCR 
and X-ray), and cough and arrhythmia test results will have lower weights. These 
weights can be changed using the smart contract. After each result is received, 
they will be multiplied by their respective weight, and then a weighted average 
result will be calculated.

First of all, for each test, a corresponding ID will be assigned: [PCR: 1, 
Arrhythmia: 2, Cough: 3, CT/X-ray: 4]. Using these IDs, each result will be mul-
tiplied by the corresponding weight. The system will receive the results as:

where t stands for the test type, r is the result value of the respective test and can be 
either 0 or 1, and (TR)1 , (TR)2 , ..., (TR)N are a series of tests with results. Result is a 
function that separates each test ID from its result. For example, if received a series 
is as {(1,0), (2,0), (3,1), (4,1)}, which means PCR and Arrhythmia are negative, but 
Cough and CT/X-ray tests were positive, t and r will be:

and the weight of each test, previously defined and stored on the smart contract by 
either clinic operators (nurses or doctors) or developers, will be received as:

where w is the corresponding weight. Finally, the final result FR will be calculated 
as:

(1)[t
i
, r

i
] = Result{(TR)1, (TR)2, ..., (TR)N},

(2)[t1 = 1, r1 = 0], [t2 = 2, r2 = 0], [t3 = 3, r3 = 1], [t1 = 1, r1 = 1],

(3)w
i
= W(t

i
),

Table 1   Corresponding weights 
of each test

Test Weight

RT-PCR 1.2
Arrhythmia 0.4
Cough 0.8
CT/X-ray 2.6
CT/X-ray result approved by radiologist 3
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Table 1 shows the weights that specified in this research. Since chest X-ray and CT 
scan are reliable tools [9, 47] for COVID-19 diagnosis, higher weights are assigned 
to them. If the detection or segmentation is conducted via a deep learning model, 
the weight 2.6 will be assigned. However, if a doctor or radiologist approves the 
image as COVID-19 positive, the weight will be 3. The minimum summation of 
weights will be equal to 0, and the maximum will be either 5 (X-ray positive without 
approval) or 5.4 (CT/X-ray positive approved by a specialist).

Figure  9 shows a numerical example of the utilized diagnosis method. Here, 
RT-PCR and Arrhythmia test are negative, and Cough and X-ray are positive. 
Each result will be multiplied by its respective weight, and the sum of them will 
be divided by sum of weights, which results in 0.68 or a probability of 68% that the 
patient is COVID-19 positive. The decision process can be improved using various 
information fusion methods.

D‑EI for Emergency Intelligence in COVID‑19 Pandemic

In order to explore the applications of D-EI for emergency intelligence in pan-
demic conditions, first the machine learning based CAD results for COVID-19 are 
investigated.

Machine Learning Based CAD for COVID‑19

Although COVID-19 mainly targets the respiratory system, major cardiac complica-
tions have also been reported [48]. If an emergency occurs and the patient is car-
ried to a hospital, the data acquired in the ambulance is valuable. Therefore, the 
ambulance is also a critical entity or data holder in D-EI. This case study is imple-
mented to investigate the applications of the deep learning-based model for predict-
ing Arrhythmia on ECG classification using the D-EI proposed framework. For 

(4)FR =

∑N

i=1
(r

i
× w

i
)

∑N

i=1
(w

i
)

Fig. 9   A numerical example of the fusion method used in this paper
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this task, a publicly available dataset named MIT-BIH Arrhythmia Database [49] 
is used. The dataset, has five classes: ‘N’ or Non-ectopic beats (normal beat), ‘S’ or 
Supraventricular ectopic beats, ‘V’ or Ventricular ectopic beats, ‘F’ or Fusion Beats, 
and ‘Q’ or Unknown Beats.

The MIT-BIH Arrhythmia Database contains 48 half-hour excerpts of two-
channel ambulatory ECG recordings obtained from 47 subjects studied by the BIH 
Arrhythmia Laboratory. Twenty-three recordings were chosen at random from a 
set of 4000 24-h ambulatory ECG recordings collected from a mixed population of 
inpatients (about 60%) and outpatients (about 40%) at Boston’s Beth Israel Hospital; 
the remaining 25 recordings were selected from the same set to include less com-
mon but clinically significant arrhythmias that would not be well-represented in a 
small random sample. The recordings were digitized at 360 samples per second per 
channel with 11-bit resolution over a 10 mV range. Two or more cardiologists inde-
pendently annotated each record; disagreements were resolved to obtain the com-
puter-readable reference annotations for each beat (approximately 110,000 annota-
tions in all) included with the database.

For implementation of the deep neural network model, Keras, was used with Ten-
sorFlow. Adam, a stochastic gradient descent method based on adaptive estimation 
of first-order and second-order moments, was used as the model’s optimizer, with 
values: learningrate = 0.001 , beta1 = 0.9 , beta2 = 0.999 . Batch sizes of 300, 400, and 
500 were investigated with 50 and 100 epochs. The model trained with 100 epochs 
and a batch size of 400 yielded the best result. As the goal of this case study is to 
show the proposed framework in action. Therefore, we will not focus on the model’s 
details.

Table 2   Classification results on 
MIT-BIH Arrhythmia dataset 
(test set)

Activity Precision Recall F1-Score

N—Non-ectopic beats 0.85 0.99 0.92
S—Supraventricular ectopic beats 0.99 0.88 0.93
V—Ventricular ectopic beats 0.97 0.96 0.96
F—Fusion beats 0.98 0.94 0.96
Q—Unknown beats 1.00 0.99 1.00
Macro/weighted average 0.96 0.95 0.95

Table 3   Comparison of 
heartbeat classification using 
D-EI with state-of-the-art 
methods

Work Average accuracy

This paper 95.2%
Kachuee et al. [50] 93.4%
Acharya et al. [51] 93.5%
Kaspal et al. [52] 93.24%
Malik et al. [53] 94.35%
Khan et al. [54] 95.2%
Alfaras et al. [55] 92.7%
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The model managed to classify different types of heartbeats with high accu-
racy. Since the ‘S’ and ‘N’ type beats are somewhat similar, 89 samples (11% 
of total samples) of ‘S’ type beats are wrongly predicted as ‘N’, but the rest of 
the results are acceptable. The best prediction performance belongs to ‘N’ and 
‘Q’ beats. In D-EI, if an ECG sample is predicted to be ‘N’, the result sent to 
the system will be equal to 0. However, if ‘S’, ‘V’, ‘F’, and ‘Q’ classes are pre-
dicted, which means irregularity in heartbeat rhythm, the result sent to the system 
will be equal to 1. Precision, recall, F1-score, and support obtained by the model 
are shown in Table 2. As shown in the table, the average precision of these five 
classes is 0.96, and the average F1-score and recall are 0.95.

Finally, we compared our result with similar work such as [50], as shown in 
Table 3. As it can be seen, our approach, with larger batch size and epochs, per-
formed better compared to other similar work. The studies mentioned in this table 
utilized the same MIT-BIH dataset in their proposed models.

The next investigated data is the COVID patients cough sounds. The dataset 
utilized for this case study [56] consists of a total of 170 cough samples, with 19 
COVID-19 and 151 normal cough samples. First, every cough sample (audio file) 
was converted into a spectrogram, and after that, features such as Mel-frequency 
Cepstral coefficients (20 numbers in total), spectral centroid, zero-crossing rate, 
chroma frequencies, and spectral roll-off were extracted. Table 4 shows an exam-
ple of this operation. These features are used for training the cough classification 
model.

Adam and RMSProp optimizers are used for training different models and choos-
ing the one with the best performance. The models were trained for 25 epochs, with 
batch sizes of 32, 64, and 128. The best model, with 100% training and validation 
accuracy, was the Adam trained model with a batch size of 128. Table 5 shows a 
comparison of the proposed model with recent COVID-19 related cough classifica-
tion models.

Table 4   An example of extracted feature from cough samples

Label Chroma Spectral_centroid Zero_cross-
ing_rate

mfcc1 ... mfcc20

COVID-19 0.412 2583.17 0.195 − 341.59 ... − 5.86
Normal 0.407 2710.82 0.142 − 346.86 ... − 0.5039

Table 5   Comparison of cough classification using D-EI with state-of-the-art methods

Work Dataset Average Accuracy

This paper COVID-19 cough recordings [56] 100%
Imran et al. [10] Their own COVID-19 cough dataset 95.6%
Sharma et al. [57] Their own multi-class cough dataset [58] 66.74%
Vijayakumar et al. [59] Their own COVID-19 cough dataset 94%
Mouawad et al. [60] Their own COVID-19 cough dataset 99%
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The next data used in this study is chest X-ray images that are used in the 
early diagnosis of COVID-19. The chest X-ray dataset utilized in this study [61] 
contains 6432 X-ray images belonging to three classes: COVID-19, normal, and 
pneumonia. By default, 80% of the dataset is set for training, and the remaining 
20% for testing, with 460 COVID-19, 1,266 normal, and 3418 pneumonia sam-
ples in the training set, and 116, 317, and 855 samples for COVID-19, normal, 
pneumonia classes in the test set. For training the deep neural network model, 
the images were resized to 100 ×100 pixels, and data augmentation techniques, 
including width and height shift of 0.1, and shear and a zoom range of 0.1 were 
applied for training the model. The batch size of 64 is used, and models were 
trained for 50 epochs with Adam and RMSProp optimizers, yielding accuracies 
of 93.56% and 93.63%, respectively. The Adam trained model detected 14% of 

Table 6   Classification report on 
X-ray dataset (test set)

Activity Precision Recall F1-Score

Adam—COVID-19 0.99 0.95 0.97
Adam—Normal 0.92 0.86 0.89
Adam—Pneumonia 0.94 0.97 0.96
Macro/weighted average 0.95 0.93 0.94
RMSProp—COVID-19 1.00 0.92 0.96
RMSProp—Normal 0.88 0.91 0.90
RMSProp—Pneumonia 0.96 0.96 0.96
Macro/weighted average 0.95 0.93 0.94

Table 7   Comparison of X-ray image classification using D-EI with state-of-the-art methods

Work Image classes Average accuracy

This paper COVID-19, Normal, Pneumonia 93.6%
Ozturk et al. [62] COVID+, Pneumonia, No-findings 87.0%
Sethy et al. [64] COVID positive vs. COVID negative 95.4%
Yoo et al. [63] COVID-19 vs. Tuberculosis 95%
Panwar et al. [65] COVID-19 vs. Other chest diseases 88.1%

Fig. 10   A sample of the CT scan dataset



693New Generation Computing (2021) 39:677–700	

123

normal test samples as pneumonia, and there was a 5% error in distinguishing 
COVID-19 test samples from pneumonia. Furthermore, the RMSprop trained 
model predicted COVID-19 test samples as normal and pneumonia with an error 
of 3% and 4% of respectively. Table  6 shows classification report of the Adam 
and RMSprop models. As shown, in the RMSprop trained model, the precision of 
COVID-19 is 1 (100%), however, the precision for normal class is 0.88 (88%) in 
this model.

Finally, Table  7 shows a comparison of recent studies focused on CAD using 
chest X-ray classification. The trained model for this paper outperformed [62], 
which used the same image classes as this paper, based on performance. Further-
more, [63] and [64] outperformed the average performance of this paper since they 
focused on a binary classification and used one less class, which can significantly 
impact the performance.

The next data used in this study are CT scans that act as a supportive tool in 
diagnosis of COVID-19. Deep learning trained models that can find evidence of 
COVID-19 in CT scans can act as a diagnosis tool, especially in case of a shortage 
of expert radiologists and doctors. For this task, a dataset containing 20 CT scans of 
COVID-19 diagnosed patients together with the segmentation of lungs and infec-
tions was utilized [66]. This dataset is a combination of [67, 68] and [69]. Figure 10 
shows a sample of this dataset, which contains the original CT image, lung mask, 
infection mask, and a combination of both masks.

The U-net architecture was utilized for this task and 2 CT scans were used for the 
test set and the remaining 18 scans for the training set. This time, only Adam opti-
mizer was utilized, and in order to prevent overfitting, the early stopping method on 
validation accuracy was utilized. The model was to be trained for 25 epochs; how-
ever, due to the usage of early stopping, it was stopped after 9 epochs, with a valida-
tion accuracy of 99.61%. Figure 11 shows a predicted infection mask by this model.

Fig. 11   Predicted infection 
mask

Table 8   Comparison of CT scan 
segmentation for COVID-19 
using D-EI with state-of-the-art 
methods

Work Average accuracy

This paper 99.61%
Singh et al. [70] 93.3%
Wang et al. [71] 90.1%
Ahuja et al. [72] 99.4%
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A comparison of recent papers focused on using CT scan segmentation for 
COVID-19 cases is presented in Table 8. As shown, this paper’s model outperforms 
recent studies focused on this task based on accuracy.

D‑EI for CAD as a Service on Decentralized Medical Cloud

Figure 12 shows the D-EI framework for sharing data and medical records between 
a telemedicine provider and a patient at home. This model is especially useful for 
COVID-19 patients with mild symptoms which are advised to stay at home.

In Fig. 12, the scenario is as follow: (1) The patient requests access to the records 
through Smart Contract #1 (Patient smart contract—which is used for managing 
transactions between patients and medical centers). (2) After the authentication of 
the patient using her address on the blockchain and accepting the request, since the 
requested data is large and cannot be shared through the blockchain directly, Data 
holder (or Telemedicine provider in the figure) uploads the record on IPFS (3.1), 
and then receives a checksum hash (Hash #1–3.2). An advantage that IPFS provides 
is that no additional information, other than the hash, is required to retrieve the file. 
Moreover, IPFS does not allow another distinct file with the same hash to be created. 
Therefore, a file uploaded on IPFS can easily be verified. Next, again through the 
SC#1, this hash will be sent to The Patient on the blockchain on a secure channel. 
However, before that, SC#1 checks if the hash is correct and if it exists on IPFS. If 
so, then the hash (Hash #1) will be passed to The Patient, and she can download 
the records using the IPFS hash address (4). As the figure shows, the smart con-
tract and IPFS are located on the Blockchain, thus a secure channel is constructed 
between stakeholders. Note that in the figure, addresses are unique identifiers of 
each stakeholder.

Fig. 12   D-EI framework for sharing data between different data holders for telemedicine
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When a CAD expert wants to train a diagnosis model on data from Emergency/
Telemedicine provider, first, the data holder is required to provide a sample of its 
dataset, along with descriptions of the dataset (Step 0). Next, a researcher con-
nects to the SC#2 (or ModelTraining contract, which is dedicated to handling con-
tracts between data holders and researchers) via a web application (or UI). Then, in 
order to sign a contract with data holders and send a request for training his model 
on their dataset, the researcher must provide a proposal of what he intends to do 
with the data, which programming language, library, frameworks, and resources 
are needed in order to train his model (1). Moreover, at this stage the researcher 
is required to upload his code and algorithm on IPFS (Train_Model.py file—1.1). 
Then, he will share the hash (Hash #2—1.2) via SC#2 and send his request. This 
smart contract will check if the file exists and the hash is correct. Then, it will be 
passed to Hospital #1 (Data Holder), which if accepts the request (2), will be able 
to download the code, and start the training process (3). Otherwise, no access to the 
code will be given to anyone else, and the researcher will be notified that his request 
was declined. After the training process is over, the data holder will upload (4) the 
trained model file (BestModel.h5—4.1) or any other checkpoints and files if avail-
able, and share the hash (Hash #3—4.2), which the researcher will use to download 
the model (5). In this scenario, no data will be shared with any person, model own-
ers, or researchers, thus the privacy of data holders will be preserved.

Fig. 13   Sequence diagram of the proposed framework for COVID CAD model training
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The diagram for training CAD machine learning models using D-EI, is presented 
in Fig. 13. As mentioned, the datasets used in this study are publicly available. How-
ever, for demonstrating the application of D-EI we assume that they are not avail-
able. Moreover, let us assume that Hospital #1 has 30 subjects, and Hospital #2 has 
the remaining 17 subjects. The CAD researcher want to train a model on this data. 
Therefore, he will sign a contract with Hospital #1 using the smart contract (SC#2). 
The hospital accepts the request, however, as mentioned, it does not hold the com-
plete records. Therefore, Hospital #1 will try to request the remaining data from 
Hospital #2 via SC#1. Then, Hospital #2 will upload its data on IPFS, and share 
the hash. SC#1 will check if the hash is valid, if so, Hospital #1 will receive the 
hash (Hash #2) from SC#1 and download the data (mitbih.part1.csv file —the file 
containing Hospital #2’s portion of the complete dataset) from IPFS with the hash. 
Meanwhile, the CAD researcher uploaded the code (Train_Model.py) on IPFS, and 
gave the hash (Hash #1) to Hospital #1 so they could download the code. Then Hos-
pital #1 can start the training of the model. While the model is being trained, check-
point will be saved periodically, and the hospital can share them upon request. When 
the process of training the model is finished, Hospital #1 will upload the trained 
model’s file (h5 file), share the hash (Hash #3) via SC#2. Finally, the CAD expert 
can download the h5 file using its hash.

In comparison with training the machine learning models in traditional central-
ized manner, the computational overhead of the proposed framework consists of two 
major parts. The first overhead is from sending and receiving the addresses of the 
files on IPFS and other interactions with the blockchain network. The second over-
head is from execution of the smart contracts and validation of the hashes of various 
participants in the process. Since these two overheads are very small and the imple-
mentation of the D-EI framework as described in Sects. “Decentralized Deep Emer-
gency Intelligence”and “D-EI for Emergency Intelligence in COVID-19 Pandemic” 
can be performed on an affordable computer system in real time. The main compu-
tational issue is training of the machine learning models, which like every machine 
learning training process, requires significant computational resources.

Conclusion

In this paper, a blockchain-based framework is proposed that allows collaboration of 
patients, healthcare providers and CAD researchers for access to medical data with-
out concern for privacy. The proposed framework, can provide the machine learn-
ing based CAD systems with the required data for training accurate models. The 
application of the proposed D-EI framework is investigated on several COVID-19 
diagnosis criteria and a machine learning based CAD system based on D-EI is pre-
sented. The patients ECG, CT scans, X-ray images and cough recordings are used 
for demonstration of a D-EI based COVID-19 CAD framework. It is shown that the 
diagnosis accuracy between 95%–100%, that is better than the reported in literature, 
has been achieved by the proposed CNN-based machine learning techniques using 
different input datasets. The experimental results show that the proposed framework 
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can provide an effective solution for rapid and privacy preserving CAD in pandemic 
conditions.

Funding  This study has no funding.

Declarations 

Conflict of interest  The authors declare that they have no conflict of interest.

Ethical approval  This article does not contain any studies with human participants or animals performed 
by any of the authors.

Informed consent  Informed consent was obtained from all individual participants included in the study.

References

	 1.	 Majidi, B., Hemmati, O., Baniardalan, F., Farahmand, H., Hajitabar, A., Sharafi, S., Aghajani, K., 
Esmaeili, A., Manzuri, M.T.: Geo-spatiotemporal intelligence for smart agricultural and environ-
mental eco-cyber-physical systems. In: Enabling AI Applications in Data Science, pp. 471–491. 
Springer (2021)

	 2.	 Nazerdeylami, A., Majidi, B., Movaghar, A.: Smart coastline environment management using deep 
detection of manmade pollution and hazards. In: 2019 5th Conference on Knowledge Based Engi-
neering and Innovation (KBEI), 2019. IEEE

	 3.	 Abbasi, M.H., Majidi, B., Eshghi, M., Abbasi, E.H.: Deep visual privacy preserving for internet of 
robotic things. In: 2019 5th Conference on Knowledge Based Engineering and Innovation (KBEI), 
2019. IEEE

	 4.	 Heldt, F.S., Vizcaychipi, M.P., Peacock, S., Cinelli, M., McLachlan, L., Andreotti, F., Jovanovié, S., 
Dürichen, R., Lipunova, N., Fletcher, R.A., Hancock, A., McCarthy, A., Pointon, R.A., Brown, A., 
Eaton, J., Liddi, R., Mackillop, L., Tarassenko, L., Khan, R.T.: Early risk assessment for COVID-19 
patients from emergency department data using machine learning. Sci. Rep. 11(1), 4200 (2021). 
https://​doi.​org/​10.​1038/​s41598-​021-​83784-y

	 5.	 Casiraghi, E., Malchiodi, D., Trucco, G., Frasca, M., Cappelletti, L., Fontana, T., Esposito, A.A., 
Avola, E., Jachetti, A., Reese, J., Rizzi, A., Robinson, P.N., Valentini, G.: Explainable machine 
learning for early assessment of COVID-19 risk prediction in emergency departments. IEEE Access 
8, 196299–196325 (2020). https://​doi.​org/​10.​1109/​ACCESS.​2020.​30340​32

	 6.	 Zame, W.R., Bica, I., Shen, C., Curth, A., Lee, H.-S., Bailey, S., Weatherall, J., Wright, D., Bretz, 
F., van der Schaar, M.: Machine learning for clinical trials in the era of COVID-19. Stat. Biopharm. 
Res. 12(4), 506–517 (2020). https://​doi.​org/​10.​1080/​19466​315.​2020.​17978​67

	 7.	 Gatto, M., Bertuzzo, E., Mari, L., Miccoli, S., Carraro, L., Casagrandi, R., Rinaldo, A.: Spread and 
dynamics of the COVID-19 epidemic in Italy: effects of emergency containment measures. Proc. 
Natl. Acad. Sci. 117(19), 10484 (2020). https://​doi.​org/​10.​1073/​pnas.​20049​78117

	 8.	 de Moraes Batista, A.F., Miraglia, J.L., Rizzi Donato, T.H., Porto Chiavegatto Filho, A.D.: COVID-
19 diagnosis prediction in emergency care patients: a machine learning approach. medRxiv (2020). 
https://​doi.​org/​10.​1101/​2020.​04.​04.​20052​092

	 9.	 Ducray, V., Vlachomitrou, A.S., Bouscambert-Duchamp, M., Si-Mohamed, S., Gouttard, S., Man-
suy, A., Wickert, F., Sigal, A., Gaymard, A., Talbot, F., Michel, C., Perpoint, T., Pialat, J.-B., Rou-
viere, O., Milot, L., Cotton, F., Douek, P., Rabilloud, M., Boussel, L., Argaud, L., Aubrun, F., Bohe, 
J., Bonnefoy, M., Chapurlat, R., Chassard, D., Chidiac, C., Chuzeville, M., Confavreux, C., Cou-
raud, S., Devouassoux, G., Durieu, I., Fellahi, J.-L., Gaujard, S., Gaymard, A., Hot, A., Krolak-
Salmon, P., Lantelme, P., Lina, B., Luaute, J., Lukaszewicz, A.C., Martin-Gaujard, G., Mornex, J.F., 
Potinet, V., Rimmele, T., Rode, G., Sève, F.P., Sigal, A., Zoulim, F.: Chest CT for rapid triage of 
patients in multiple emergency departments during COVID-19 epidemic: experience report from 

https://doi.org/10.1038/s41598-021-83784-y
https://doi.org/10.1109/ACCESS.2020.3034032
https://doi.org/10.1080/19466315.2020.1797867
https://doi.org/10.1073/pnas.2004978117
https://doi.org/10.1101/2020.04.04.20052092


698	 New Generation Computing (2021) 39:677–700

123

a large French university hospital. Eur. Radiol. 31(2), 795–803 (2021). https://​doi.​org/​10.​1007/​
s00330-​020-​07154-4

	10.	 Imran, A., Posokhova, I., Qureshi, H.N., Masood, U., Riaz, M.S., Ali, K., John, C.N., Hussain, 
M.D.I., Nabeel, M.: AI4COVID-19: AI enabled preliminary diagnosis for COVID-19 from cough 
samples via an app. Informatics in Medicine Unlocked (2020). https://​doi.​org/​10.​1016/j.​imu.​2020.​
100378

	11.	 Yu, K.P., Tan, L., Aloqaily, M., Yang, H., Jararweh, Y.: Blockchain-enhanced data sharing with 
traceable and direct revocation in IIoT. IEEE Trans. Ind. Inf. (2021). https://​doi.​org/​10.​1109/​TII.​
2021.​30491​41

	12.	 Tan, L., Xiao, H., Yu, K., Aloqaily, M., Jararweh, Y.: A blockchain-empowered crowdsourcing sys-
tem for 5G-enabled smart cities. Comput. Standards & Interfaces 76, 103517 (2021). https://​doi.​org/​
10.​1016/j.​csi.​2021.​103517

	13.	 Gupta, M., Jain, R., Kumari, M., Narula, G.: Securing healthcare data by using blockchain. In: 
Namasudra, S., Deka, G.C. (eds.) Applications of blockchain in healthcare, pp. 93–114. Springer 
Singapore, Singapore (2021)

	14.	 Sharma, P., Jindal, R., Borah, M.D.: Healthify: a blockchain-based distributed application for health 
care. In: Namasudra, S., Deka, G.C. (eds.) Applications of blockchain in healthcare, pp. 171–198. 
Springer Singapore, Singapore (2021)

	15.	 Bittins, S., Kober, G., Margheri, A., Masi, M., Miladi, A., Sassone, V.: Healthcare data management 
by using blockchain technology. In: Namasudra, S., Deka, G.C. (eds.) Applications of blockchain in 
healthcare, pp. 1–27. Springer Singapore, Singapore (2021)

	16.	 Malina, L., Srivastava, G., Dzurenda, P., Hajny, J., Ricci, S.: A privacy-enhancing framework 
for internet of things services. In: International Conference on Network and System Security, pp. 
77–97. Springer International Publishing, in Network and System Security, Cham (2019)

	17.	 Shen, M., Tang, X., Zhu, L., Du, X., Guizani, M.: Privacy-preserving support vector machine train-
ing over blockchain-based encrypted IoT data in smart cities. IEEE Internet Things J. 6(5), 7702–
7712 (2019)

	18.	 Makhdoom, I., Zhou, I., Abolhasan, M., Lipman, J., Ni, W.: PrivySharing: a blockchain-based 
framework for privacy-preserving and secure data sharing in smart cities. Comput. & Secur. (2020). 
https://​doi.​org/​10.​1016/j.​cose.​2019.​101653

	19.	 Chen, C.-L., Deng, Y.-Y., Weng, W., Sun, H., Zhou, M.: A blockchain-based secure inter-hospital 
EMR sharing system. Appl. Sci. 10(14), 4958 (2020)

	20.	 Dai, H.-N., Imran, M., Haider, N.: Blockchain-enabled Internet of Medical Things to Combat 
COVID-19.  arXiv preprint arXiv:​2008.​09933 (2020)

	21.	 Shu, H., Qi, P., Huang, Y., Chen, F., Xie, D., Sun, L.: An efficient certificateless aggregate signature 
scheme for blockchain-based medical cyber physical systems. Sensors 20(5), 1521 (2020)

	22.	 Jaleel, A., Mahmood, T., Hassan, M.A., Bano, G., Khurshid, S.K.: Towards medical data interoper-
ability through collaboration of healthcare devices. IEEE Access 8, 132302–132319 (2020)

	23.	 Yu, K., Tan, L., Shang, X., Huang, J., Srivastava, G., Chatterjee, P.: Efficient and privacy-preserving 
medical research support platform against COVID-19: a blockchain-based approach. IEEE Con-
sumer Electron. Magazine 10(2), 111–120 (2021). https://​doi.​org/​10.​1109/​MCE.​2020.​30355​20

	24.	 Fadaeddini, A., Majidi, B., Eshghi, M.: Secure decentralized peer-to-peer training of deep neural 
networks based on distributed ledger technology. J. Supercomput. 76(12), 10354–10368 (2020)

	25.	 Fadaeddini, A., Majidi, B., Eshghi, M.: Privacy preserved decentralized deep learning: A block-
chain based solution for secure ai-driven enterprise. In: International Congress on High-Perfor-
mance Computing and Big Data Analysis. Springer (2019)

	26.	 Mohanta, B.K., Panda, S.S., Jena, D.: An overview of smart contract and use cases in blockchain 
technology. In: 2018 9th International Conference on Computing, Communication and Networking 
Technologies (ICCCNT), pp. 1–4 (2018)

	27.	 Huang, Y., Bian, Y., Li, R., Zhao, J.L., Shi, P.: Smart contract security: a software lifecycle perspec-
tive. IEEE Access 7, 150184–150202 (2019). https://​doi.​org/​10.​1109/​ACCESS.​2019.​29469​88

	28.	 Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Gollamudi, A., Gonthier, G., Kobeissi, N., Kula-
tova, N., Rastogi, A., Sibut-Pinote, T., Swamy, N.: Formal verification of smart contracts: Short 
paper. In: Proceedings of the 2016 ACM Workshop on Programming Languages and Analysis for 
Security, pp. 91–96 (2016)

	29.	 Tsankov, P., Dan, A., Drachsler-Cohen, D., Gervais, A., Buenzli, F., Vechev, M.: Securify: practi-
cal security analysis of smart contracts. In: Proceedings of the 2018 ACM SIGSAC Conference on 
Computer and Communications Security, pp. 67–82 (2018)

https://doi.org/10.1007/s00330-020-07154-4
https://doi.org/10.1007/s00330-020-07154-4
https://doi.org/10.1016/j.imu.2020.100378
https://doi.org/10.1016/j.imu.2020.100378
https://doi.org/10.1109/TII.2021.3049141
https://doi.org/10.1109/TII.2021.3049141
https://doi.org/10.1016/j.csi.2021.103517
https://doi.org/10.1016/j.csi.2021.103517
https://doi.org/10.1016/j.cose.2019.101653
http://arxiv.org/abs/2008.09933
https://doi.org/10.1109/MCE.2020.3035520
https://doi.org/10.1109/ACCESS.2019.2946988


699New Generation Computing (2021) 39:677–700	

123

	30.	 Kalra, S., Goel, S., Dhawan, M., Sharma, S.: ZEUS: analyzing safety of smart contracts. In: NDSS, 
pp. 1–12 (2018)

	31.	 OpenZeppelin. https://​openz​eppel​in.​com/​contr​acts/. Accessed 27 Feb 2021
	32.	 SmartDec. https://​smart​contr​acts.​smart​dec.​net/. Accessed 27 Feb 2021
	33.	 Alt L., Reitwießner, C.: SMT-based verification of solidity smart contracts. In: International Sym-

posium on Leveraging Applications of Formal Methods, pp. 376–388. Springer (2018)
	34.	 Benet, J.: InterPlanetary File System. https://​ipfs.​io/. Accessed 17 Dec 2020
	35.	 Entriken, W.: Introduction to smart contracts. https://​ether​eum.​org/​en/​devel​opers/​docs/​smart-​contr​

acts/. Accessed 30 Nov 2020
	36.	 MetaMask. https://​metam​ask.​io/. Accessed 17 Dec 2020
	37.	 Solidity. https://​docs.​solid​ityla​ng.​org/​en/​v0.5.​0/​resou​rces.​html. Accessed 17 Dec 2020
	38.	 Truffle Suite. https://​www.​truff​lesui​te.​com/. Accessed 17 Dec 2020
	39.	 Ganache. https://​www.​truff​lesui​te.​com/​ganac​he. Accessed 17 Dec 2020
	40.	 web3.js. https://​web3js.​readt​hedocs.​io/​en/​v1.3.​0/. Accessed 17 Dec 2020
	41.	 OpenZeppelin’s AccessControl Module. https://​github.​com/​OpenZ​eppel​in/​openz​eppel​in-​contr​acts/​

blob/​master/​contr​acts/​access/​Acces​sCont​rol.​sol. Accessed 2 Mar 2021
	42.	 Kovan Testnet. https://​kovan-​testn​et.​github.​io/​websi​te/. Accessed 15 Dec 2020
	43.	 Infura. https://​infura.​io/. Accessed 15 Dec 2020
	44.	 Meng, T., Jing, X., Yan, Z., Pedrycz, W.: A survey on machine learning for data fusion. Inf. Fusion 

57, 115–129 (2020). https://​doi.​org/​10.​1016/j.​inffus.​2019.​12.​001
	45.	 Arevalo-Rodriguez, I., Buitrago-Garcia, D., Simancas-Racines, D., Zambrano-Achig, P., Del 

Campo, R., Ciapponi, A., Sued, O., Martinez-Garcia, L., Rutjes, A.W., Low, N.: False-negative 
results of initial RT-PCR assays for COVID-19: a systematic review. PloS One 15(12), 0242958 
(2020)

	46.	 Watson, J., Whiting, P. F., Brush, J. E.: Interpreting a COVID-19 test result. BMJ  369 (2020)
	47.	 Jain, R., Gupta, M., Taneja, S., Hemanth, D.J.: Deep learning based detection and analysis of 

COVID-19 on chest X-ray images. Appl. Intell. 51(3), 1690–1700 (2021). https://​doi.​org/​10.​1007/​
s10489-​020-​01902-1

	48.	 Shi, S., Qin, M., Shen, B., Cai, Y., Liu, T., Yang, F., Gong, W., Liu, X., Liang, J., Zhao, Q.: Asso-
ciation of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan. JAMA 
cardiology, China (2020)

	49.	 Moody, G.B., Mark, R.G.: The impact of the MIT-BIH Arrhythmia database. IEEE Eng. Med. Biol. 
Mag. 20(3), 45–50 (2001)

	50.	 Kachuee, M., Fazeli, S., Sarrafzadeh, M.: ECG Heartbeat Classification: a deep transferable rep-
resentation. In: IEEE International Conference on Healthcare Informatics (ICHI) 2018, 443–444 
(2018)

	51.	 Acharya, U.R., Oh, S.L., Hagiwara, Y., Tan, J.H., Adam, M., Gertych, A., San Tan, R.: A deep con-
volutional neural network model to classify heartbeats. Comput. Biol. Med. 89, 389–396 (2017)

	52.	 Kaspal, R., Alsadoon, A., Prasad, P.W.C., Al-Saiyd, N.A., Nguyen, T.Q.V., Pham, D.T.H.: A novel 
approach for early prediction of sudden cardiac death (SCD) using hybrid deep learning. Multime-
dia Tools Appl. (2020). https://​doi.​org/​10.​1007/​s11042-​020-​10150-x

	53.	 Malik, J., Loring, Z., Piccini, J.P., Wu, H.T.: Interpretable morphological features for efficient sin-
gle-lead automatic ventricular ectopy detection. J. Electrocardiol. (2020). https://​doi.​org/​10.​1016/j.​
jelec​troca​rd.​2020.​11.​014

	54.	 Khan, M.M.R., Siddique, M.A.B., Sakib, S., Aziz, A., Tanzeem, A.K., Hossain, Z.: Electrocar-
diogram heartbeat classification using convolutional neural networks for the detection of cardiac 
Arrhythmia. In: 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics 
and Cloud) (I-SMAC), pp. 915–920 (2020). https://​doi.​org/​10.​1109/I-​SMAC4​9090.​2020.​92434​74

	55.	 Alfaras, M., Soriano, M.C., Ortín, S.: A fast machine learning model for ECG-based heartbeat clas-
sification and Arrhythmia detection, (in English). Front. Phys. (2019). https://​doi.​org/​10.​3389/​fphy.​
2019.​00103

	56.	 COVID-19 Cough Recordings. https://​www.​kaggle.​com/​himan​shu00​7121/​cough​class​ifier-​trial. 
Accessed 2 Mar 2021

	57.	 Sharma, N., Krishnan, P., Kumar, R., Ramoji, S., Chetupalli, S.R., Ghosh, P.K., Ganapathy, S.: 
Coswara–A database of breathing, cough, and voice sounds for COVID-19 Diagnosis. arXiv pre-
print arXiv:​2005.​10548 (2020)

	58.	 Coswara dataset. https://​github.​com/​iiscl​eap/​Coswa​ra-​Data. Accessed 3 Mar 2021

https://openzeppelin.com/contracts/
https://smartcontracts.smartdec.net/
https://ipfs.io/
https://ethereum.org/en/developers/docs/smart-contracts/
https://ethereum.org/en/developers/docs/smart-contracts/
https://metamask.io/
https://docs.soliditylang.org/en/v0.5.0/resources.html
https://www.trufflesuite.com/
https://www.trufflesuite.com/ganache
https://web3js.readthedocs.io/en/v1.3.0/
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/AccessControl.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/AccessControl.sol
https://kovan-testnet.github.io/website/
https://infura.io/
https://doi.org/10.1016/j.inffus.2019.12.001
https://doi.org/10.1007/s10489-020-01902-1
https://doi.org/10.1007/s10489-020-01902-1
https://doi.org/10.1007/s11042-020-10150-x
https://doi.org/10.1016/j.jelectrocard.2020.11.014
https://doi.org/10.1016/j.jelectrocard.2020.11.014
https://doi.org/10.1109/I-SMAC49090.2020.9243474
https://doi.org/10.3389/fphy.2019.00103
https://doi.org/10.3389/fphy.2019.00103
https://www.kaggle.com/himanshu007121/coughclassifier-trial
http://arxiv.org/abs/2005.10548
https://github.com/iiscleap/Coswara-Data


700	 New Generation Computing (2021) 39:677–700

123

	59.	 Vijayakumar, D.S., Sneha, M.: Low cost Covid-19 preliminary diagnosis utilizing cough samples 
and keenly intellective deep learning approaches. Alexandria Eng. J. 60(1), 549–557 (2021). https://​
doi.​org/​10.​1016/j.​aej.​2020.​09.​032

	60.	 Mouawad, P., Dubnov, T., Dubnov, S.: Robust detection of COVID-19 in cough sounds. SN Com-
put. Sci. 2(1), 34 (2021). https://​doi.​org/​10.​1007/​s42979-​020-​00422-6

	61.	 Chest X-ray (Covid-19 & Pneumonia). https://​www.​kaggle.​com/​prash​ant268/​chest-​xray-​covid​19-​
pneum​onia. Accessed 2 Mar 2021

	62.	 Ozturk, T., Talo, M., Yildirim, E.A., Baloglu, U.B., Yildirim, O., Acharya, U.R.: Automated detec-
tion of COVID-19 cases using deep neural networks with X-ray images. Comput. Biol. Med. 121, 
103792 (2020)

	63.	 Yoo, S.H., Geng, H., Chiu, T.L., Yu, S.K., Cho, D.C., Heo, J., Choi, M.S., Choi, I.H., Van Cung, C., 
Nhung, N.V.: Deep learning-based decision-tree classifier for COVID-19 diagnosis from chest X-ray 
imaging. Front. Med. 7, 427 (2020)

	64.	 Sethy, P.K., Behera, S.K., Ratha, P.K., Biswas, P.: Detection of coronavirus disease (COVID-19) 
based on deep features and support vector machine. Preprints (2020)

	65.	 Panwar, H., Gupta, P.K., Siddiqui, M.K., Morales-Menendez, R., Singh, V.: Application of deep 
learning for fast detection of COVID-19 in X-Rays using nCOVnet. Chaos, Solitons & Fractals 138, 
109944 (2020)

	66.	 C.-C. Scans. https://​www.​kaggle.​com/​andre​wmvd/​covid​19-​ct-​scans. Accessed 3 Mar 2021
	67.	 Glick. COVID-19 Pneumonia. https://​radio​paedia.​org/​playl​ists/​25887. Accessed 3 Mar 2021
	68.	 Paiva, O.: CT scans of patients with COVID-19 from Wenzhou Medical University. https://​coron​

acases.​org/. Accessed 3 Mar 2021
	69.	 Jun, M., Cheng, G., Yixin, W., Xingle, A., Jiantao, G., Ziqi, Y., Minqing, Z., Xin, L., Xueyuan, D., 

Shucheng, C., Hao, W., Sen, M., Xiaoyu, Y., Ziwei, N., Chen, L., Lu, T., Yuntao, Z., Qiongjie, Z., 
Guoqiang, D., Jian, H.: COVID-19 CT Lung and Infection Segmentation Dataset. https://​doi.​org/​10.​
5281/​zenodo.​37574​75. Accessed 3 Mar 2021

	70.	 Singh, D., Kumar, V., Kaur, M.: Classification of COVID-19 patients from chest CT images using 
multi-objective differential evolution-based convolutional neural networks. Eur. J. Clin. Microbiol. 
Infectious Dis. 39(7), 1379–1389 (2020)

	71.	 Wang, X., Deng, X., Fu, Q., Zhou, Q., Feng, J., Ma, H., Liu, W., Zheng, C.: A weakly-supervised 
framework for COVID-19 classification and lesion localization from chest CT. IEEE Trans. Med. 
Imaging 39(8), 2615–2625 (2020)

	72.	 Ahuja, S., Panigrahi, B.K., Dey, N., Rajinikanth, V., Gandhi, T.K.: Deep transfer learning-based 
automated detection of COVID-19 from lung CT scan slices. Appl. Intell. 51(1), 571–585 (2021)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

Authors and Affiliations

Amirhossein Peyvandi1 · Babak Majidi1,2   · Soodeh Peyvandi3 · Jagdish Patra4

1	 Department of Computer Engineering, Khatam University, Tehran, Iran
2	 Emergency and Rapid Response Simulation (ADERSIM) Artificial Intelligence Group, Faculty 

of Liberal Arts and Professional Studies, York University, Toronto, Canada
3	 Process Management and Business Intelligence, University of Applied Sciences Upper Austria, 

Steyr, Austria
4	 Faculty of Science, Engineering and Technology, Swinburne University of Technology, 

Melbourne, Australia

https://doi.org/10.1016/j.aej.2020.09.032
https://doi.org/10.1016/j.aej.2020.09.032
https://doi.org/10.1007/s42979-020-00422-6
https://www.kaggle.com/prashant268/chest-xray-covid19-pneumonia
https://www.kaggle.com/prashant268/chest-xray-covid19-pneumonia
https://www.kaggle.com/andrewmvd/covid19-ct-scans
https://radiopaedia.org/playlists/25887
https://coronacases.org/
https://coronacases.org/
https://doi.org/10.5281/zenodo.3757475
https://doi.org/10.5281/zenodo.3757475
http://orcid.org/0000-0001-6309-6407

	Computer-Aided-Diagnosis as a Service on Decentralized Medical Cloud for Efficient and Rapid Emergency Response Intelligence
	Abstract
	Introduction
	Decentralized Deep Emergency Response Intelligence
	Decentralized Privacy-Preserving Framework
	D-EI Smart Contract
	Machine Learning-Aided COVID-19 CAD Framework

	D-EI for Emergency Intelligence in COVID-19 Pandemic
	Machine Learning Based CAD for COVID-19
	D-EI for CAD as a Service on Decentralized Medical Cloud

	Conclusion
	References




